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The dynamics of decision‑making 
and action during active sampling
Duygu Ozbagci1*, Ruben Moreno‑Bote1 & Salvador Soto‑Faraco1,2

Embodied Cognition Theories (ECTs) of decision-making propose that the decision process pervades 
the execution of choice actions and manifests itself in these actions. Decision-making scenarios 
where actions not only express the choice but also help sample information can provide a valuable, 
ecologically relevant model for this framework. We present a study to address this paradigmatic 
situation in humans. Subjects categorized (2AFC task) a central object image, blurred to different 
extents, by moving a cursor toward the left or right of the display. Upward cursor movements reduced 
the image blur and could be used to sample information. Thus, actions for decision and actions 
for sampling were orthogonal to each other. We analyzed response trajectories to test whether 
information-sampling movements co-occurred with the ongoing decision process. Trajectories were 
bimodally distributed, with one kind being direct towards one response option (non-sampling), 
and the other kind containing an initial upward component before veering off towards an option 
(sampling). This implies that there was an initial decision at the early stage of a trial, whether to 
sample information or not. Importantly, in sampling trials trajectories were not purely upward, 
but rather had a significant horizontal deviation early on. This result suggests that movements to 
sample information exhibit an online interaction with the decision process, therefore supporting the 
prediction of the ECTs under ecologically relevant constrains.

The classical view of decision-making was founded on the idea that action is executed after a decision has been 
made, in a serial fashion1,2. This idea assumes a temporal and functional separation between the decision-making 
processes and the ensuing motor processes that implement that decision. Recent behavioural studies have chal-
lenged this strictly serial view and proposed, instead, that the choice execution process may begin before the 
decision process has concluded, de facto introducing the parallel view of decision-making3,4. This parallel view 
states that there is an ongoing information flow from decision to action systems well before the decision process 
has been fully completed. According to this view, not only decision and action may coexist, but choice move-
ments may be updated online based on newly acquired evidence5.

To investigate the putative interaction between action and decision as it unfolds in time, some studies have 
used decision-making tasks which require continuous control of action. These tasks track responses executed on 
devices like joysticks, robotic handles, computer mice, or freely with hand reaching movements6–9. Since these 
responses have a wide temporal and spatial span, they make it possible to study, and compare the movement 
dynamics during the decision-making process.

A typical finding that emerges from continuous movement paradigms when subjects must move toward 
one out of two alternative targets, is the prevalence of movement trajectories that are not perfectly direct to 
the chosen target9. These findings have shown that the initial phase of the response movement weighs in the 
paths to the two possible targets, maintaining a compromise which is later resolved by diversion of the trajec-
tory committing to one of the targets10,11. Some scholars attributed these averaged movements to an error in 
movement planning or to uncertainty of the movement goals12,13. However, in decision making literature these 
averaged movement trajectories are commonly interpreted as a case of movement being planned and executed 
online during the decision process and more importantly, that there is a continuous crosstalk between these two 
processes14,15. An exacerbated expression of this online crosstalk are changes of mind, trials in which the subject’s 
response movement starts off toward one target but corrects on-the-fly toward the alternative target7. In general, 
these findings motivated the parallel view of decision-making, which focuses on the ongoing one-way flow of 
information from decision to action.

Although the parallel view of decision-making assumes a richer interaction between action and decision than 
the strictly sequential view, it only accounts for the forward influence from decision to action. However, there 
is evidence for backward influence from action on decision as well. For example, Burk, and colleagues (see7) 
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showed that when the spatial distance between two response options is large, subjects make less changes of mind 
than when the distance between targets is shorter. This means that action costs are considered and influence the 
outcome of the decision process. In a similar vein, Cos and colleagues (see16) found that the amount of effort 
required to perform the response action biased performance in a decision-making task. There is, still, another 
type of backward influence from motor to decision processes: when actions help accrue information relevant 
for the decision. The present study addresses precisely this case.

We can frame the evidence mentioned above under Embodied Cognition Theories (ECT) of decision-making, 
whose common characteristic is the influence of action dynamics on decision as well as the influence of deci-
sion on action. Indeed, drawing connections between motor processes and decision-making has a conceptual 
grounding on the wider framework of sensorimotor and embodied views in cognitive sciences17–19, a general 
conceptual shift that has pervaded recent views in decision-making. One clear example is Lepora & Pezzulo’s 
Embodied Choice Model20. The model proposes a two-way online interaction between motor actions and deci-
sion processes and that this interaction allows for a fast update of movement and decision processes. A typical 
argument by example often used to support this view is that, in nature, animals must move about (their body 
and/or sensory epithelia) to be able to gather information that is relevant to making subsequent choices and 
planning upcoming actions20. To use the information gained through movement though, there needs to be a 
backward flow of information from action-related motor processes to decision-making.

Despite the logical emphasis that embodied views make on information sampling movements, this notion 
has not been implemented in experimental tasks to support the ECTs. In fact, in most of these decision-making 
tasks, the stimulus information is available all at once and static, without any dependency upon the participant’s 
movement8,20–22. The interactions which can be potentially at play in these types of tasks have been illustrated in 
Fig. 1a. Because the actions performed to report a choice are inconsequential to the inflow of information used 
to reach that decision, these tasks cannot capture all possible interactions between action and decision proposed 
by ECTs. Therefore, there is a need for tasks that can reveal the two relevant aspects of actions to identify the 
potential interplay between motor and decision processes. This interplay, which has motivated the task used 
here to test decision-making under ECTs, is illustrated in Fig. 1b. Here, we assume that there are two types of 
action plans which are critical in an embodied decision-making scenario, the ones necessary for response itself, 
and the ones necessary for information sampling. Both of them interact with the decision process, and mediate 
both feed-forward and feedback interactions.

In conclusion, we believe that the generality of the interplay between decision and action, and by proxy, of the 
embodied decision framework, have not yet been tested in all its critical components. In the present study, we 
aim to testing the ECTs’ predictions with a task in which information accrual depends on the subject’s actions. 
Empirical evidence regarding such a scenario is still scarce. We have developed a novel mouse-tracking task in 
which action is necessary both to sample information and to indicate the decision. To be able to single out one 
from the other, movements directed at sampling information and movements to execute the response have been 
made orthogonal. That is, it is possible for the subjects to accumulate all the information first and then make the 
choice, to make a choice at once without any accumulation of information, or to do anything in between. Since 
trials have a time limit, the orchestration among information sampling actions and choice actions becomes stra-
tegic. Although sampling and response actions have orthogonal axis, one critical aspect of the task is that both 
action plans are executed via the same effector, so that the final motor output must synthesise the two plans if they 
are to co-occur, as the theory predicts. Similar to other mouse-tracking studies, the main test of our hypothesis 
depended on the analysis of metrics obtained from the trajectories23.

Figure 1.   Interactions between motor action and decision in tasks without (a) and with (b) active information 
sampling. (a) In majority of the decision-making tasks decision process feeds the response plan which gets 
executed with a motor action. While the action continues, the output of the action feeds back into the decision 
process. This is not a fully embodied scenario, since actions do not bring an information change. (b) In a fully 
embodied scenario considered here, two different action plans, for sampling and for responding, are allowed 
to unfold in parallel. The decision process has a feedforward influence on motor output, whereas sampling 
influences decision via feedback from the motor action. In contrast to panel (a), the executed motor action 
implements both responding and sampling of information.
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Our hypothesis, derived from the ECTs14,20, is that the actions related to the decision-making process and the 
actions related to information sampling used to reach that decision are subject to significant online interaction. 
We first show that, in our task, trajectories depend on the amount of available information such that participants 
move to sample information when needed. Second, we demonstrate that the decision-making process transpires 
even at the initial phases of the information sampling movements, so that trajectories are biased towards one 
(usually the chosen) target much before all the information has been gathered. These results do not only sug-
gest that the decision-making process pervades information sampling actions, but also that decision, actions 
and information sampling may be orchestrated in parallel, and not necessarily in a strictly sequential fashion.

Methods
Participants.  Twenty-one voluntary participants joined the experiment (12 women, 9 men, average age 
23.5  years). Participants were recruited from the database of the Center for Brain & Cognition (University 
Pompeu Fabra) and were paid 10 euros per hour in exchange for their participation. They were all right-handed 
and had normal or corrected to normal vision with no reported history of motor problems related to the upper 
limbs. Before proceeding with the experiment, all subjects read and signed an informed consent form. The 
research was conducted in accordance with the Declaration of Helsinki, institutional guidelines and regulations. 
The experimental protocol was approved by the ethics committee CEIC Parc de Salut Mar, Universitat Pompeu 
Fabra. Before conducting the hypothesis-driven data analyses, we excluded data from two subjects whose accu-
racy was below 75%. This ensured sufficient number of correct trials for obtaining reliable trajectory averages.

Experimental setup.  Participants were asked to perform a visual object categorization between “edible” 
vs “non-edible” in a two-alternative forced choice (2AFC) paradigm. We used 63 edible and 63 non-edible 
object images from the Amsterdam Library of Object Images24, and each of them was presented only once to 
each participant, obtaining a total of 126 different trials per participant. To control for possible effects of colour 
cues, we used, achromatic versions of the images. Stimulus display and the task were programmed with MAT-
LAB, PsychToolBox25. Visual stimuli were presented on a Cambridge Research Systems, Display +  + monitor 
(1920 × 1080 pixels, 32’’, 100 Hz refresh rate). Responses were recorded through a computer mouse (HP USB 
Optical Scroll Mouse), and the cursor location was recorded at 100 Hz (at every display refresh frame). The par-
ticipant’s task involved moving the cursor from a home position at the bottom centre of the display to the right 
or left response areas, depending on the choice regarding the image presented at the top centre (locations and 
other details are described below).

For each subject, the total of 126 trials were divided, randomly and equiprobably into three different move-
ment-to-visibility conditions: No Blur (NB), Low Blur (LB) and High Blur (HB). In the NB condition, the images 
were fully visible (without any blur) from the beginning of the trial, and therefore visibility was not contingent 
on action. For the other two conditions, in order to implement movement-dependent updating of information, 
we manipulated the visibility of the object images as a function of mouse position. We used a dynamic filter mask 
over the image to blur the image. The filter convolved each pixel with the neighbouring pixels with a Gaussian 
kernel with standard deviation (sd) proportional to the vertical distance between current cursor position and the 
target image at the top centre of the display, denoted dv (measured in pixels). In the LB condition, the Gaussian 
mask had sd = dv/120, whereas in the HB condition the Gaussian mask had sd = dv/60. This effectively made blur 
(hence, image visibility) depend on the participants’ movement, so that moving upward de-blurred the target 
image (i.e., the shorter the vertical distance to target, the smaller dv, and hence the lower the sd and the higher 
the visibility). The difference between the two blur conditions was the gain in visibility as a function of distance.

Procedure.  Each subject completed the task in a darkened, sound-attenuated laboratory room. Subjects 
completed a training session prior to the experimental block. The training consisted of 18 trials (6 from each 
blur condition in a random order) in which we used novel images that did not appear in the experiment. Before 
each trial started, the subject moved the mouse cursor to the bottom-centre home area (height = 10 × width = 15 
pixels, centre x, y coordinates: 960,1075 pixels). The trial began with the image (265 × 192 pixels) appearing at 
the top-centre of the monitor (x-coordinates: 827 to 1092, y-coordinates: 0 to 192 pixels). As soon as the image 
appeared, the subject was free to move the mouse to indicate her choice by reaching to, and clicking on, one of 
two response areas, left or right side of the display, within 2000 ms (Fig. 2). The rectangular response areas, cov-
ering the leftmost and rightmost 23% of the display, were indicated by two vertical lines along the screen sides 
(x coordinates: 440 and 1480 pixels, respectively; see, Fig. 2). For half of the participants, edible was attributed 
to the left response area and non-edible to the right. For the other half, it was reversed. Response deadline was 
2000 ms, after which the subject missed the trial. The deadline was introduced to create time pressure. This and 
similar methodological practices to encourage early movement initiation are used commonly in mouse-tracking 
studies26,27. In our particular protocol, this deadline had been established after previous pilots, and rendered 
average performance below ceiling but within the pre-set subject inclusion criteria (< 75%). As it will become 
clear later, the trial time imposed could be (and was) used up in different ways depending on the available 
information at the beginning of the trial (see “Movement onset latency analysis” in the Results section). Each 
trial took the whole 2000 ms, independently of the response time, to ensure that the duration of the session was 
fixed. After a trial ended, the participant needed to move the cursor back to the bottom-centre home location for 
the next trial to begin. The inter-trial interval was 2000 ms, which also served as a fixation screen. Trials from 
all three conditions (NB, LB, HB) were interleaved randomly throughout the experiment. Hence, for efficient 
responding, participants could not fall back on a pre-defined strategy based on visibility prior to the start of the 
trial.
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Because the response areas covered both lateral sides of the display, the decision movement could vary in 
terms of the vertical extent of the trajectory, including direct horizontal movements from the home location to 
the response area. As said earlier, in the blurred image (LB and HB) conditions, the image blur decreased as the 
mouse moved upward. Therefore, when the image did not contain sufficient information, the participant needed 
to move in the vertical direction in order to gather evidence. Because of the response deadline (2000 ms), moving 
upward had a cost (i.e., took time off the available response time). Therefore, moving upward is not an optimal 
strategy if it is not necessary to sample evidence.

Data analysis.  In our task, characterizing information sampling and response components of the subjects’ 
action boils down to the analysis of heights and angles of the response trajectories (some example trajectories are 
shown in Fig. 3). Firstly, we inspected the trajectory height, denoted h, which was calculated by measuring the 
vertical distance (in pixels) between the starting point and the highest point of the trajectory (Fig. 3a). Second, 
we analysed the initial angle of trajectories, denoted α, which was defined as the angle described by an imaginary 
straight line connecting the starting point with the point at one-third of the length of the trajectory (cyan dashed 
line in Fig. 3a), with respect to the vertical midline (0º). It is important to note that, although correct targets 
were randomly assigned left or right sides during the task, for analyses we realigned the correct choice to posi-
tive angles. Henceforth, positive angles indicate the direction of the correct choice, and negative angles that of 
the incorrect choice. Despite we excluded incorrect trials from the analysis, negative angles are possible at initial 
stages in the trajectory of correct trials.

We preregistered this study and we first report the analyses that were planned prior to data collection (see, 
https://​osf.​io/​3ysah/). We also performed follow-up analyses that have been decided after the pre-registration 
process, as these reveal important characteristics of the data. Throughout the results section we report statistical 

Figure 2.   Schematic illustration of a trial sequence. Each trial was preceded by a 2000 ms inter-trial interval 
displaying a fixation cross. Then, the stimulus and the choices were presented on the screen until response, with 
a deadline of 2000 ms. Response areas, left and right of the display, are denoted by straight vertical lines. All 
trials were equated to the same duration, 2000 ms by adding a waiting time if necessary. RT reaction time.

Figure 3.   (a) An example of one mouse trajectory (red line) on the experimental display. Response areas are 
indicated to the participants by the solid vertical lines on the left and right sides. The white dashed line indicates 
the height h of the trajectory. The cyan dashed line that joints the origin with the point of the trajectory that 
lies at one third of its total length serves to calculate the initial angle α of the trajectory with respect to vertical. 
Positive angles are defined to be in the direction of the correct target, whose location could occur randomly on 
either side. (b) Examples of trajectories for several individual trials, with the same conventions described in a.

https://osf.io/3ysah/
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tests according to the frequentist approach (the analogous Bayesian analyses are reported in the Supplementary 
Table S1, as both analyses lead to the same conclusions). We excluded incorrect trials from the trajectory analy-
ses, as is usual practice in order to extract decision-related effects from categorically similar responses28–30. On 
average, each participant had 110 correct trials (range 103–123) out of 126 total (overall mean accuracy > 87%). 
The mean number correct trials out of 42 per condition was 37.4 (sd = 3.6), 36.9 (sd = 2.7) and 36.2 (sd = 2.8) 
for NB, LB and HB conditions, respectively. This indicates that the increase in blur ended up with slightly lower 
accuracy rates. The mean response time of correct trials was 1107 ms (sd = 117), 1266 ms (sd = 135) and 1374 ms 
(sd = 142) for NB, LB and HB conditions, respectively. The increase in blur resulted in longer response times in 
addition to lower accuracy.

Results
Movement‑dependent information sampling.  If participants gather information as is needed, their 
trajectories should reach higher when the image is blurred. We therefore tested whether trajectories in blur tri-
als reached higher than trajectories in the no blur trials. As can be seen in Fig. 4a, trajectories in the two blur 
conditions were higher than in the no blur condition, since information sampling was unnecessary in the latter 
(right tail paired-samples t-tests, t(17) = 6.53, p < 0.001, Cohen’s d = 1.54; t(17) = 7.03, p < 0.001, Cohen’s d = 1.66, 
for the comparison of NB with LB and HB, respectively). This result rules out the option that participants used a 
good-for-all strategy, by just moving up as soon as the trial started and then deciding which side to go. However, 
even in the NB conditions trajectories had a non-zero vertical component (mean = 368.3 pixels, sd = 231.9), pos-
sibly due to biophysical motor constraints. Another potential reason for non-zero height in NB condition is the 
random presentation of conditions in the experiment. Since in approximately two thirds of the trials gathering 
more information has an advantage, participants might have an anticipatory tendency to move upwards. To 
eliminate the height differences that are present in the trajectories but unrelated to information gathering, we 
subtracted the average height in NB condition from LB and HB trajectory heights in each individual’s data and 
continued the analysis with these normalized values. The results showed that trajectories in HB trials were about 
27% higher than in LB trials (mean = 315.7, sd = 190.4, vs 229.3, sd = 148.8, respectively; right tail paired-samples 
t-test, t(17) = 5.39, p < 0.001, Cohen’s d = 1.27).

Interplay between decision and action.  Bimodality of trajectories.  A central prediction of ECTs is 
that movements should reflect the decision-making process throughout, such that the trajectories should show 
early on a bias towards the finally chosen target. We tested this prediction by studying the initial angles of the 
trajectories (Fig. 4b). However, for this analysis we decided to include only those trials for which sampling had 
occurred, instead of mixing in trials with and without sampling behaviour. This was motivated by the fact that 
the distribution of angles was clearly bimodal (Hartigan’s Dip Test31, p-value < 0.001; Gaussian mixture model 
better fit with 2 components, Akaike Information Criterion (AIC) = 19,105 than the model with 1 component, 
AIC = 19,753). A central lobe of the distribution peaked at an angle 2.3º (that is, close to vertical, which was ar-
bitrarily defined to be 0º), and a lateral lobe peaked at 66.4º (positive angles correspond to directions to the cor-
rect target, with 90º being a perfectly straight trajectory). The separation between the two lobes of the bimodal 
distribution was therefore 43.52º. Detecting subtypes of trajectories is fundamental to avoid averaging trials that 
are different in terms of the underlying cognitive modes32,33. Please, note that in our case averaging these two 
types of trajectories could end up rendering an average trajectory between sampling and non-sampling that is 
unrepresentative of the majority of the responses, which are of one or the other kind. Therefore, this bimodality 

Figure 4.   (a) Height of trial trajectories for NB, LB and HB conditions. Each colored dot represents individual 
means for the corresponding condition. White dots represent the group median for the condition and the 
grey lines represent the inter-quartile range. (b) Probability density of the initial angles of the trajectories 
across participants. The solid black line corresponds to the Gaussian mixture model (with 2 components) fit 
to the distribution (model with 2 components AIC = 19,105 < model with 1 component AIC = 19,753). Angle 
0º corresponds to straight vertical upwards movement, i.e., with no horizontal component. Positive angles 
correspond to correct target direction.
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and the cut-off point allowed us to classify trajectories as sampling or non-sampling, depending on whether the 
initial angle is closer to the central or the lateral peak of the bimodal distribution, respectively. Apart from the 
bimodality at group level, we confirmed significant bimodality in the distribution of trajectory angles for each 
subject individually (see Figure S1) for 9 out of 18 subjects. This means that early on in a trial, there is a fast 
sub-decision regarding the sampling or non-sampling strategy. This is further supported by the movement onset 
latency results, below.

The presence of two types of trajectories can be observed in each blur condition separately (Figure S2). As 
one would expect, there is a large fraction of non-sampling trajectories in the NB condition (corresponding to 
the lateral lobe of the bimodal distribution; q = 0.62, X2(1, N = 635) = 39.86, p < 0.001), though perhaps surpris-
ingly in the HB condition there was a fraction of non-sampling trajectories (q = 0.14 binomial test p < 0.05). The 
presence of sampling and non-sampling trajectories across all blur conditions suggests that participants made 
an initial choice about whether or not to gather information. This is supported by an analysis that showed that 
trajectories classified as non-sampling had a much smaller height than sampling trajectories (right tail two-
sample t-test, t(17) = 11.9, p < 0.001). Thus, non-sampling trajectories simply reflect a direct movement towards 
the chosen target that emanates from an initial decision, with little information gathering or ongoing decision-
process throughout.

Movement onset latency analysis.  We estimated the latency of movement onset as the time between trial onset 
and the initial movement of the mouse. The analysis showed that mean latency in non-sampling trials was longer 
(mean = 435 ms, sd = 125 ms) compared to sampling trials (mean = 329 ms, sd = 77 ms; right tail two-sample 
t-test, t(17) = − 4.4 , p < 0.001, Cohen’s d = − 1.04). This means that when the subjects exhibited a non-sampling 
strategy, they generally did so after waiting for longer at the initial location. This adds support to the interpreta-
tion that there is an initial sub-decision about whether to sample information or not, happening early in the trial, 
based on the available information about the target.

Speed of movement analysis.  We estimated the average speed of trajectories in each condition. The mean speed 
was higher in HB (mean = 30.2 cm/s, sd = 6.9) and LB (mean = 28.8 cm/s, sd = 7.6) compared to NB (mean = 23 
0.9 cm/s, sd = 7.5) condition. We conducted repeated measures ANOVA to see the effect of blur on movement 
speed. The results showed that movement speed was significantly modulated by blur (F(2,34) = 37.2, p < 0.001, 
η2 = 0.68).

Angle analysis of sampling trajectories.  Thus, given the initial sub-decision and the ensuing existence of two 
different types of trajectories, a direct test of the prediction of ECT requires examining the sampling trajectories 
alone. These trajectories correspond to the central peak of the distribution in Fig. 4b. As the initial angles of 
these trials are close to zero (vertical), trajectories mostly depart vertically from the home position with the aim 
of gathering information to guide the final choice. However, a key finding is that in addition to the prominent 
vertical component, the initial steps of the trajectory were already biased towards the chosen target, as the initial 
angle was significantly larger than zero in both LB and HB conditions (right tail one sample t-tests, t(16) = 4.58, 
p < 0.001 and t(16) = 3.41, p = 0.002, respectively). This result strongly supports the notion that the decision pro-
cess transpires into the movement even whilst participants are actively sampling information.

One might argue that some trials in the analysis above might have been misclassified (as non-sampling, 
instead of sampling trials), given the partial overlap of the two lobes of the bimodal distribution of angles. This 
could introduce some biases towards positive angles. To control for this possible confound we used a more data-
driven analysis limited to LB and HB trials only (in which participants are, for the most part, in need to sample 
information), that does not rely on trial classification. In this analysis we calculated average angle in incremental 
ranges of angles (symmetric around 0º) from ± 1º to ± 30º, in steps of one degree (Fig. 5a). We found that the 
average angle was significantly larger than zero in all the ranges larger than ± 14º (right tail t-tests, p < 0.05, 
see Fig. 5a). Angles in the range ± 14º and ± 20º are well inside the central peak of the bimodal distribution, as 
described above, and therefore can be independently classified as sampling trajectories (trajectories with such 
small initial angle very unlikely correspond to trials where the decision maker already made a choice about 
where to move). In sum, this new analysis reveals that trajectories whose initial angles lie within a small range of 
angles symmetrical around zero already show a significant bias towards the chosen target. This result supports, 
once more, the notion that the ongoing decision-making process transpires into the movement well before all 
the information necessary to solve the task has been gathered.

Although we did find significant deviations in the initial angle of blur trials (HB, LB) we did observe only 
marginal evidence that the angle deviation was larger in LB (mean = 5.28º, sd = 4.75) than in HB (mean = 3.42º, 
sd = 4.13) conditions (Fig. 5b; right tail paired-samples t-test, t(16) = 1.66, p = 0.058, Cohen’s d = 0.4).

Converging evidence from angle and height information.  Initially we had decided to classify sam-
pling and non-sampling trials based on initial angle of the trajectories. However, if our hypothesis is correct, 
a similar classification should apply to the heights of the trajectories. This is because sampling trajectories are 
expected to reach higher than non-sampling trajectories, as the latter correspond to ballistic movements to the 
target without much ongoing deliberations and thus are expected to reach vertically much lower. What is more, 
if trajectories are truly separable into sampling and non-sampling, then it should be the case that in their heights 
should also be distributed in a bimodal way, and height and angle should be correlated. Consistent with this pre-
diction, we found that heights were distributed in bimodally (Fig. 6a) across conditions and participants (Fig. 6a; 
Hartigan’s Dip Test, p < 0.05; see Figure S3 for each blur condition). These results in turn suggest that it should 
be possible to classify trajectories as sampling and non-sampling based on the bimodality in heights, and that 
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this classification should be largely consistent with the one derived above from the angle analyses. In line with 
this, classification based on height and classification based on angle were highly correlated (Pearson’s correlation, 
r = 0.76) and clustered trials in two clear categories (Fig. 6b).

Similar to the main angle analysis reported in Sect. 3.2 (where trial classification was based on angle), we 
analysed angle again but this time using trial classification based on height. We found that the angles in sam-
pling trials, both the LB and the HB conditions, were significantly larger than zero (right tail one sample t-test, 
t(16) = 3.7, p < 0.001, Cohen’s d = 0.9 and t(16) = 2.05, p = 0.029, d = 0.5, respectively). This outcome corroborates 
the conclusions of our main analysis and shows that this finding generalizes regardless of the classification vari-
able used.

Generalization of the results along the trajectory.  In the main analysis, we estimated angles at one 
third of the trajectory, as we wanted to capture the initial moments of the response movement. However, the cri-
terion to compute angles at one-third of the trajectory is somehow arbitrary. As a check regarding the reliability 
of this result, and the validity of the criterion used, we decided to compute the angles along the whole trajectory 
at 10 equidistant points, from 1/10th to 10/10th of the trajectory length. Then we checked the distribution of 
angles at each of these trajectory points. We found significant bimodality of angle distributions in all except the 
last trajectory point (Hartigan’s Dip test, p < 0.05). This generalizes the bimodality of trajectories beyond the one 

Figure 5.   (a) Mean initial trajectory angle for all blur trajectories (pooled LB and HB data), along incremental 
ranges of angles symmetric around zero. The solid black line corresponds to the inter-individual mean (the 
grey area represents s.e.m.). The black horizontal line represents significance (right tail t-test, p < 0.05) against 
the hypothesis that the mean angle is not larger than zero. (b) Initial angle of trial trajectories for LB and HB 
conditions. The coloured dots represent each participant’s mean value for the corresponding condition. The 
white dots represent the median for each condition and the grey lines illustrate the inter-quartile range.

Figure 6.   (a) Probability density of the heights of the trajectories across participants. The solid black line 
corresponds to the Gaussian mixture model with 2 components fit to the distribution (better fit in the model 
with 2 components, AIC = 26,439 lower than the model with 1 component, AIC = 26,874). (b) Probability 
density of the heights and angles of the trajectories across participants.
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particular point used in the main analysis. As can be seen in Fig. 7, the distribution of angles from 1/10th to 
5/10th of trajectory shows an earlier peak closer to 0º which means that a portion of trials classified as sampling 
are still in a phase of upward movement. Logically, at later stages the trajectories show diversion towards the final 
choice. Therefore, we are safe to interpret our main results obtained from angles calculated at the 1/3rd of the 
trajectory length as it is early enough to check if decision transpires into the movement during active sampling.

Angle and height analyses including error trials.  It is common practice to use only correct trials in 
trajectory analyses28–30, because the aetiology of errors is varied and difficult to trace. However, one could argue 
that removing error trials might have biased the outcomes toward positive angles. In order to ensure that the 
results we found were not due to biases induced by the exclusion of error trials, we repeated the height and angle 
analysis, this time including error trials along with the correct trials. We found that NB trials (mean = 393.6, 
sd = 208) had significantly lower height than LB (mean = 636.6, sd = 185.7) and HB (mean = 726.8, sd = 150.8) 
conditions (right tail paired-samples t-tests, t(17) = 7.6, p < 0.001 and t(17) = 8.1, p < 0.001, respectively). As in 
the main Results Sect. 3.2, we subtracted the NB average height from LB and HB and compared them. The result 
of the right tail paired-samples t-test showed that HB trajectories were significantly higher than LB trajectories 
(t(17) = 5.2, p < 0.001), confirming the main results conducted only on correct responses. Similarly, we assessed 
the angle of sampling trajectories in LB (mean = 4.6, sd = 4.2) and HB (mean = 2.1, sd = 3.9) and found that both 
were significantly above 0 (right tail one sample t-tests, t(17) = 0.4.7, p < 0.001 and t(17) = 2.3, p < 0.05, respec-
tively). We conducted right tail paired-sample t-test, to test if LB had larger angles than HB. The results showed 
that LB had significantly larger angles than HB (t(17) = 2.5, p < 0.01). Thus, we can conclude that the results we 
reported were not biased due to exclusion of error trials. As we see that the direction and significance of the 
effects did not change when the analysis were repeated with correct and incorrect trials altogether.

Discussion
Many studies in the past have challenged the classical view of decision-making and cognition which assumes a 
temporal and functional separation between decision and action systems1,2. The newer view is that natural choice 
actions in humans and other animals involve movement patterns that reflect, in part, the ongoing decision pro-
cess. As a result, movement trajectory analyses in continuous control tasks have been increasingly used to trace 
the underlying decision dynamics. The outcome of the present study clearly sides with this framework, showing 
that it is possible to trace decision dynamics from the ongoing choice action34–36. However, the majority of the 
tasks used in previous studies did not contemplate decision-making scenarios where actions are also required 
to sample information. This scenario characterises choice in many natural environments, such as getting closer 
to an object to decide whether it is nutritious food or else should be avoided. To fill this gap in the literature, we 
tested whether the outcome of decision processes pervades sampling actions.

As mentioned in the introduction, parallel processing of decision-making and action control processes is an 
important principle. However, the nature of the interaction between the two is still under debate, given that a 
strictly parallel view might be insufficient to account for the full range of decision and action interactions. For 
instance, Lepora and Pezzulo20 have put forward the ‘embodied choice’ framework, that accommodates richer 
interactions between action and decision through action-dependent information gain, compared to the parallel 
account. However, the experimental tasks they have used to illustrate their predictions lacked the active sam-
pling component, which leaves one main prediction of the theory still unresolved. The findings of the current 

Figure 7.   Probability density of angles calculated at 1/10th to 10/10th of trajectory length. The solid black lines 
correspond to the Gaussian mixture model with 2 components fit to the distribution. The asterisks indicate the 
significance of Hartigan’s dip test for bimodality (p < 0.05).
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study support the ‘embodied choice’ theory by showing that the interaction between decision and action can be 
revealed, and traced in the decision responses, under ecological scenarios that incorporate the active sampling 
constrain. If this were not the case, we would have observed a temporally separated sampling and responding 
characteristics in the movement trajectory without any angular deviation during sampling, in early parts of the 
trajectories. In fact, that non-sampling trajectories observed in our data revealed a kind of serial decision-making 
pattern which consists of a longer stationary period followed by a shorter movement (Results section, movement 
onset analysis). However, sampling trajectories were characterized by moving earlier (shorter stationary period) 
followed by a longer movement directed at sampling which is biased by the decision process. Thus, rather than 
claiming that all decisions are fully parallel and continuous, our preferred interpretation is that, even if there are 
certain stages in the decision process, some of them allow for continuous interaction of action and decision status.

One central feature of the task used in the present study is that participants must trade off information (image 
de-blurring) for energetic efficiency (moving up, hence orthogonal to the choice goal). This is because motor 
execution involves expenditure of energy, thus incurring effort-related costs. Motor cost and physical effort have 
started to be studied in relation to decision-making7,15. For instance, Cos and colleagues37 have shown that effort 
and biomechanics of a task influence the decision dynamics starting at early stages. It is likely that physical effort 
influences the decision dynamics due to the strong interactions between action and decision. In our experiment, 
each blur condition had a different cost/information structure. Although, it is not easy to quantify exactly how 
this effort-to-information ratio impacted our results (due to the use of real images instead of parametric stimuli), 
it is still safe to say that the effort associated to information sampling altered the decision-making process, ren-
dering differences in choice trajectories. The analyses showing an inverse relationship between image visibility 
and trajectory height clearly support this.

The main result to emerge from this study, however, was based on the deviations and curvatures in choice 
trajectories. Please note that this is only superficially similar to other mouse-tracking studies38–40. A common task 
characteristic our current study shares with this previous work is the urgency of responding26,41. Via imposing 
time pressure, participants are encouraged to execute decision and action in the same time window as it is more 
optimal for a successful response than staying stationary to make a decision and then move to report it. However, 
the fundamental feature of our experiment compared to others in the decision-making literature is the presence 
of a functional link between information and movement. In those previous works, the subject planned and per-
formed actions to report the choice response, therefore effectively allowing to study interactions between decision 
process and response plan only in one direction (as shown in Fig. 1a). In contrast, the task we developed here 
involves, and makes it possible to study, both response and sampling plans and their mutual interplay (Fig. 1b). 
Another way to put it is that most of the previous studies so far have considered only tasks equivalent to the ‘no 
blur’ condition of our study. Hence, one of the main goals here was to compare the trajectories between different 
sampling conditions as a function of movement-to-information ratio. First, the results obtained conclusively 
support the prediction that the decision process pervades information sampling movements in various ways. 
Information sampling trajectories deviated toward one of the choices (the correct one, on average) very early 
on. We confirmed this both in low blur and high blur conditions, using only trials classified as sampling trials. 
A second expectation by hypothesis was that, if the sampling component was stronger in high versus low blur 
conditions, then one would assume that the decision component will be more pronounced in the trajectories of 
low blur trials than in those of high blur trials, especially at early stages. This is because the need for information 
in high blur trials is stronger. Angular differences between low and high blur conditions calculated according to 
the planned analysis (at 1/3th of trajectories) were in the expected direction, but reached only a marginally sig-
nificant effect. This borderline result may be due to the fact that the two conditions were not sufficiently different 
in terms of costs of sampling movement (effort-to-information ratio). This cost depended directly on the blur 
function, which was chosen arbitrarily. Indeed, subsequent analyses where angle was calculated at different stages 
throughout trajectories, or when angular deviation was calculated in incremental steps from movement origin, 
revealed robust significant differences in the same, predicted direction. This variability reflects the importance 
of the task mechanics to the study of sensorimotor interactions in a decision-making setting41. Variants of active 
sampling decision-making tasks, including variations of the information cost function, should shed more light 
on the full range of embodied decisions under naturalistic constrains.

We argue that the proposed interactions between action and decision revealed by our data rely on the incor-
poration of sampling and responding actions in the task structure (as illustrated in Fig. 1b). We note that the 
tasks that include movement-agnostic stimulus, often used in the literature (and illustrated in Fig. 1a), are a 
special instance of the more general case modelled in Fig. 1b: one in which the arrows to and from “sampling 
plan” have zero weight. This is also the case of non-sampling trajectories that we observed in our study. Yet, 
our experimental setup is not intended as a general model for all action-decision possibilities that humans and 
animals are capable of. We rather claim that embodied decisions are the manifestation of the flexibility of the 
decision process42. In many natural and ecological situations, like the one modelled here, decisions have to be 
carried out as ECTs predict—with a strong interaction coupling with action processes. Nevertheless, there are 
also abstract and higher-level decisions which may comply with serial accounts of decision-making, especially 
in humans given their more sophisticated planning strategies. In line with a ‘phylogenetic refinement’ view, 
fully abstract cognitive operations are evolutionarily more recent, whereas rich cycles of action and decision 
are prevalent from very basic animals to complex mammals43. In the human context, depending on the task, 
the biomechanical characteristics and previous experience, we may observe response patterns ranging from a 
pure abstract and covert decision-making process that precedes any action, to a fully embodied and interactive 
one such as the one seen here. For instance, a novice driver may find herself thinking step-by-step about all of 
the driving actions before executing them, however as practice accumulates, she may decide and move at the 
same time with ease. Therefore, we are aware of the vast complexity underlying the interaction between deci-
sion and motor action44. Previous studies have succeeded in revealing the impact of decisions on choice actions 
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in situations where actions do not contribute information. Our study provides one step forward in understanding 
these interactions under the new constrain of action-dependent information sampling. What we have shown is 
that when the task dynamics imposes this type of ecological constraint, action for sampling and choice action 
have interactions with the decision process and with each other.

Despite the novelty of the present study, it has covered only a subset of situations and some areas of the 
decision-action process remain uncharted. For instance, in this study we used orthogonal vertical and horizontal 
movement components to observe sampling and decision respectively. Yet, the weights of these movement axes 
are not equal, considering the display dimensions and the difficulty of equating a level of information gained with 
a unit of sampling movement and a level of decision criterion with a unit of response movement. In the future, 
different approaches such as reward structures and/or stimulus that allow parametric information gain can be 
utilized to answer more specific questions about action and decision interaction. Besides the task design aspects, 
we are not oblivious to the fact that the present group patterns on which we have based our conclusions contain 
important individual differences. These individual patterns may reveal fundamentally different strategies in the 
trade-off between information sampling and decision. Uncovering the hidden dynamics behind them will be key 
to characterize embodied decisions. Lastly, in this study we have focused our analysis on the correct trials and 
therefore designed a task with a ceiling level performance. In decision-making field, error responses are crucial 
to understand the underlying mechanisms. After establishing the main principles of the ECTs, we expect to see 
studies delving on to error behaviours and enriching our understanding of embodied decisions.

To summarize, the present study provides a demonstration of interactions between action to sample infor-
mation, action to respond, and decision process with a novel mouse-tracking task. Our results show that deci-
sion outcomes feed into movement trajectory during information sampling movements which, in turn, accrue 
decision-relevant information. This is a support for the embodied theories in decision-making with a task that 
allows to inspect rich action-dependent sampling mechanisms.
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