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ABSTRACT
Maturity-onset diabetes of the young (MODY) is a form of diabetes classically characterized
as having autosomal dominant inheritance, onset before the age of 25 years in at least
one family member and partly preserved pancreatic b-cell function. The 14 responsible
genes are reported to be MODY type 1~14, of which MODY 2 and 3 might be the most
common forms. Although MODY is currently classified as diabetes of a single gene defect,
it has become clear that mutations in rare MODYs, such as MODY 5 and MODY 6, have
small mutagenic effects and low penetrance. In addition, as there are differences in the
clinical phenotypes caused by the same mutation even in the same family, other pheno-
typic modifying factors are thought to exist; MODY could well have characteristics of
type 2 diabetes mellitus, which is of multifactorial origin. Here, we outline the effects of
genetic and environmental factors on the known phenotypes of MODY, focusing mainly
on the examples of MODY 5 and 6, which have low penetrance, as suggestive models
for elucidating the multifactorial origin of type 2 diabetes mellitus.

INTRODUCTION
Maturity-onset diabetes of the young (MODY) is a form of dia-
betes with partly preserved pancreatic b-cell function, and is
caused by a single gene defect; it develops with an autosomal
dominant mode of inheritance and onset age usually of
<25 years1. After a rapid advancement in molecular genetics,
the first GCK gene (MODY2) was identified in 19922, followed
by a series of genes for MODY 1 and 3–63–7. The MODY gene
was identified using a family-based genetic method called para-
metric linkage analysis to calculate the matching or discrepancy
between deoxyribonucleic acid markers scattered across the
genome and the transmission of diabetes in large MODY fami-
lies. The MODY gene has since been reported to the 14th
MODY, but in general, MODY 1–6 has been established as
MODY from the viewpoint of reproducibility by multiple fami-
lies worldwide. There is as yet no report of MODY 4 in Japa-
nese. The causal genes of monogenic diabetes, including
MODY, are often involved in the glucose-responsive insulin
secretory pathway of pancreatic b-cells. Thus, MODY shows
low glucose-responsive insulin secretion and, generally, a lean
phenotype, which is common to type 2 diabetes in Japanese
patients. Although MODY has been classified as a single gene

defective diabetes, it has been clarified that the development of
MODY is influenced by other modifying factors including eth-
nicity, specific genetic background and/or intrauterine environ-
ment, leading to the concept that MODY, especially low
penetrant MODYs, such as MODY 5 and MODY 6, has char-
acteristics of common type 2 diabetes having a multifactorial
origin.

MODY 5
In 1997, the hepatocyte nuclear factor 1 homeobox B
(HNF1B, transcription factor 2) gene was identified as the
causal gene of MODY 56. The HNF1B gene has high homol-
ogy with the HNF1A gene, forming heterodimers or homod-
imers with HNF1A. HNF1A is expressed mainly in the liver,
but also in the kidney and islets, whereas HNF1B predomi-
nates in the kidney in adulthood. Compared with MODY 3,
phenotypes of MODY 5 differ greatly and are often rare8. The
most frequent mutations of MODY 5 are monoallelic defects
in all or some exons, which are seldom inherited beyond the
generation and are often sporadic9. The HNF1B gene is
located at 17q12, which is considered to be a region prone to
recombination errors during meiosis as a result of overlapping
sequences of very homologous sequences, known as segmental
duplication10.
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In a previous study involving the present author, criteria
were selected including onset age of ≤35 years, autoimmune
antibody negativity and no obesity (body mass index <30 kg/
m2 as the international classification of adult obesity according
to body mass index). Family history was not included, so as
not to miss sporadic or low penetrant cases11. Obesity was not
included, as compensatory hyperinsulinemia can mask the phe-
notype of insulin deficiency. Nevertheless, some MODY 5 was
not diagnosed until after 25 years-of-age, whereas MODY 3
was likely to be diagnosed before 15 years-of-age (Figure 1). It
is considered that this reflects differences in gene expression
levels between the HNF1A gene and the HNF1B gene in pan-
creatic b-cells in adulthood. In Caucasian MODY 5 patients,
hyperinsulinemia and/or hypertriglyceridemia are observed in
the early stage of the disease, reflecting insulin resistance12, but
in Japanese MODY 5 patients, insulin secretion is decreased
from an early stage of the disease11,13. In addition to the low
insulin secretory capacity in Japanese people, a low amount of
pancreatic b-cell mass as a result of failure of pancreatic forma-
tion during the developmental stage and insulin resistance as a
result of suppressor of cytokine signaling 3 activation due to
HNF1B inactivation in the liver are often seen14, resulting in
absolute insulin deficiency at an early stage. Indeed, most of
the patients in the previous study involving the present author
had insulin treatment from the onset of diabetes and could not
be withdrawn from insulin treatment, which could suggest that
insulin secretion deficiency is a characteristic feature of the dis-
ease in Japanese patients11.
The causal gene, HNF1B, is a transcription factor that is

highly expressed at undifferentiated periods, and presents vari-
ous clinical manifestations across many organs. MODY 5 is

characterized by a variety of phenotypes that differ from early
onset type 2 diabetes, the most common one being renal dis-
ease (multiple renal cysts, renal dysplasia, renal dysfunction
etc.)15,16. The HNF1b mutation is related to malformation of
ureteric bud-derived structures presenting as an anomaly of the
collecting duct and hypoplastic glomerulocystic disease. Renal
structure anomalies and diabetes mellitus were detected in 96.6
and 21.6% of patients under the age of 25 years, respectively,
indicating that formation of renal structure anomalies usually
precedes the onset of diabetes17. Thus, MODY 5 is also called
renal cysts and diabetes6,8,18. However, in a recent study, renal
cysts were not found by repeated abdominal magnetic reso-
nance imaging or echography in two Japanese children having
whole gene deletion12. Interaction with other modifying genetic
or environmental factors could therefore play a role in the
determination of some of the phenotypic features.
Pancreatic malformations are found in approximately 10% of

patients, and include atrophy, calcification and cysts17. Approxi-
mately half of these patients show diffuse pancreatic atrophy;
the others show body and tail atrophy or head atrophy11. Inter-
estingly, the same mutation, p.Q477Ter, in the family we exam-
ined showed a different clinical phenotype regarding
morphological abnormality of the pancreas (Figure 2), suggest-
ing interactions with other disease-modifying factors. Recently,
using human induced pluripotent stem cells (HNF1BS148L/+),
PAX6 pancreatic gene expression was found to be decreased
without compensation. The lack of downregulation of HNF1B,
PDX-1, GATA4, GATA6, PTF1A, ISL1 and RFX6 implies that
the mechanism underlying dorsal pancreatic agenesis in
MODY 5 is independent of these genes, which are also known
to result in pancreatic agenesis/hypoplasia when mutated19.
PAX6-deficient pancreatic progenitors that are unable to mature
and reach terminal differentiation later in life cannot be rescued
by postnatal neogenesis, contributing to a pancreatic hypoplasia
phenotype in MODY 5 patients20. Future study must be carried
out to elucidate all genetic factors, including modifying factors,
for pancreas formation. In addition, gonadal dysplasia, hepatic
dysfunction, hyperuricemia, bile duct dilatation and so on are
sometimes found together21–23.
An average of approximately 12 years of follow-up study of

patients with MODY 5 has been reported; those patients with
microdeletion of a monoallele are leaner, whereas those with
missense mutations show lower capacity of renal function24.
There are 17 genes other than HNF1B gene in the monoallelic
defect site, and the possibility that the phenotype has been
affected by them cannot be ruled out; the details including gene
interactions are still unknown.

MODY 6
The MODY 6 (NEUROD1) gene mutation was first reported
in two families in 19996. The NEUROD1 gene is a basic
helix-loop-helix type transcription factor that is specifically
expressed in pancreatic secretory cells, gastrointestinal secre-
tory cells and neuronal cells. It forms heterodimers with the
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Figure 1 | Distribution of onset-age of maturity-onset diabetes of the
young type 1 (MODY 1), MODY 2, MODY 3, MODY 5 and MODY 6.
Onset age of MODY 1–3, 5 and 6 is dotted with black circles. *P-
values < 0.01 and **P-values < 0.05 by the Kruskal–Wallis test followed
by the Steel–Dwass test, respectively.
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basic helix-loop-helix transcription factor E47, which is
expressed ubiquitously, and binds to the E-box of the insulin
promoter25. In addition, it has been reported that NEUROD1
is involved in sulfonylurea factor 1 gene activation and the
expression of the GCK gene (MODY2)26,27, contributing to
diverse roles from insulin synthesis to secretion.
MODY 6 is very rare, and just seven families have been

reported since the discovery of the disease 18 years ago by fam-
ily-based studies28; the characteristic phenotype has not been
clarified29–32. In cases of homozygous NEUROD1 gene muta-
tion, neurological abnormalities, such as cerebellar hypoplasia
and permanent neonatal diabetes mellitus, have been
reported31; in cases of heterozygous mutation of MODY 6,
abnormality in the nervous system was not found (Table 1).
So as to not miss sporadic or low penetrant cases, we used

criteria of genetic testing not including family history, such as

three consecutive generations of diabetes; we have recently
identified four cases of the NEUROD1 mutation in Japanese
people33. In the previous reports, 21 of 35 patients with the
NEUROD1 heterozygous mutation developed overt diabetes
after the age of 35 years with obesity, whereas seven of eight
Japanese patients with the NEUROD1 heterozygous mutation
developed overt diabetes before the age of 35 years without
obesity29–33. This difference was considered to be due to the
genetic predisposition of Japanese people to lower insulin secre-
tory capacity. In addition, three of the four parents with
heterozygous mutation of probands with neonatal diabetes by
homozygous mutations had a normal glucose tolerant type by
oral glucose tolerance test, and one of them had late-onset dia-
betes, suggesting low penetrance of the mutation in Cau-
casians31. Although 15 of 20 patients inheriting the mutations
from their mothers had diabetes, two of five patients inheriting

(a) (b)

Figure 2 | Abdominal computed tomography scan at the pancreas head levels of patients, (a) the daughter and (b) the mother, with maturity-
onset diabetes of the young type 5. (a) The uncinate process and the posteroinferior part of the pancreas head are shown by arrows in the
computed tomography. (b) Overall atrophy of the pancreas is shown by arrows. Although both patients have the same nonsense mutation
(p.Q477X), (a) body and tail loss are observed in the daughter’s pancreas and (b) overall atrophy in the mother’s. A renal cyst was found in the left
kidney of the mother.

Table 1 | Clinical features of seven pedigrees of maturity-onset diabetes of the young type 6 identified in more obese populations

Pedigree Mutation Age of onset (years) BMI Microangiopathy (retino/nephro/neuro) Therapy Ins/OHA/diet (n)

1 R111L 40 (30–59) %IBW138 NA 2/1/2 (5)
2 H206PfsTer38 31 (17–56) %IBW115 NA 4/1/1 (6)
3 E110K 33 (12–68) 24.1 (17.5–30.3) 3/2/5 3/7/2 (12)
4 S159P 60 (27–63) 22 (19.2–23.7) NA 1/2/1 (4)
5 R103P 35.6 (23–50) 26.4 (22.9–31.1) 2/1/0 4/1/2 (7)
6 D122GfsTer12 8 weeks (homo)

27 (hetero)
34 weeks of pregnancy
1,490 g (homo)

Cerebellar hypoplasia deafness
Visual impairment (homo)

1/1/0 (2, homo 1)

7 L143AfsTer55 4 weeks (homo)
68 (hetero)

34 weeks of pregnancy
2,230 g (homo)

Learning difficulties (homo) 1/0/1 (2, homo 1)

%IBW, percentage excess or deficit in the ideal bodyweight (assuming 100% is the ideal); BMI, body mass index; homo, homozygote of the
mutation; NA, not available; OHA, oral hypoglycemic agent.
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the mutations from their fathers developed overt diabetes. In
the case of patients with mutations inherited from their moth-
ers, overt diabetes mellitus was found often, and this seemed to
be affected by conditions of the intrauterine environment, such
as hyperglycemia, indicating the presence of a parent-of-origin
effect in the inheritance pattern of MODY 629–32. In a previous
study involving the present author33, four Japanese probands
inheriting the mutations from their mothers developed overt
diabetes at an earlier age (Table 2).
Furthermore, it is noteworthy that the four probands had

episodes of diabetic ketosis. MODY seldom presents with keto-
sis, suggesting that Japanese patients with MODY 6 are prone
to becoming ketotic as a result of intrinsically lower insulin
secretion in concert with contributions of other NEUROD1-
related phenotypes or unknown modifying factors. Again, there
is a considerable difference in disease severity within the pheno-
type, even in cases with the same mutation in the same family.
Furthermore, abnormality of the central nervous system can
occur in Japanese patients even with heterozygous mutation
(Table 2).
These results suggest that MODY 6, as is the case with

MODY 5, is a low-penetrant MODY, and that the development
of diabetes mellitus is affected by other genetic modifying fac-
tors, environmental factors, and/or the effects of interactions
with genetic and environmental factors. Accordingly, it is con-
sidered to be appropriate to designate the disease NEUROD1-
deficient diabetes rather than NEUROD1-MODY (MODY 6).

MODY 3
The HNF1A gene, a causal gene for MODY 3, was identified
in 19963; it encodes transcription factors with homeodomains,

and is widely expressed in the liver, kidneys, pancreas and gas-
trointestinal tract. MODY 3 is the most common MODY, and
comprises 52% of all MODY in the UK34. It also accounts for
approximately 40% of the known MODY in Japanese patients.
The penetration rate of the HNF1A gene mutation in Europe
and America is reported to be 63% by 25 years-of-age35; the
average age of diagnosis in Japanese patients is concentrated
around 10 years-of-age, and the diagnosis is often triggered by
a school urinary test11. One of the reasons for this is that the
HNF1A gene controls the expression of the sodium–glucose
cotransporter 2 gene36, and a low glucose reabsorption thresh-
old in the tubule is associated with early diagnosis of MODY 3
together with lower insulin secretory capacity in Japanese
patients.
In MODY 3, there are also cases in which the insulin secre-

tion failure is severe, due to unknown modifying factors, and
the case is mistaken for type 1 diabetes, even in Caucasians37,38.
We reported a case of the co-occurrence of mutations of
HNF1A and the small heterodimer partner39, which is known
as a mild obesity40 and a type 2 diabetes gene41, but in that
case, there was a period in which the insulin secretion failure
was not observed with obesity and it was considered that the
interaction of the HNF1A gene with the small heterodimer
partner gene modified the clinical phenotype of MODY 339.
The G319S HNF1A variant is associated with an increased

risk of type 2 diabetes in the Canadian Oji-Cree population42.
The G319S variant results in the production of two abnormal
transcripts and an alteration in the relative balance of normal
splicing products. A combination of abnormal splicing and
reduced activity of the G319S protein might explain the dia-
betes susceptibility42. By an association study43 of Norwegians

Table 2 | Clinical features of the patients and affected parents with maturity-onset diabetes of the young type 6 in Japanese patients

Mutation (heterozygote) H206PfsTer38 P245RfsTer17 L157R H206TfsTer56

Age at diagnosis 14 years 11 years 10 years 12 years
Bodyweight at diagnosis -1.1 SD -1.9 SD -0.3 SD -0.9 SD
Neurological abnormality None Developmental delay,

mild cerebellar
dysfunction, dysplasia
of hippocampus

None None

HOMA-b 60.8% NA 55.2% NA
Insulinogenic index 0.12 NA 0.091 NA
Treatment (age at initiation) OHA (14 years)

Ins (15 years)
Ins (11 years) Ins+OHA (11 years) Ins+OHA (12 years)

Diabetic ketosis or ketoacidosis DKA (15 years) DK (11 years) DKA (20 years) DK (12 years)
Microangiopathy None None Microalbuminuria NA
Mother age at diagnosis 31 years (GDM) 34 years (GDM) NA 27 years (GDM)

Treatment (at present) OHA NA Ins (at initiation) Ins
Complications and
neurological abnormality

None Nephropathy hemodialysis
(52 years)
Intellectual disability

Proliferative retinopathy
Nephropathy hemodialysis (46 years)
Foot ulcers intellectual disability

None

DK, diabetic ketosis; DKA, diabetic ketoacidosis; GDM, gestational diabetes mellitus; HOMA-b, homeostatic model assessment of b-cells; Ins, insulin;
NA, not available; OHA, oral hypoglycemic agent; SD, standard deviation.
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with 11 rare polymorphisms comprising MODY 3 mutations
with <60% activity and <60% of the nuclear translocation, it
became evident that the 11 rare polymorphisms are associated
with the onset of type 2 diabetes mellitus by an odds ratio of
approximately 5. Accordingly, each of the rare polymorphisms
(frequency 0.22%) is a susceptibility variant of mild effect.
Therefore, a mutation of HNF1A develops a MODY 3 form or
common type 2 diabetes mellitus due to the extent of the dam-
age by the mutation.
Recently, a wide variety of clinical symptoms, such as the

presence of pancreatic autoantibodies and the occurrence of
diabetic ketoacidosis, has been reported to be observed in a

large family with the mutation of exon 4 of HNF1A, possibly
due to unknown modifying factors44. Furthermore, in the case
of patients with mutations inherited from mothers with overt
diabetes, MODY 3 often develops earlier than in those inherit-
ing from fathers or from mothers without diabetes, and it
seems to be affected by conditions of intrauterine environment,
such as hyperglycemia, suggesting the presence of an interac-
tion between genetic and intrauterine environmental factors in
determining the onset age of high penetrant MODY 3 (Fig-
ure 3).

MODY 2
The phenotype of MODY 2 is observed immediately after
birth, but the age of diagnosis is widely distributed from age 0
to the 40s45. Some cases are not diagnosed because of the mild-
ness of the disease. In fact, MODY 2 is estimated to occur in a
number of patients just less than that in MODY 3; one in
1,000 Caucasians is estimated to have MODY 2, 99% of whom
remain undiagnosed46. Although MODY 2 has long been con-
sidered to be very rare in Japan, it has recently been found that
the frequency of MODY 2 is similar to or higher than that of
MODY 312,47.
In our analysis of 48 families diagnosed with MODY 2, the

age of diagnosis of MODY 3 (52 families diagnosed with
MODY 3) had peaks around 10 years-of-age, whereas the age
of onset of MODY 2 was widely distributed from 0 to the 40s
(Figure 1). MODY 2 and 3 are similar with regard to obesity.
The birthweight of patients with MODY 2 is approximately
400 g lower than that of MODY 3, a significant difference. The
birthweights of these patients with MODY 2 and MODY 3
were compared as to whether the genetic mutations were pater-
nally or maternally inherited. In MODY 2, the birthweight of
patients paternally inheriting mutations was approximately
600 g lower than that of those with mutations of maternal ori-
gin, which is a significant difference (Figure 4). The birthweight
of patients with MODY 3 with paternal mutations also tended
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Figure 3 | The age of onset or diagnosis of maturity-onset diabetes of
the young type 3 is dependent on the pattern of inheritance of the
mutation (paternal or maternal) and also maternal affected status
(diabetic or non-diabetic) when the mutation is of maternal inheritance.
DM+, diabetes mellitus-positive; DM-, diabetes mellitus-negative.
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Figure 4 | Birthweight of maturity-onset diabetes of the young type 2 (MODY2) and MODY3 is dependent on the pattern of inheritance of the
mutation (paternal or maternal). *P < 0.05. NS, not significant.
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to be lower than that of those having maternal origin, but the
difference was not significant. We examined the birthweight of
patients with MODY 2 as to whether the mothers with
MODY 2 had insulin treatment during pregnancy. The average
birthweight of the group of patients whose mothers had not
received insulin treatment during pregnancy was approximately
400 g higher compared with that of those treated with insulin,
but there was no significant difference, possibly because of the
small number of cases (Horikawa Y, unpublished data, 2017).

For pregnancies of patients with MODY 2, insulin therapy is
considered to be necessary, because the fetus is at risk for large
for gestational age if it does not have the mutation. In Cau-
casians, if the fetus has the mutation, it is considered not to be
necessary to treat the mother45,48.
The long-term prognosis of Japanese MODY 2 remains

unclear because of the lack of an accumulation of cases. Further
investigation as to whether or not Japanese MODY 2 patients
require treatment, as is the case with Caucasian MODY 2

Table 3 | Clinical features of Japanese maturity-onset diabetes of the young types 1–3, 5 and 6

MODY 1 MODY 2 MODY 3 MODY 5 MODY 6 Total

Family number 10 48 52 18 4 132
Sex (male/female) 5/5 25/23 17/35 11/7 0/4 58/74
Age at diagnosis (years) 15.3 – 7.1 10.3 – 6.8 13.2 – 4.5 17.9 – 8.0 12.0 – 1.4 13.0 – 6.4
Frequency of obesity at
diagnosis†

20% (1/5) 25.9% (7/27) 14.8% (4/27) 15.3% (2/13) 0% (0/4) 18.4% (14/76)

Therapy
Diet 2 30 7 1 0
OHA 2 8 20 4 0
Ins 5 8 19 13 4
NA 1 2 6 0 0

FH ≥3 generations 44.4% (4/9) 55.6% (25/45) 44.1% (19/43) 0% (0/15) 100% (4/4)
Age at diagnosis ≤25 years and
FH ≥3 generations

44.4% (4/9) 53.3% (24/45) 44.1% (19/43) 0% (0/15) 100% (4/4) 44% (51/116)

†Age at diagnosis: <18 years, body mass index percentile ≥95% (http://jspe.umin.jp/taikakushisuv3.xlsx); if age at diagnosis is ≥18 years, participants
with body mass index ≥25 are defined as obese in Japan. FH, family history; Ins, insulin; NA, not available; OHA, oral hypoglycemic agent.

Table 4 | Summary of frequencies, characteristics and treatment of maturity-onset diabetes of the young types 1–3, 5 and 6

MODY Gene Frequency in
Japanese, %

Characteristics Treatment

MODY 1 HNF4A 7.6 � Hyperinsulinemic hypoglycemia in the neonatal period
� Macrosomia (rare in Japanese)

Small dose of SU drugs

MODY 2 GCK 36.3 � Onset immediately after birth
� Mild increased level of fasting glucose

Not necessary?

MODY 3 HNF1A 39.4 � Most common in Japanese MODY
� Often diagnosed by school urinary test
� First hit of hepatocellular tumor
� Complications common in patients with type 1

diabetes mellitus and type 2 diabetes mellitus

SU drugs

MODY 5 HNF1B 13.6 � Monoallelic defects in all or some exons are frequent
� Often diagnosed in adulthood
� Insulin secretion is decreased from the early stage
� Variety of phenotype are seen (kidney, pancreas, uterus, gout)

Insulin from the early stage

MODY 6 NEUROD1 3.0 � Low penetrance
� Risk of diabetic ketosis in Japanese
� Abnormality in CNS

Diet ~ insulin

CNS, central nervous system; MODY, maturity-onset diabetes of the young; SU, sulfonylurea.
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patients49, or how many Japanese patients diagnosed with ges-
tational diabetes have MODY 2 is required. At least one clinical
phenotype of MODY 2, birthweight, has been found to be
determined by the interaction between genetic and intrauterine
environmental factors50.

MODY 1
MODY 1 (HNF4A) is rare among MODYs, and is reported to
account for 10% of cases diagnosed with MODY in the UK34.
In Japan, MODY 1 accounts for approximately 7% of the
known MODY diagnosed. Because the HNF4A gene forms a
feed-forward loop that activates the transcription of the HNF1A
gene in the pancreas51, the phenotype of MODY 1 is similar to
that of MODY 3. As for the treatment, the sensitivity to sul-
fonylureas is good, as it is in MODY 3. The clinical features
that differ from MODY 3 include hyperinsulinemic hypo-
glycemia in the neonatal period and macrosomia, a large for
gestational age baby52. However, in the study involving the pre-
sent author study, a giant baby weighing >4,000 g at birth was
not recognized in a Japanese woman partly because of the
intrinsically lower capacity of insulin secretion (Horikawa Y,
unpublished data, 2017). Furthermore, a common polymor-
phism in the P2 promoter and the mutation of T130I are
found to be associated with late-onset type 2 diabetes mellitus
in Japanese53,54.
Clinical features of Japanese MODY 1–3, 5 and 6 identified

so far by studies involving the present author are summarized
in Table 3, and frequencies, characteristics and treatment of
MODY 1–3, 5 and 6 are summarized in Table 4.

CONCLUSIONS
Of the type 2 diabetes mellitus susceptibility single-nucleotide
polymorphisms identified before the use of genome-wide asso-
ciation studies55–57, the pathogenic mechanisms are well under-
stood partly based on the results of studies in monogenic
diabetes, such as MODYs. It is therefore strategically effective
to apply information pathophysiologically obtained from rare
diabetes mellitus, such as MODY, to that from common type 2
diabetes mellitus. However, it has been shown that the com-
plexities of genetic background among races can significantly
affect even the occurrence of a single gene defect MODY, espe-
cially low penetrant MODYs, such as MODY 5 and 6. Envi-
ronmental factors, especially intrauterine environment, also can
significantly affect the phenotype of MODY, as manifested by
age of onset and birthweight. Japanese patients with MODY
are relatively hypoinsulinemic because of their intrinsically
lower capacity for insulin secretion compared with that of Cau-
casians, contributing to the easier development of diabetes in
low penetrant MODY cases among Japanese people. Therefore,
it could be advantageous to closely examine Japanese MODY
candidates selected by criteria not including family history of
diabetes, so as not to miss sporadic or low penetrant cases for
genetic mutations11,33. Just 44% of cases of MODY 1–6 meet
the definition of the classical criteria for MODY, even in

Japanese patients. As the definition of classical MODY is not
applicable to more than half of MODY 1–6 Japanese patients,
novel criteria reflecting the genetic background of specific eth-
nicities should be defined. Furthermore, in the future, we hope
to identify novel MODY genes, likely low penetrant genes, as a
group of constitutively enriched “islet function network”
genes58,59. Functional analyses of identified mutations will then
be carried out to elucidate the mechanisms of insulin secretion
insufficiency.
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