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Biological motion detection is both commonplace and important, but there is great inter-individual

variability in this ability, the neural basis of which is currently unknown. Here we examined whether

the behavioral variability in biological motion detection is reflected in brain anatomy. Perceptual

thresholds for detection of biological motion and control conditions (non-biological object motion

detection and motion coherence) were determined in a group of healthy human adults (n¼31) together

with structural magnetic resonance images of the brain. Voxel based morphometry analyzes revealed

that gray matter volumes of left posterior superior temporal sulcus (pSTS) and left ventral premotor

cortex (vPMC) significantly predicted individual differences in biological motion detection, but showed

no significant relationship with performance on the control tasks. Our study reveals a neural basis

associated with the inter-individual variability in biological motion detection, reliably linking the

neuroanatomical structure of left pSTS and vPMC with biological motion detection performance.

& 2012 Elsevier Ltd. Open access under CC BY license. 
1. Introduction

Perceiving and understanding biological motion – the movements
of animate entities – is important for many tasks of biological
significance, from hunting prey and avoiding predators, to imitation,
social cognition, and theory of mind (Blake & Shiffrar, 2007). Key to
these is detecting biological motion in the environment. There
is great inter-individual variability in biological motion detection
ability (Chandrasekaran, Turner, Bulthoff, & Thornton, 2010;
Gilaie-Dotan, Bentin, Harel, Rees, & Saygin, 2011; Hiris, 2007;
Saygin, Cook, & Blakemore, 2010; van Kemenade, Muggleton,
Walsh, & Saygin, 2012), yet the perceptual and neural correlates of
this inter-individual variability are largely unknown.

Here we investigated the neural correlates of this inter-
individual variability in biological motion detection by examining
whether the neural structure of brain areas that support biologi-
cal motion processing was associated with biological motion
detection ability. We used an individual differences approach, a
robust and reliable method with which to study associations
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between behavior and underlying neuronal mechanisms (Kanai
& Rees, 2011; Vogel & Awh, 2008). Perceptual thresholds for
biological motion detection, as well as for two non-biological
motion control tasks were measured, using adaptive psychophy-
sical paradigms in a group of healthy human adults (n¼31).
Using structural magnetic resonance imaging (MRI) and voxel-
based morphometry (VBM), we then examined the relationship
between behavioral performance in biological motion detection
and the gray matter volume of brain regions associated with
biological motion processing (Grosbras, Beaton, & Eickhoff, 2012).
We also examined whether such relationships exist between gray
matter volume and the control tasks.

A network of brain areas supports biological motion proces-
sing (e.g., (Grosbras et al., 2012; Grossman et al., 2000; Pelphrey,
Morris, Michelich, Allison, & McCarthy, 2005; Peuskens, Vanrie,
Verfaillie, & Orban, 2005; Saygin, Wilson, Hagler, Bates, & Sereno,
2004)). The posterior superior temporal sulcus (pSTS) is thought
to play a key role in processing biological motion (Oram & Perrett,
1996; Puce & Perrett, 2003; Wyk, Hudac, Carter, Sobel, &
Pelphrey, 2009). Ventral premotor cortex (vPMC) has also been
functionally linked to biological motion processing (De Lussanet
et al., 2008; Furl et al., 2010; Michels, Kleiser, de Lussanet, Seitz,
and Lappe, 2009; Saygin, 2007), possibly due to multisensory
(mirror) neurons in this region that are involved in action under-
standing (Rizzolatti & Craighero, 2004). Based on these studies
and on prior neuropsychological and brain stimulation studies
(De Lussanet et al., 2008; Furl et al., 2010; Michels et al., 2009;
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Saygin, 2007), we hypothesized that the neuroanatomical struc-
ture of the pSTS and vPMC would predict individual differences in
biological motion detection.
2. Methods

2.1. Participants

31 healthy adults participated in the studies (mean age 23.773.93 (S.D.),

17 females). All participants had normal or corrected to normal vision, were right

handed, and had no history of neurological disorders. Psychophysical experiments

were conducted at the Institute for Cognitive Neuroscience, University College

London; MRI scanning took place at the Wellcome Trust Centre for Neuroimaging,

University College London. Participants gave written informed consent to take

part in the studies, and the experiments were approved by the local ethics

committee.

We conducted three behavioral experiments. In Experiment 1, we assessed

biological motion detection (Bio-Det). Experiments 2 and 3 were control studies,

where we estimated non-biological object motion detection (NonBio-Det) and

motion coherence (MotionCoh) thresholds.

2.2. Experiment 1: Biological motion detection (Bio-Det)

2.2.1. Stimuli

In the laboratory, biological motion processing is typically assessed with the

well-established point-light biological motion stimuli (similar to those reported

by (Johansson, 1973)), which track movements of a small number of joints on the

body with points (Fig. 1). Despite the sparse form information they provide, when

in motion, these stimuli elicit a clear depiction of body movements and actions,

even conveying gender, identity, and emotional state of the actor (Blake & Shiffrar,

2007).

The biological motion stimuli used here along with the adaptive noise-

masking paradigm (see below) were successfully used in previous biological

motion detection studies (Gilaie-Dotan et al., 2011; Grossman et al., 2000; Kim,

Park, & Blake, 2011; Saygin et al., 2010). These stimuli were created by videotaping

an actor performing various activities, and encoding the joint positions with point-

lights in digitized videos (Ahlstrom, Blake, & Ahlstrom, 1997). Animations
Fig. 1. Stimuli and noise masking of Experiments 1 and 2. Still frames from the

animations are shown without any noise (left) and with one level of noise points

(right). Top: an example of a biologically moving figure (walker) from Experiment

1 (Bio-Det), bottom: an example of a non-biologically moving object (diamond)

from Experiment 2 (NonBio-Det). The connecting stick lines are added as a visual

aid here and were not present in the experiments. The moving noise points were

added to the stimuli in Experiments 1 and 2 in an adaptive manner to determine

individual perceptual thresholds (i.e., the estimated number of noise points for

75% accuracy) using a Bayesian adaptive method, QUEST (Watson & Pelli, 1983).

The more noise points were added, the more difficult the task became. Noise

points in the biological motion animations (top) had the same motion trajectories

as the target point-light animation. In the non-biological animations (bottom) the

noise points translated at the same speed as the target object, half in the opposite

direction (see Section 2). In the experiments participants had to decide in each

trial if a target stimulus was present or absent (see Section 2). Present and absent

stimuli had same local motion. See Section 2 for further details.
depicted 12 human motions (walking, jogging, stepping up (climbing stairs),

lifting knee across, low kicking (football), kicking across, high kicking sideways,

three pitching throws, underarm throwing (bowling), and rope skipping). The

joints of the actor were represented by 12 small white points against a black

background (Fig. 1) and could be briefly invisible due to occlusion by other

body parts.

Each of the 12 biological motion animations had a matched ‘‘scrambled’’

animation that contained the same local motion information, but without the

global form (e.g., Bertenthal & Pinto, 1994; Gilaie-Dotan et al., 2011; Grossman

et al., 2000; Kim et al., 2011; Saygin et al., 2010, 2004). This was achieved by

spatially scrambling the starting positions of the 12 points of each animation

while keeping their motion trajectories intact. For each animation, the starting

positions were chosen within a region such that the area occupied by the

scrambled point-light display was similar to that for the original biological motion

point-light display. The scrambled point-light animations were used for the

target-absent trials in the biological motion detection task (see below). Each

animation subtended approximately 5.5�7.7 deg visual angle when viewed from

52 cm. In each trial, biological motion animations were presented along with

additional noise points (see adaptive thresholding below), altogether subtending

approximately 8�12 deg visual angle.

Stimuli were presented on a 60 Hz screen with 1024�768 resolution, and

responses recorded using MATLAB (Mathworks, Inc) and the Psychophysics Tool-

box V2.54 (Brainard, 1997; Pelli, 1997).

2.2.2. Noise masking and adaptive thresholding

Since we were interested in individual differences, we used adaptive methods

to estimate thresholds that were dependent measures in our analyzes. Advantages

of adaptive thresholding include efficiency, relative protection from ceiling and

floor effects, and applicability to different age groups or clinical populations.

To obtain a psychometric measure of performance, we used established

methods to add noise (i.e., extra moving points) to point-light displays (Fig. 1)

(Bertenthal & Pinto, 1994; Gilaie-Dotan et al., 2011; Grossman et al., 2000; Hiris,

2007; Ikeda, Blake, & Watanabe, 2005; Kim et al., 2011; Saygin, 2007; Saygin et al.,

2010). The more noise points were added, the more difficult it became to perform

these perceptual tasks. The noise points moved with the same trajectories as

points from the target animations. In each trial, the target point-light animation

was presented along with an adaptively varied number of noise points determined

through a Bayesian estimation based on the participant’s responses until that trial.

We estimated the number of noise points at which each participant performed at

75% accuracy using the QUEST algorithm (Watson & Pelli, 1983). QUEST initial

priors were an initial threshold guess based on log10(20 dots) with a standard

deviation of 0.4, threshold criterion of 0.75, Weibull psychometric function

parameters beta¼3.5, delta¼0.02, and gamma¼0.5.

2.2.3. Experimental procedures and task

At the beginning of the experiment, participants completed a 12 to 20 trial

practice session, which featured a range of predetermined number of noise points

(ranging from 0 to 70). All participants understood the task after the practice. After

the practice, each participant completed two blocks of 68 trials with the adaptive

QUEST procedure beginning with 20 noise points, with a target accuracy of 75%.

A 10-s break followed trial 36 in each block, and additional rest was allowed

between blocks. Each block lasted 3–4 min.

Each trial started with a fixation cross appearing for 750 ms, after which the

point light stimulus (the target stimulus or its scrambled counterpart, plus the

noise points) appeared for 667 ms (40 frames). After the participant’s response

was recorded, feedback was provided via the color of the fixation cross (green for

correct, red for incorrect) that appeared for 750 ms. If no response was given

within 2000 ms from the end of stimulus presentation, an incorrect response was

used for the adaptive algorithm. The next trial began with the number of noise

points estimated by QUEST. On each trial, the target point-light display (or its

scrambled counterpart) was presented at a randomly jittered location within a

2.2 deg radius from the centre of the screen in order to prevent a response strategy

based on purely local information.

The participants’ task was to detect whether or not the trial contained the

target object (a biological motion animation of an upright human figure perform-

ing an action) and to respond by pressing one of two keys with their right hand.

2.3. Experiment 2: Non-biological object motion detection (NonBio-Det)

2.3.1. Stimuli

We examined whether any correlations between biological motion detection

thresholds and neuroanatomy generalized to individual differences in the detec-

tion of non-biologically moving objects. To this end, we kept the participants’ task

and all other methodological details matched with Experiment 1, but instead of

biological motion, we now used non-biologically moving point-light stimuli

depicting geometric shapes (Fig. 1, (De-Wit, Lefevre, Kentridge, Rees, & Saygin,

2011; Hiris, 2007; Saygin et al., 2010; van Kemenade et al., 2012)).

Twelve point-lights of the same size, shape and color as those in the biological

motion animations were used to define four-sided polygons (square, rectangles,



S. Gilaie-Dotan et al. / Neuropsychologia 51 (2013) 457–463 459
diamonds, rhombus and parallelograms). These stimuli moved non-biologically,

translating at a fixed speed of 0.5 pixels/frame, corresponding approximately to

the speed of the points of the biological motion stimuli. For each of the 12 non-

biological point-light shapes, we also generated a ‘‘scrambled’’ equivalent to be

presented in the target-absent trials. In the scrambled stimuli, the same number of

points translated with the same motion trajectories as the target shapes, but with

the positions of the points scrambled such that they did not comprise a

recognizable shape. The presentation setup including visual angles of the stimuli

was closely matched to Experiment 1.

2.3.2. Noise masking and adaptive thresholding

We used the same methods as Experiment 1 to estimate perceptual thresholds

for non-biological object motion detection. A variable number of noise points that

translated in either direction were added to each trial and noise point thresholds

were estimated adaptively (Gilaie-Dotan et al., 2011; Hiris, 2007; Kim et al., 2011;

Saygin et al., 2010; Watson & Pelli, 1983).

2.3.3. Experimental procedures and task

Experimental details including presentation timings were precisely matched

to Experiment 1. Each participant was required to detect whether or not the trial

contained the target object (a translating point-light polygon) that appeared for

667 ms (see more details in Section 2.2.3), and then respond by pressing one of

two keys on the keyboard with their right hand.

2.4. Experiment 3: Motion coherence (MotionCoh)

2.4.1. Stimuli

Non-object-based non-biological motion processing was assessed using motion

coherence thresholds. Stimuli were circular random dot patterns (Green, 1961;

Levinson & Sekuler, 1976) displayed in the center of the screen. Each stimulus

consisted of 500 grey points (luminance¼2.50 Cd/m2, width¼2.77 minArc) against a

black background (luminance¼0.37 Cd/m2) covering a circular area (width¼9.13 deg

when viewed from 52 cm). A two-interval forced choice (2IFC) paradigm was

employed. In each trial, two stimuli intervals were presented (each interval for

333 ms with inter stimulus interval¼1000 ms). One randomly chosen interval

consisted of coherent motion plus noise and the other interval only consisted of

noise. For the signal plus noise stimulus, a randomly chosen subset of the dots was

vertically displaced upwards or rightwards by 0.45 deg steps in twenty consecutive

frames (total motion time¼333 ms; speed¼27.27 deg/s). The rest of the points were

repositioned randomly from one frame to the next. Coherently moving points

reaching either end of the display area were repositioned on the other side for the

next frame. A central fixation square (width¼0.55 deg) was displayed throughout the

experiment.

Stimuli were generated using the Cogent toolbox (http://www.vislab.ucl.ac.

uk/cogent.php) for MATLAB (Mathworks, Inc) and were presented at 60 Hz using a

TFT-LCD display (800�600 resolution).

2.4.2. Adaptive thresholding

For each participant we determined the threshold coherence level that

enabled 75% correct identification of target interval that contained upward motion

according to an accelerated stochastic approximation method (Kesten, 1958;
Table 1
Voxel based morphometry results for biological motion detection based on regions ass

Region of interest

Anatomical description X Y Z

Right lateral occipital (LO/ITG) 50 �68 �2

Left lateral occipital (LO/ITG) �44 �74 2

Right posterior superior temporal sulcus (pSTS) 54 �54 10

Left posterior superior temporal sulcus (pSTS) �52 �50 4

Right fusiform gyrus 42 �54 �20

Left fusiform gyrus �40 �48 �20

Left ventral premotor cortex (vPMC) �50 8 28

Regions of interest (ROIs) were selected from a recent meta-analysis of biological motion

score416.5 and Z-score44). LO/ITG-lateral occipital area/inferior temporal gyrus. vPMC:

temporal sulcus. VBM analyzes in the volume of these regions were performed for biolog

(Hayasaka et al., 2004). Local peak coordinates are provided (multiple coordinates for p

threshold (P(corr.)o0.05) clusters were found within 10 mm of these coordinates (this w

significant effects (left pSTS and vPMC) are highlighted in bold. Cluster size indicated in m
Treutwein, 1995). This method updates the approximation on every trial in a

staircase manner, with stairs becoming smaller following a change in the response

accuracy; incorrect responses have a bigger effect (‘‘penalty’’). Each run of the

staircase consisted of 48 trials.

2.4.3. Experimental procedures and task

Participants started with a short practice session with initial coherence level of

50% and were asked to press one of two buttons to indicate whether the first or

second interval contained more coherent motion. To verify that participants

understood the task and were able to perform it the practice was accompanied

by verbal explanation. All participants understood the task after practice. Parti-

cipants then performed three runs, first run with an initial coherence threshold of

40%. For the second and third runs, the input threshold was taken as the output of

the previous run.

2.5. Behavioral data analysis

For Experiments 1 and 2, performance thresholds were estimated for each

block using QUEST (Watson & Pelli, 1983), and the average of the two blocks was

taken as the dependent variable. For Experiment 3, the average of the thresholds

from the second and third runs was used as a dependent variable.

2.6. MRI data acquisition

MR images were acquired on a 1.5-T Siemens Sonata MRI scanner (Siemens

Medical, Erlangen, Germany). High-resolution anatomical images were acquired

using a T1-weighted 3-D Modified Driven Equilibrium Fourier Transform (MDEFT)

sequence (TR¼12.24 ms; TE¼3.56 ms; field of view¼256�256 mm2; voxel

size¼1�1�1 mm). During scanning, head motion was restrained by padding

inserted between the participant’s head and the head coil.

2.7. Structural MRI voxel-based morphometry analyzes

For each participant the T1-weighted MR images were imported into SPM8

with NIfTI format (http://nifti.nimh.nih.gov/nifti-1). All the images were re-

centred to the anterior commissure to avoid segmentation failures that can occur

when the origin of the image is far from the central part of the brain. Images were

then segmented into gray matter (GM), white matter (WM), and cerebrospinal

fluid, using the standard segmentation procedure in SPM8 (http://www.fil.ion.ucl.

ac.uk/spm) with all the recommended default parameters. The segmented gray

matter images were then each manually examined using the ‘‘check registration’’

function in SPM8 to ensure there were no segmentation failures. To perform

Diffeomorphic Anatomical Registration Through Exponentiated Lie Algebra (DAR-

TEL) in SPM8 for inter-participant registration of the GM images (Ashburner,

2007), the spatial transformation and parameter files were imported into DARTEL

using the ‘‘initial import’’ function with its default settings. Using the DARTEL

‘‘create template’’ with the default parameters, the gray matter images were then

warped into a template that was created based on their own mean in an iterative

manner. Subsequently, using the ‘‘normalize to MNI space’’ DARTEL function, the

registered images were smoothed with a Gaussian kernel with the default filter size
ociated with biological motion.

VBM results (Bio-Det)

P (corr.) Cluster size Z score Peak

X Y Z

N.S.

N.S.

N.S.

0.013 800 3.73 �54 �49 10

�51 �55 12

�57 �46 7

N.S.

N.S.

0.036 30 3.36 �48 0 28

studies (Grosbras et al., 2012); human movement4non-human movement with ALE

ventral premotor cortex (in the inferior precentral sulcus), pSTS—posterior superior

ical motion (Bio-Det, see Section 2 and Fig. 2). P values are non-stationary-corrected

eaks more than 4 mm apart within the same cluster). N.S. indicates that no supra-

as also true at a more lenient threshold of uncorrected Po0.01). Regions showing

m3. Coordinates are in MNI space. See also Fig. 2.

http://www.vislab.ucl.ac.uk/cogent.php
http://www.vislab.ucl.ac.uk/cogent.php
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(FWHM¼8 mm), and transformed to MNI stereotactic space using affine and non-

linear spatial normalization implemented in SPM8 (with the recommendations for

VBM analyzes options: according to many subjects, and preserving the amount of

signal). We followed the default smoothing filter size in the normalization step as it is

the recommendation for VBM studies, due to the good coregistration between the

images (achieved in the ‘‘create template’’ step), and since filter size of 6 mm or

smaller might lead to too many false positives. Multiple regression analysis was

performed for biological motion detection (Bio-Det), while age, gender and the total

grey matter volume were included as covariates of no interest in the design matrix to

regress out any effects attributable to them.

We focused our analyzes on the loci commonly implicated in the processing of

biological motion in previous work. These regions of interest were selected based

on a recent meta-analysis of biological motion perception studies (Grosbras et al.,

2012) and are all listed in Table 1. VBM analysis was performed for a restricted

volume consisting of the union of seven spheres (10 mm radius), each of which

centered at one of the regions of interest coordinates. This was done by computing

a T contrast with Po0.001 uncorrected as the criterion to detect voxels with

significant correlation to individual’s performance-level. We then restricted the

analysis to our volume of interest, i.e., regions implicated in processing biological

motion (the union of the seven spheres, see above) using small volume correction,

to identify regions that showed a relationship between biological motion and gray

matter volume. We report here in Section 3 and in Table 1 only clusters that

survived a statistical threshold of P(corrected)o0.05 at a cluster-level with non-

stationary correction (http://fmri.wfubmc.edu/cms/NS-General (Hayasaka, Phan,

Liberzon, Worsley, & Nichols, 2004), see Table 1 and Fig. 2a).

To examine whether our VBM results with biological motion detection (see

Fig. 2b) were also associated with behavioral performance in the control tasks, we

then extracted the average gray matter volume from each significant cluster that

showed an association between biological motion detection and gray matter

volume (at corrected levels of significance; see above) using the MarsBar toolbox

for SPM (http://marsbar.sourceforge.net, M. Brett, J. Anton, R. Valabregue, and

J. Poline. Human Brain Mapping conference, Japan, 2002). We then tested whether

the extracted gray matter volumes correlated with the independent behavioral

measures of the control conditions (Experiments 2 and 3). We evaluated these

correlations after regressing out age, gender and total gray matter volume as we

did for the main VBM multiple regression.
3. Results

The average perceptual thresholds for biological motion detec-
tion (Bio-Det) were 15.0977.9 (S.D.) noise points, for non-
biological motion detection (NonBio-Det) 32.075.9(S.D.) noise
points, and for motion coherence (MotionCoh) 15%74% (S.D.),
consistent with previous work employing the same paradigms for
biological and non-biological perceptual threshold estimation
((Gilaie-Dotan et al., 2011) and (Miller & Saygin, 2012)). Impor-
tantly, the inter-individual variability in biological motion
detection thresholds (Bio-Det, as displayed in Fig. 2B on the
y-axis) was large (range of noise points determining threshold:
1.7–37.7), consistent with previous results (Gilaie-Dotan, Kanai, &
Rees, 2011; Saygin et al., 2010; van Kemenade et al., 2012).

Our goal was to examine whether individual differences in
biological motion detection performance were correlated with the
neural structure of cortical regions associated with biological motion
processing. We found that the grey matter volume of two clusters,
one in the left posterior superior temporal sulcus (pSTS) and one in
the left inferior precentral sulcus in ventral premotor cortex (vPMC),
was significantly correlated (P(corr.)o0.05) with biological motion
detection ability (Bio-Det, main experiment), as shown in Fig. 2
(see Table 1 for full anatomical and statistical details). A further
examination at a more lenient threshold in our volume of interest
(P(uncorrected)o0.01), and at a whole-brain corrected level
(P(corr.)o0.001), did not reveal additional regions whose neuroa-
natomical structure significantly correlated with biological motion
detection.

To examine whether the relationship we found between gray
matter density and behavioral measures was specific to biological
motion detection ability, we then extracted the grey matter
volume of these clusters within pSTS or vPMC that were corre-
lated with biological motion ability, and regressed them onto
independent behavioral data from Experiments 2 and 3 reflecting
non-biological motion detection and motion coherence thresh-
olds (see Fig. 2b). These behavioral data from the control condi-
tions (NonBio-Det, MotionCoh) did not show a correlation with
grey matter density of the pSTS cluster (all t(29)o0.84, p40.41)
or the vPMC cluster (all t(29)o1.22, p40.23). Thus, the structure
of both pSTS and vPMC were significantly correlated with the
performance of biological motion detection, and not with those of
the control tasks.

Thus, individual differences in the neuroanatomy of regions
functionally linked to biological motion were predictive of indi-
vidual differences in biological motion detection, but not for the
detection of non-biologically moving stimuli, or motion coher-
ence thresholds.
4. Discussion

The detection of biological motion is key to achieving many
important and ubiquitous tasks in our daily lives. Although there
are notable differences between individuals in biological motion
detection ability, the neural correlates of this variability had not
been explored. Here, we used voxel-based morphometry (VBM), a
method that has been successfully used in relating individual
differences in perception and cognition with individual differ-
ences in neuroanatomy (Fleming, Weil, Nagy, Dolan, & Rees,
2010; Gilaie-Dotan, Harel, Bentin, Kanai, & Rees, 2012; Gilaie-
Dotan et al., 2011; Kanai, Bahrami, & Rees, 2010; Kanai & Rees,
2011; Maguire et al., 2000; Schwarzkopf, Song, & Rees, 2011).

We found that the neuroanatomical structure of two regions
that had previously been functionally linked to biological motion
processing – the posterior superior temporal sulcus (pSTS) and
ventral premotor cortex (vPMC) – could reliably predict indivi-
dually estimated perceptual thresholds for biological motion
detection. The neuroanatomical structure of these regions did
not show significant correlations with performance in two differ-
ent non-biological motion control tasks.

The pSTS and vPMC are functionally linked to biological
motion perception in a number of studies (Blake & Shiffrar,
2007; Saygin, in press). Electrophysiological and functional neu-
roimaging studies show that the pSTS responds significantly more
to biological motion compared to other motion stimuli (Grossman
et al., 2000; Grossman, Jardine, & Pyles, 2011; Nelissen, Vanduffel,
& Orban, 2006; Peuskens et al., 2005; Puce & Perrett, 2003; Saygin
et al., 2004). The vPMC is also implicated in neuroimaging studies
of biological motion (De Lussanet et al., 2008; Jung et al., 2009;
Michels et al., 2009; Michels, Lappe, & Vaina, 2005; Saygin et al.,
2004; Vaina, Solomon, Chowdhury, Sinha, & Belliveau, 2001),
possibly linked to motor simulation elicited by observed move-
ments in premotor cortex, as proposed by work on primate mirror
neurons (Rizzolatti & Craighero, 2004). Moreover, the pSTS and
vPMC appear to play a critical functional role in biological motion
processing as evidenced by lesion analyzes of stroke patients
(Saygin, 2007) and by transcranial magnetic stimulation studies
with healthy adults (Grossman, Battelli, & Pascual-Leone, 2005;
van Kemenade et al., 2012).

The present study constitutes a significant step forward in
understanding the neural basis of biological motion processing by
using an individual differences approach implicating neuroana-
tomical structure. Although the pSTS and vPMC are functionally
linked to biological motion processing, our work goes beyond this
to show that regional variation in the macroscopic neuroanatomy
of these areas predict individual differences in biological motion
detection. Our findings converge with those of previous studies,
even with different methods and participant populations, reveal-
ing that the same regions that are linked with impairments in
biological motion perception when damaged, are also those that

http://fmri.wfubmc.edu/cms/NS-General
http://marsbar.sourceforge.net


Fig. 2. Neuroanatomical structural correlates of biological motion detection. (a) VBM analysis was performed on regions commonly associated with biological motion

(Grosbras et al., 2012) as depicted: 1/2—left/right pSTS, 3/4—left/right fusiform, 5—left lateral occipital (LO/ITG), 6—vPMC (see also Table 1). L/R—left/right hemisphere,

respectively. The region of interest was defined as the union of seven spheres (10 mm radius) centered at these regions’ coordinates (Grosbras et al., 2012).The neural

structure of left posterior superior temporal sulcus (pSTS, indicated as region 1 on sagittal section on the left, coronal on right), and left ventral premotor cortex (vPMC,

indicated as region 6 on sagittal section on the left) in the inferior precentral sulcus showed significant correlation to biological motion detection ability (P(corr.)o0.05).

No other region was significantly correlated with biological motion detection performance even at lower statistical thresholds (see Table 1 and Section 2 for anatomical

and statistical details). (b) Gray matter volume of the left vPMC and pSTS foci does not correlate with performance in control tasks. Correlation between the average gray

matter volume of the significant clusters (G.M., in arbitrary units on the x-axis) of the left vPMC (left column) and pSTS (right column) and perceptual thresholds for

biological motion detection (Bio-Det, top), non biological object detection (NonBio-Det, middle), and motion coherence (MotionCoh, bottom). Perceptual thresholds (on the

y-axis) for Bio-Det and NonBio-Det are estimated in noise points, for MotionCoh in percentage of coherent motion. Each point in the scatter plots represents data from one

participant. The correlation of Bio-Det with grey matter volume (top, empty circles) is not inferential (due to circular reasoning), and is only presented for descriptive

purposes. Gray matter volume was not significantly correlated with the control conditions (all p’s40.23). The coefficient of determination (R2) of each correlation is

presented on the bottom right of the plot.
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are significantly predictive of individual perceptual abilities in
biological motion detection in the healthy brain. These findings
contribute to the recent body of studies that have linked variation
in the neural structure of the healthy brain with variation in
cognitive or perceptual abilities in several other domains
(Fleming et al., 2010; Gilaie-Dotan et al., 2012; Gilaie-Dotan
et al., 2011; Kanai et al., 2010; Kanai & Rees, 2011; Maguire
et al., 2000; Schwarzkopf et al., 2011).

We also tested whether any neuroanatomical correlates observed
with biological motion detection, were also correlated with perfor-
mance of the same participants in two control tasks. The neuroana-
tomical volumes of pSTS and vPMC did not predict behavioral
performance in non-biological object detection or motion coherence
judgments.

Previous fMRI studies have pointed to a possible right hemi-
spheric bias in biological motion processing (Grossman et al., 2000;
Herrington, Nymberg, & Schultz, 2011; Pelphrey et al., 2003, 2005).
In other studies, there was no evidence of a laterality effect, and the
left pSTS and vPMC have both been linked to biological motion
processing (Saygin, 2007; Saygin et al., 2004). Here we observed
only the left hemisphere regions predicted individual sensitivity to
biological motion as measured by our tasks. It is likely that both
hemispheres are involved in biological motion processing, and that
any laterality effects in biological motion processing are relatively
subtle and dependent on the specifics of the stimuli and task.
Consistent with the present study, the neuropsychological and
TMS studies that established functional role for the left pSTS and
vPMC in biological motion processing, also employed detection tasks
(De Lussanet et al., 2008; Furl et al., 2010; Michels et al., 2009;
Saygin, 2007; van Kemenade et al., 2012). An alternative explanation
is that whereas previous studies had examined common neural
mechanisms across observers, our current study examined indivi-
dual differences. The observed left lateralization in our study may
possibly reflect lateralization of anatomical variability rather than a
functional lateralization (cf. (Gilaie-Dotan et al., 2011)).

The primate pSTS is a complex brain area that in part
subserves social functions (Hein & Knight, 2008; Kaiser, Shiffrar,
& Pelphrey, 2011; Kanai, Bahrami, Roylance, & Rees, 2011; Sallet
et al., 2011; von dem Hagen et al., 2011). vPMC is also thought to
support social cognition via an embodied simulation of seen
actions based on neural representation(s) of the observer’s body
(Rizzolatti & Fabbri-Destro, 2008). While future work is needed to
establish a precise relationship between biological motion per-
ception and social cognition (Pavlova, 2012), the present results
firmly link individual sensitivity in the visual perception of
biological motion to individual variation in the neuroanatomy of
action and body movement processing networks (Rizzolatti &
Craighero, 2004; Saygin, in press). The present data show that
these regions are not only part of a network that functionally
supports biological motion processing, but that their neuroana-
tomical structure can even account for the behavioral inter-
individual variability observed in biological motion detection.
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