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Abstract: Since the first reported case of COVID-19 in 2019 in China and the official declaration from
the World Health Organization in March 2021 as a pandemic, fast and accurate diagnosis of severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has played a major role worldwide. For this
reason, various methods have been developed, comprising reverse transcriptase-polymerase chain re-
action (RT-PCR), immunoassays, clustered regularly interspaced short palindromic repeats (CRISPR),
reverse transcription loop-mediated isothermal amplification (RT-LAMP), and bio(mimetic)sensors.
Among the developed methods, RT-PCR is so far the gold standard. Herein, we give an overview of
the MIP-based sensors utilized since the beginning of the pandemic.
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1. Introduction

The outbreak of COVID-19 was first reported in December in Wuhan, China, and
has spread worldwide. In March 2020, the World Health Organization (WHO) officially
declared it a pandemic. The WHO reported that, since then, there have been globally
490.853.129 confirmed cases and 6.155.344 deaths (5 April 2022). The spread of the virus,
SARS-CoV-2, is fast and can lead to symptoms such as fever, cough, and shortness of
breath, while in some cases, no symptoms are exhibited [1,2]. It is a single-stranded
RNA-enveloped virus, which belongs to the β coronavirus family [3]. The majority of
immunoassays address the spike protein (S protein) or the nucleocapsid protein (N protein)
(Figure 1). While the S protein binds to the host cell receptor angiotensin-converting
enzyme 2 (ACE2) and mediates viral cell entry, the main role of the N protein is viral
genome replication and transcription [3,4].
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Different diagnosis strategies have been developed such as RT-PCR, immunoassays
(ELISA: Enzyme-Linked Immunosorbent Assay, lateral flow immunoassay), CRISPR, lateral
flow-based nucleic acid detection, RT-LA, bio(mimetic)sensors, and microarray-based
analysis [1,2,5–17]. Among the described methods, RT-PCR is the gold standard.

Over the past decades, increasing attention has been given to the substitution of bio-
logical reagents in bioanalysis, separation techniques, and biotechnology by biomimetic
materials such as fully synthetic organic polymers (molecularly imprinted polymers, MIPs)
and aptamers [18–20]. IUPAC defines the term biomimetic as “Refers a laboratory pro-
cedure designed to imitate a natural chemical process. Also refers to a compound that
mimics a biological material in structure or function“. The lotus effect at a water-repelling
surface is the best-known example of biomimetic systems. One important motivation for
the development and application of biomimetic recognition elements is their potentially
higher stability and lower price as compared with biomolecules. Herein, we focus on only
MIP-based biomimetic sensors and their potential for SARS-CoV-2 sensing.

2. Molecularly Imprinted Polymers

The concept of molecular imprinting dates back to 1931 when Polyakov demonstrated
specific adsorption properties of silica gel that recognized its target methyl orange [21].
Nevertheless, the synthesis of molecularly imprinted polymers (MIPs) was boosted by Wulff
and Mosbach later in the 1970s [22,23]. Since then, a broad spectrum of analytes including
low-molecular-weight molecules, such as pharmaceuticals, sugars, toxins, narcotic drugs,
pesticides, and biomacromolecules such as proteins, nucleic acids, bacteria, and viruses
have been described [20,24–49].

Briefly, MIPs are prepared by copolymerizing functional monomers, cross-linkers (in
the case of electropolymerization, there is no need to use cross-linkers), and the target
analyte, the so-called template (Figure 2). Subsequent removal of the template leads to the
formation of molecular cavities with a molecular memory, mirroring size, shape, and/or the
functionality of the template. As the binding sites of MIPs mimics antibodies, they are also
called artificial or tailor-made antibodies. The evolution of highly specific antibodies and
efficient enzymes exploited the arsenal of 20 natural amino acids. Interestingly, the affinity
of the MIPs, which are formed with only one functional monomer, reaches the values of
natural antibodies [20]. Molecular modeling and the application of more than one functional
monomer have the potential of further optimization. On the other hand, catalytically
active MIPs that approach the activities of enzymes typically require the integration of
analogs of prosthetic groups. MIPs are more stable under harsh conditions, such as
extreme pHs, organic solvents, and high temperatures as compared to their biological
counterparts [19,20,50].
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2.1. Structural Levels Target Analytes

As biomacromolecules and viruses have complex, flexible, and fragile structures, in
addition to milder preparation conditions, alternative techniques comprising different
structural levels of the target analyte have been utilized. Yarman and Scheller recently
summarized these levels exemplifying proteins [19,51–53]. Similar approaches have also
been applied to viruses (Figure 3). These approaches include:
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(1) Whole virus imprinting: In this approach, a whole virus is used as a template [54–57].
In contrast to low-molecular-weight analytes, there are some obstacles when imprinting
viruses. For imprinting, a high amount of pure virus is needed. Moreover, virus sam-
ple preparation requires appropriate laboratory, equipment, and experienced person-
nel [39]. Moreover, due to their large number of potential interaction sites and functional
groups on their surfaces, heterogeneous binding sites and higher cross-reactivities can be
obtained [20,37,39,55,58–60].

(2) Functional viral protein imprinting: Viruses consist of various proteins, which
have different functions. Utilizing glycoprotein gp51 of bovine leukemia virus, the S
or N protein of SARS-CoV-2 as templates for MIP preparation can be examples of this
approach [61–63]. In addition to whole protein, subunits or peptide fragments have been
applied as templates.

(i) Subunit imprinting: Subunit imprinting is based on using the fragments of the
viral protein as a template. Denizli’s group utilized the antigen-binding fragment (Fab)
as a template for the determination of immunoglobulin G (IgG) on a surface plasmon
resonance (SPR) chip. The MIP sensor could recognize both the target, Fab, and the whole
IgG MIP synthesis on a SPR-chip. This Fab-imprinted polymer layer binds both the Fab
fragment and the whole IgG molecule. Scheller’s group further extended this approach to
oxidase (BMO) and reductase domains (BMR), which could recognize their targets or holo
Cytochrome P450 BM3. This aspect has also been presented for SARS-CoV-2, in which the
receptor-binding domain was used as a template [64,65].

(ii) Epitope Imprinting: To overcome the limitations in biomacromolecule and virus
imprinting, exposed peptides of the analyte have been used as templates, which could
recognize both the template and its holoprotein/whole virus [20,66–75]. This concept
was introduced by Rachkov and Minoura and was termed epitope imprinting, as it is
similar to the immunological determinant recognized by an antibody [20,76,77]. The first
“epitope-MIP” was constructed via bulk imprinting, whereas Shea’s group immobilized the
target on the support that was removed following the polymer formation generating the
complementary cavities [20,78]. Later, Scheller’s group developed a fully electrochemical
approach (including template removal: anodic potential pulses) on gold surfaces [79].
Epitope imprinting was also exploited for virus sensing for various viruses, comprising
recently SARS-CoV-2 [39,58,72,80–83]. It is important to note that in the epitope approach,
the area of specific interaction of the protein with the MIP is restricted to the epitope
cavities. “Out-of-pocket interaction” of the protein/virus with the polymer surface can
cause pronounced nonspecific binding [84]. On the other hand, interaction with the
underlying support, e.g., metal electrodes, has to be taken into consideration for whole
protein/virus MIPs [46].
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2.2. Steps of MIP Preparation

In general, MIPs are prepared in three steps as described in Figure 2:
(1) Formation of the pre-polymerization complex: In the first step, functional monomer(s)

and the template molecules interact with each other to form the pre-polymerization complex.
Two main approaches, namely covalent and noncovalent, have been described for the
preparation of the pre-polymerization complex.

(i) Covalent approach: The covalent approach, which was introduced by Wulff and
Sarhan [22], and Shea [85], is based on the formation of reversible covalent bonds between
the template molecules and the functional monomer(s), followed by crosslinking. To
remove the template from the polymer matrix, these chemical bonds must be cleaved, and
rebinding occurs via the same covalent bonds [86,87]. This method results in the formation
of the stable and stoichiometric pre-polymerization complex. Moreover, in contrast to the
non-covalent approach more homogenous binding sites can be obtained. Nevertheless, this
approach has some obstacles, especially a narrow template spectrum and slower binding
kinetics as compared to the noncovalent approach.

(ii) Noncovalent approach: The noncovalent approach was developed by Arshady and
Mosbach [23]. By contrast, in this approach, a pre-polymerization complex is formed via the
noncovalent interactions, such as hydrogen bonds, ionic bonds, van der Waals forces, and
hydrophobic interactions, between the template and the functional monomer(s) [87]. As it
resembles molecular recognition in nature, it is also called the biochemists’ approach. Tem-
plate molecules can be removed by simple solvent extraction, and rebinding of the analyte is
again obtained by the same noncovalent interactions. Furthermore, the template spectrum
is broad. However, the yield of binding sites is low compared to the covalent approach.

To overcome the drawbacks of both approaches described above, the semi-covalent
approach was developed by Whitcombe et al., which is a hybrid of two approaches [88]. In
this approach, a pre-polymerization complex is formed via a covalent bond, and rebind-
ing of the analyte is achieved by noncovalent interactions between the polymer and the
analyte [87].

(2) Polymerization: The second step of MIP preparation is polymerization. Bulk
polymerization is most frequently exploited for the preparation of MIPs among the different
formats. With this technique, monolithic structures are produced, which must be then
grounded and sieved. The disadvantages of this method are that it is time-consuming, and
slow binding kinetics are obtained. To overcome these drawbacks, different methods have
been introduced including suspension, emulsion, or precipitation polymerization, which
result in the formation of micro- or nanobeads; MIP nanomaterials such as nanoparticles
and nanospheres; MIP nanomaterial composites; self-assembled monolayers of thiols; the
spreader-bar technique; stamping; and electropolymerization [41,55,89–98]. It is worth
mentioning that apart from the last four formats, MIPs have to be immobilized on a
transducer surface following the preparation.

Over the years, classical polymerization techniques have been successfully applied for
low-molecular-weight substances and even resulted in commercial products [99]. Nonethe-
less, commercial MIPs for routine analysis of biomacromolecules such as proteins, nucleic
acids, bacteria, and viruses are still challenging, although successful examples have been
presented in the literature [6,20,39,58,100–105]. This difficulty mainly arises from the stabil-
ity problems faced during the imprinting process. As they are fragile and have a complex
structure, polymerization can lead to structural changes including denaturation, unfolding,
or aggregation. Another obstacle to the classical imprinting process is that the template
molecules may be fully entrapped in the polymer matrix, thus hindering their removal and
rebinding. For this purpose, milder imprinting techniques such as soft lithography and
electropolymerization have been exploited. Both techniques have been utilized both for
proteins and viruses [20,37,55,56,82,106–112].
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Soft lithography, which has been introduced by Bain and Whitesides, is one of the
elegant ways for the preparation of MIPs on the surface of transducers [39,113,114]. It
allows the formation of micro- and nanopatterns. The key elements of soft lithography
techniques are elastomeric stamps or mold, in which flexible organic materials are used
rather than rigid inorganic materials [115]. Moreover, it is, in some manner, superior to
photolithography due to its cost-effectiveness and easy adaption for patterning surfaces in
the range from micro- to nanometers [55,66,114–117]. In the literature, various successful
examples of this method have been presented for different viruses such as tobacco mosaic
virus, subtypes of influenza a virus, picornavirus, dengue type 1 virus, and classical swine
fever virus [37,56,109,118,119].

Electropolymerization is another elegant and widely applied technique for the prepa-
ration of MIP-based biomimetic sensors for both low-molecular-weight analytes and
biomacromolecules and, to some extent, for viruses, as it allows the preparation of MIPs
directly on a transducer’s surface under mild conditions [19,20,46,62,106,108,120–127]. The
thickness of the polymeric film can be easily adjusted by just simply controlling the charge
passed through, which results in more effective template removal and rebinding processes.
Moreover, there is no need for cross-linkers.

(3) Template removal
The template removal step is as crucial as polymerization. Incomplete removal can

result in reduced binding efficiency due to the smaller number of free binding cavities,
while complete removal trials may cause partial or complete destruction of the polymeric
network [20,128,129]. Unfortunately, there is no general removal procedure for MIPs such
as that described for the regeneration of aptamers [20]. For decades, different strategies
such as Soxhlet extraction, changing the pH or ionic strength, detergents, electrochemical
methods, proteolytic digestion, elevated temperature, ultrasound, microwave-assisted
extraction, and supercritical CO2 have been demonstrated. Extensive information about
this topic can be found elsewhere [128,129].

3. MIP-Based Biomimetic Sensors for SARS-CoV-2 Detection

Basically, two different procedures have been described in the literature for the MIP-
based biomimetic sensors against low-molecular-weight substances, biomacromolecules,
and viruses. The first procedure is based on two steps of MIP preparation: (i) synthesis of
MIPs separately and (ii) integration of the synthesized MIPs on a transducer [20].

Alternatively, diverse surface imprinting methods including the aforementioned meth-
ods such as soft lithography, electropolymerization, and self-polymerization have been
developed, which allows direct preparation of the MIPs on the surface of the transducer.

The integration of nanomaterials increases the active surface area and thereby en-
hances the sensitivity of the sensors. For this reason, a variety of nanomaterials, such
as magnetic nanoparticles, carbon nanomaterials (carbon nanotubes, graphene, and its
derivatives), metallic nanoparticles (Au nanoparticles (NPs), PtNPs, AgNPs), quantum
dots, and nanocomposites, have been presented in the literature [130–135].

The recognition of analytes by MIPs has been coupled with a broad variety of trans-
ducers, among which electrochemical and optical transduction systems clearly domi-
nate [19,20,104,136–138]. Nevertheless, for virus sensing, piezoelectric transducers find a
wider application [136]. However, to the best of our knowledge, a QCM-based MIP sensor
for the detection of SARS-CoV-2 has not been reported in the literature up to now. By
contrast, electrochemical transducers dominate. In the following sections, we describe the
MIP-based biomimetic sensors against SARS-CoV-2 considering the structural levels of the
target analyte as described above (Table 1).
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Table 1. MIP-based biomimetic sensors for SARS-CoV-2 detection.

Template Monomer Transducer Detection
Method

(Linear) Range
and LOD Ref.

SARS-CoV-2 whole virus 3-AP CNT/WO3-SPCE EIS LOD: 57 pg/mL [139]

SARS-CoV-2 whole virus NHMA MBAm
(cross-linker) SPE EIS 3–7 log10 pfu/mL LOD:

4.9 log10 pfu/mL [140]

SARS-CoV-2 whole virus

AAM, MAA,
MMA, and NVP;

DHEBA
(cross-linker)

GO integrated
Ag-SPE CV 0.01 fM to 100 fM LOD:

0.1 fM [141]

SARS-CoV-2 whole virus
Pyrrole; (graphene

oxide) APBA
(cross-linker);

GCE DPV and
amperometry

DPV: 0.74–9.03 fg mL–1

and LOD: 0.326 fg mL–1

Amperometry:
13.14–118.9 fg mL–1 and

LOD: 11.32 fg mL–1

[142]

SARS-CoV-2
nucleoprotein m-PD 4-ATP-modified

Au-TFE DPV Up to 111 fM; LOD:
15 fM (in lysis buffer) [63]

SARS-CoV-2 nucleocapsid
protein Arginine Au/Gr-modified

SPCE DPV 10.0–200.0 fM; LOD:
3 fM [143]

SARS-CoV-2 spike protein Pyrrole Pt Electrode CA 0 µg/mL to 25 µg/mL [62]

SARS-CoV-2 RBD o-PD MP-Au-SPE EIS
2.0 pg·mL−1–40
pg·mL−1 LOD:

0.7 pg·mL−1
[64]

SARS-CoV-2 spike protein
subunit S1 APBA 4-ATP-modified

Au-TFME SWV

LOD: 15 fM (in PBS) and
64 fM (patient’s
nasopharyngeal

samples)

[65]

SARS-CoV-2 spike protein
subunit S1

Aam, TBAm, and
HEMA; BIS

(cross-Linker)

POF-based
SPR chip SPR LOD: 0.058 µM [144]

SARS-CoV-2 spike protein
RBD epitope

(GFNCYFPLQ)
Scopoletin Au- SPRi chips SPR NS [82]

3-AP: 3-aminophenol; AAM: Acrylamide; APBA: 3-aminophenyl- boronic acid; Au-TFME: Thin-film Au metal
electrodes, BIS: N,N′-methylene bisacrylamide; CA: Chronoamperometry; DHEBA: N,N′-(1,2-dihydroxy- ethy-
lene) bisacrylamide; HEMA: 2-hydroxyethyl methacrylate; LOD: Limit of Detection; LOQ: Limit of Quan-
tification; MAA: Methacrylic acid; MBAm: N,N′-methylenebisacrylamide; MMA: methyl methacrylate; m-
PD: m-Phenylenediamine; NHMA: N-hydroxmethylacrylamide; NS: Not stated; NVP: N-vinylpyrrolidone;
o-PD: o-Phenylenediamine; POF: Plasmonic Optical Fibers; SPCE: screen-printed carbon electrode; TBAm: N-t-
butylacrylamide.

3.1. Electrochemical Detection of SARS-CoV-2

Electrochemical approaches are easy to apply and, due to the smaller size of instru-
ments, experiments can be performed without the need for professional personnel or
well-equipped laboratories.

Among the diverse approaches for the detection of analytes with MIP-based electro-
chemical sensors, voltammetric methods are widely utilized. By contrast, the number of
potentiometric transducers, capacitors, or field-effect transistors is lower [19]. It should
be noted that the potential window of voltammetric sensors is restricted by the cathodic
hydrogen generation and the anodic oxygen evolution. Hence, the electrode material
should be considered.

Three main electrochemical readout methods have been utilized for MIP-based sen-
sors [19]: (i) direct measurement of electroactive analytes (low-molecular-weight analytes,
proteins); (ii) measurement of the signal generated by catalytically active analytes (en-



Biomimetics 2022, 7, 58 7 of 17

zymes); (iii) indirect measurement using a redox marker such as ferricyanide, ferrocene,
and ruthenium (low-molecular-weight molecules, biomacromolecules, viruses, bacteria,
cells), which is based on the gate effect [145,146]. This effect was, for the first time, described
by Yoshimi et al. [145]. However, the mechanism is still under discussion [146]. Among the
described readout methods, the last one is appropriate for virus sensing. Differential pulse
voltammetry (DPV), square-wave voltammetry (SWV), or cyclic voltammetry (CV) play an
important role in virus sensing. In comparison to CV, DPV and SWV are more sensitive as
they allow the elimination of the charging current. In addition, electrochemical impedance
spectroscopy (EIS) has been utilized in MIP-based virus sensing.

(1) Whole virus imprinting: Despite the challenges of whole virus imprinting, some
successful examples have been presented for SARS-CoV-2 sensing.

Hassan’s group proposed a MIP-based sensor against the whole SARS-CoV-2 parti-
cles [139]. The sensor was fabricated by electropolymerization of a mixture containing
3-aminophenol and virus particles on a carbon nanotube (CNT)/WO3-modified screen-
printed carbon electrode. Steps of the MIP preparation were characterized by EIS in a
solution of double redox mediators ferricyanide and DCIP. LOD and LOQ values were de-
termined to be 57 and 175 pg/mL, respectively. Furthermore, almost no cross-reactivity was
observed toward H1N1, H5N1, and H3N2 influenza A viruses, whereas MERS-CoV and
the other human coronaviruses resulted in about 2 and 36% of cross-reactivity, respectively.
Moreover, the virus-imprinted sensor can rapidly quantify the SARS-CoV-2 concentration
in clinical samples and differentiate between the healthy and infected samples. By compar-
ing the LODs, the authors claimed to obtain an almost 27-fold higher sensitivity compared
to RT-PCR.

Recently, Reddy’s group presented an MIP-based sensor on an SPE, which was
prepared by electropolymerization of N-hydroxmethylacrylamide (NHMA) against the
whole SARS-CoV-2 virus [140]. By contrast, pseudoparticles and a cross-linker (N, N’-
methylenebisacrylamide) have been utilized as a template and cross-linker, respectively.
The sensor was characterized by EIS. The linear dynamic range was found to be log10
4.0–6.0 pfu/mL with an LOD of 4.9 log10 pfu/mL. Furthermore, the developed sensor was
exploited to real patient saliva samples. Positive and negative cases could be discriminated
from the Nyquist plot and the results were an overall 75% agreement with the established
loop-mediated isothermal nucleic acid amplification technique used by the UK National
Health Service.

In another work, inactivated SARS-CoV-2 was used as a template for the electrochemi-
cal detection of SARS-CoV-2 in water samples [141]. In comparison to the last two sensors,
four different functional monomers and a cross-linker were used (Figure 4). An MIP-based
sensor was prepared as follows: First, functional monomers and the cross-linker were
mixed and heated. In the next step, graphene oxide was added to the mixture and dropped
on SPE. In the last step, the template was dropped on the electrode, and polymerization was
started by applying UV radiation. After template removal, graphene oxide was reduced
electrochemically. A calibration curve was prepared based on the cyclic voltammetric
response of the redox marker ferri-/ferrocyanide. The LOD was calculated to be 0.1 fM in
buffer and wastewater spiked with SARS-CoV-2. Moreover, the sensor demonstrated, to
some extent, a higher sensitivity to influenza A H5N1 virus.

(2) Functional viral protein (N- or S-Protein) imprinting: Raziq et al. described the first
biomimetic sensor for the diagnosis of SARS-CoV-2 since the outbreak of COVID-19, which
employed an electrochemical transducer. As a template, a functional viral protein, namely
nucleoprotein (ncovNP), was used rather than the whole virus [63]. The MIP was prepared
after covalent immobilization of ncovNP on a 4-aminothiophenol (4-ATP)-modified gold
electrode. In the literature, it was described that the oriented immobilization of the target
prior to polymerization via site-specific anchors allows the formation of more uniform
binding cavities (grafted target imprinting) [20,147]. It can also prevent the denaturation of
viral proteins due to the absorption on the metal surface. Moreover, thiol groups on the
virus’ surface may lead to nonspecific interactions with a metal electrode. After molecular
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docking and quantum chemical calculations, m-phenylenediamine was chosen as the
functional monomer. All the steps of MIP preparation were characterized with a redox
marker, ferri-/ferrocyanide mixture. Limit of detection (LOD) and limit of quantification
(LOQ) were calculated from DPVs to be 15 fM and 50 fM, respectively, which lies in the
clinical range. Further, the selectivity studies with various proteins possessing different
sizes, molecular weight, and isoelectric points demonstrated that the highest response
was obtained for the target analyte ncovNP. Moreover, the performance of the sensor was
exploited in nasopharyngeal swab specimens and a correlation with RT-PCR was found.
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Another electrochemical MIP-based sensor, which explored ncovNP as a template,
was constructed on a gold/graphene nanohybrid-modified screen-printed electrode by
electropolymerization of arginine. DPV was applied to characterize the sensor. Under the
optimized conditions, the peak currents of the redox marker decreased with the increase in
the ncovNP concentration from 10.0 and 200.0 fM with a very small LOD value of 3.0 fM,
which was fivefold less than the previous example (15 fM). Furthermore, the sensor was
applied to artificial nasal and saliva samples spiked with ncovNP, and detection of ncovNP
was achieved with acceptable recovery values.

In addition to the N protein of SARS-CoV-2, the S protein was successfully applied as
a template for the construction of an electrochemical biomimetic sensor by Ramanavicius’s
group. For the fabrication of the sensor, they utilized pyrrole, which forms conductive
polymeric films by electropolymerization on a Pt electrode [62]. After removal of the
template molecules with sulfuric acid, the performance of the sensor was evaluated by
means of amperometry applying pulse values of 0 V and +0.6 V. A linear response was
observed upon rebinding of the template S protein of SARS-CoV-2 ranging from 0 µg/mL
to 25 µg/mL. The imprinting factor was determined to be approximately 2.1. Moreover, the
developed MIP showed a significantly higher sensitivity toward its template as compared
to bovine serum albumin.

(i) Subunit of the S protein imprinting: The use of N protein as a target may cause
false-positive results as shown elsewhere [148]. Therefore, despite the success of the afore-
mentioned method [63], Syritski’s group developed an MIP-based sensor addressing the
spike protein subunit S1 (Figure 5) [65]. Prior to polymerization, the template was immo-
bilized on a modified electrode. Moreover, the authors took advantage of the covalent
interaction between 1,2-diols of the highly glycosylated protein and the boronic acid by us-
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ing 3-aminophenylboronic acid (APBA) as a functional monomer. The sensor was evaluated
by the concentration-dependent current suppression of redox marker ferri/ferrocyanide
via SWV (Figure 5). The sensor had a quick response time of 15 min detecting ncovS1 in
buffer and also in nasopharyngeal samples in fM levels (Table 1).
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In another study, Tabrizi et al. suggested an ultrasensitive MIP-based electrochemical
sensor for the detection of the receptor-binding domain (RBD) of SARS-CoV-2 [64]. The MIP
was constructed by electropolymerization on a microporous gold screen-printed electrode
(MP-Au-SPE). RBD and o-phenylenediamine were template and functional monomers,
respectively. Each step of the imprinting process was analyzed using EIS and CV. The
sensor showed a linear response from the 2.0 pg·mL−1 level to 40 pg·mL−1 with an LOD
value of 0.7 pg·mL−1. The authors further applied the MIP sensor to the saliva sample and
compared it with ELISA and found no significant difference between the two methods.

3.2. Optical Detection of SARS-CoV-2

In addition to the electrochemical readout, the optical readout was exploited for the
detection of SARS-CoV-2 with MIP-based sensors. Optical sensors allow the direct detection
(label-free) of analytes by measuring the changes such as refractive index and fluorescence.
Compared to electrochemical MIP-based sensors, the number of optical MIP-based sensors
against SARS-CoV-2 is limited.

Cennamo et al. reported for the first time an acrylamide-based MIP on a POF-covered
gold SPR chip addressing the specific recognition of the S1 subunit of the SARS-CoV-2 spike
protein [144]. This first prototype was exploited to detect the S1 subunit. The LOD and
affinity constants were determined to be 0.058 µM and 2.318 µM−1, respectively. Moreover,
preliminary tests on SARS-CoV-2 virions were performed on samples of nasopharyngeal
swabs in the universal transport medium and physiological solution (0.9% NaCl), and the
results were compared with RT-PCR. They obtained a higher sensitivity and faster response.
However, the authors expressed that the method should be validated.

In another study, Bognar et al. developed an MIP sensor, which applied the nonapep-
tide 485–493 of the RBD as the epitope template (Figure 6) [82]. The peptide GFNCYFPLQ
was microspotted on gold SPR chips before the deposition of polyscopoletin. Template
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removal was achieved by anodic potential pulses. The parent protein RBD was bound in
the lower nanomolar concentration range, while the same concentrations of human serum
albumin (HSA) had no effect in the 0.05 % Twin-20 solution. MIPs prepared with a peptide
without the C-terminal L and Q showed a moderately decreased affinity. Substitution of
the central C by S in the template peptide resulted in MIPs with no binding of both the
RBD and HSA. Obviously, the central C is essential for the formation of “open” cavities
that accommodate the 26 kDa protein. Furthermore, the RBD was indicated in the spiked
splitting solution.
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3.3. Commercial MIP for SARS-CoV-2

Several successful examples of nanoMIPs have been exploited in bioanalysis for the
development of optical and electrochemical sensors [137,149,150]. The company MIP
Diagnostics has developed the first commercial nanoMIPs against different SARS-CoV-2
variants, addressing the RBD of SARS-CoV-2. The particle size varies from 40 nm to 80 nm
and the affinity constants are ≤18. As the nanoMIPs are amino-functionalized, they could
be immobilized on an electrode. The developed thermal resistance sensor allowed the
measuring of concentrations of <5 fg/mL for the RBD from spike protein.

4. Conclusions

MIPs have received growing attention over the past decades for the substitution of
biological reagents in separation techniques, bioanalysis, and biotechnology to overcome
limitations faced in analysis. They are easy to prepare, cost-effective, and stable under harsh
conditions. Moreover, in contrast to antibody production, animals are not required. Taking
into account the advantages, several MIP-based biomimetic sensors against SARS-CoV-2
have been described in the literature, and even the company MIP Diagnostics produced
commercial nanoMIPs. In this review, we summarized these biomimetic sensors and
grouped them according to readout methods. In addition, grouping structural levels of the
target analyte from the whole virus to its epitope was also taken into consideration. It is
worth mentioning that utilizing an epitope as a template, on the one hand, can provide
some advantages but, on the other hand, may result in nonspecific interaction of the whole
virus with the polymer. RT-PCR is so far the gold-standard method for the determination
of the viral load of SARS-CoV-2, and it is still under question whether the described MIPs
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can replace it. On the other hand, combining MIPs with lateral flow assays can be realized
as a cheaper and more stable alternative to antigen tests.

Author Contributions: Conceptualization, A.Y.; writing—original draft preparation, A.Y. and S.K.;
writing—review and editing, A.Y and S.K. All authors have read and agreed to the published version
of the manuscript.

Funding: This work was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) under Germany’s Excellence Strategy—EXC 2008/1 (UniSysCat)—390540038 [Gefördert
durch die Deutsche Forschungsgemeinschaft (DFG) im Rahmen der Exzellenzstrategie des Bundes
und der Länder—EXC 2008/1 (UniSysCat)—390540038].

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: This manuscript is dedicated to Frieder W. Scheller on the occasion of his 80th
birthday. “Ei, bin ich denn darum achtzig Jahre alt geworden, daß ich immer dasselbe denken soll?
Ich strebe vielmehr, täglich etwas anderes, Neues zu denken, um nicht langweilig zu werden. Man
muß sich immerfort verändern, erneuen, verjüngen, um nicht zu verstocken.” Goethe’s quotation
always reminds me of Frieder W. Scheller. He was not only my “Doktorvater”, but he was and is a
great mentor in my (scientific) life. Ich bin zwölf jahre alt! We wish him all the best, happiness, and
health with his beloved ones and of course many more years in science with his innovative ideas.
We are looking forward to working with him on new projects. Happy Birthday! Alles Gute zum
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