
Frontiers in Immunology

OPEN ACCESS

EDITED BY

George Kenneth Lewis,
University of Maryland, United States

REVIEWED BY

Srinivasa Reddy Bonam,
University of Texas Medical Branch at
Galveston, United States
Wayne Robert Thomas,
University of Western Australia,
Australia

*CORRESPONDENCE

Bartolo Avendaño-Borromeo
bavendano@ssaver.gob.mx

†These authors have contributed
equally to this work and share
the first authorship

SPECIALTY SECTION

This article was submitted to
Vaccines and Molecular Therapeutics,
a section of the journal
Frontiers in Immunology

RECEIVED 18 May 2022
ACCEPTED 22 July 2022

PUBLISHED 16 August 2022

CITATION
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The current pandemic generated by SARS-CoV-2 has led to mass vaccination

with different biologics that have shown wide variations among human

populations according to the origin and formulation of the vaccine. Studies

evaluating the response in individuals with a natural infection before

vaccination have been limited to antibody titer analysis and evaluating a few

humoral and cellular response markers, showing a more rapid and intense

humoral response than individuals without prior infection. However, the basis

of these differences has not been explored in depth. In the present work, we

analyzed a group of pro and anti-inflammatory cytokines, antibody titers, and
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cell populations in peripheral blood of individuals with previous SARS-CoV-2

infection using BNT162b2 biologic. Our results suggest that higher antibody

concentration in individuals with an earlier disease could be generated by

higher production of plasma cells to the detriment of the presence of memory

B cells in the bloodstream, which could be related to the high baseline

expression of cytokines (IL-6 and IL-10) before vaccination.
KEYWORDS
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Introduction

The SARS-CoV-2 infection has revealed gaps in the immune

response concerning coronaviruses affecting human populations

(1–3). Many publications have evaluated the antibody production

in infected and vaccinated people (4–6). Antibody levels vary from

very low in patients with mild or asymptomatic infections to high

levels in hospitalized infected patients (7–10). The massive

vaccination with different biologics has also shown wide

variations among human populations depending on the origin

and vaccine formulation (5, 6, 11). However, there are scarce

studies where antibody titers have been measured by comparing

healthy people with vaccinated people who have suffered a SARS-

CoV-2 infection (12–14). These studies have shown that a previous

infection correlates with higher antibody titers. However, the bases

for these differences have not been explored in depth.

This work determined the antibody responses in a sample of

people vaccinated with the biological BNT162b2, separating the

population into people who previously suffered or did not have

an infection with SARS-CoV-2. In addition to the antibody

titers, various cell populations and pro- and anti-inflammatory

cytokines were analyzed. Given the number of parameters

studied in this work, we decided to use a principal component

analysis (PCA), looking for those parameters that could best

correlate with the differences in antibodies that PCA allowed by

concentrating on a few parameters, simplifying the analysis.

The population of B lymphocytes expressing the chemokine

receptor CCR7 decreased in those who previously had an infection

with SARS-CoV-2. Likewise, people showed increased IL-10, IL-

12p70, and IL-6 levels once infected. Interleukins 6 and 10

participate in the differentiation of activated B lymphocytes

towards plasma cells, which could correlate with higher antibody

titers. In contrast, IL-12p70 could participate, via gamma interferon

stimulation, in the change of isotype towards IgG.

Our results suggest that people who suffered a previous

SARS-CoV-2 infection once vaccinated with the biological

BNT162b2 generate a more significant production of plasma

cells to the detriment of the generation of memory B

lymphocytes circulating through the secondary lymph nodes.
02
Materials and methods

Study population and sampling

This work was a longitudinal observational study in a single

health center, including adults with previous SARS-CoV-2 infection

and naïve. The local Ethical Committee approved the study (CE/

FESI/022021/1380). A total of 65 individuals from the staff of the

Health Institutes of Veracruz, Mexico, vaccinated with the Pfizer-

BioNTech biological (BNT162b2) were selected 20 with a previous

SARS-CoV-2 infection (pre-infected) and 45 naïve (Table 1). The

peripheral blood samples for the analysis were taken on day 0,

before the first dose (T1), the day of the second dose (T2), and the

third sample was obtained 14 days after the boost (T3).
Cytokine quantification by
flow cytometry

The panel of cytokines IL-1b, IL-2, IL-4, IL-6, IL-10, IL-
12p70, IL-17A, CXCL8 (IL-8), CXCL10 (IP-10), CCL2 (MCP-1),

IFN-g, TNF-a, and TGF-b1 were measured in the peripheral

blood plasma using LEGENDplex™ HU Essential Immune

Response Panel (13-plex) kits (Biolegend), according to the

manufacturer’s instructions to quantify the absolute values of

cytokines. The flow cytometry data acquisition was performed

with (CytoFLEX S, Beckman Coulter) equipment, and the results

were analyzed using the LEGENDplex™ software.
Cell population quantification by
flow cytometry

Multicolor staining with monoclonal antibodies and flow

cytometry was used to identify subpopulations of B lymphocytes

(CD19+, CD20+, CD19+ CD27+, CD20+ CD27+, CD19+ CCR7

+, CD20+ CCR7+), T lymphocytes (CD3+ CD4+, CD3+ CD8+,

CD4+ CD25+ CD127Low, CD3+ CD4+ CD45Ra+, CD3+ CD4+
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CD45Ra+ CCR7+, CD3+ CD8+ CD45Ra+, CD3+ CD8+

CD45Ra+ CCR7+), NK lymphocytes (CD56+, CD57+, CD3-

CD16+ CD56+, CD3- CD16+ CD57+) and monocytes (CD14+,

CD14+ CCR7+, CD14+ TLR4+, CD14+ TLR4+ CCR7+

CD11c+, HLA-DR+) (Supplementary Figure 1). A volume of

whole blood with 1 × 106 white blood cells (previously counted

with hemocytometer) were stained with the four antibody panels

and incubated for 30 minutes at room temperature in darkness,

washed with phosphate-buffered saline containing 0.1% bovine

serum albumin, and lysed with the OptiLyse C reagent

(Beckman Coul te r ) fo l lowing the manufac ture r ’ s

recommendations. Samples were analyzed with the Cytoflex S

system (Beckman Coulter), 100,000 events acquired in each of

the four panels used, and data was analyzed with the Kaluza C

software (Beckman Coulter).
Anti-SARS-CoV-2 quantification by
flow cytometry

The anti-SARS-CoV-2 anti-spike and anti-RBD antibodies

were quantified in plasma using the LEGENDplex™ SARS-

CoV-2 Serological IgG Panel Detection Abs (Biolegend),

following the manufacturer’s instructions for determining the

absolute antibody values. The acquisition was carried out by flow

cytometry (Cytoflex S), and the results were analyzed with the

LEGENDplex software.
Frontiers in Immunology 03
Principal component analysis (PCA)

Through the FactoMineR package in R software, we performed

a PCA, which summarizes and visualizes the information in all our

data sets to describe multiple inter-correlated quantitative variables;

we also added a concentration ellipse around pre-infected and naïve

clusters from a mean point using the default confidence level (0.95)

underlying Gaussian distribution. We used PCA to extract the

essential variables to express the principal components (variables)

involved in differentiating the response to the BNT162b2 vaccine

between pre-infected and naïve individuals.
Statistical analysis

After the PCA analysis, we selected the normalized group

data, compared the most representative variables between the

different clusters, and did a Student’s t-test. Values with a

confidence interval of 95 and P-values ≤ 0.05 were considered

statistically significant.
Results

Antibodies production

Anti-RBD and anti-Spike antibodies were determined at the

three-time points, T1, T2, and T3. In pre-infected SARS-CoV-2

individuals, anti-RBD (4.32 ng/mL on average) and anti-Spike

(19.84 ng/mL antibodies were identified on average from the T1

moment of the first vaccination (Figures 1A, B). In the case of

pre-infected and naive individuals, the concentration of anti-

Spike and anti-RBD antibodies increased steadily during follow-

up, reaching an average concentration of 2930 ng/mL and 559.03

ng/mL, respectively at the last sampling. In the case of the anti-

Spike antibodies of the pre-infected individuals, 2930 ng/mL and

2325.1 ng/µl for the naïve individuals (Figure 1B); while the

average values reached for the anti-RBD antibodies were 334.921

ng/µL for the naive individuals and 559.03 ng/mL in the case of

pre-infected individuals (Figure 1A).
Principal component analysis (PCA)

To reduce the dimensionality of the multivariate and to

address the complexity of the immune response generated by

the vaccine in the population studied with minimal loss of

information, we constructed a PCA at each of the three

moments (T1, T2, and T3), using values of all the evaluated

subpopulations cells and the determination of cytokines
TABLE 1 General data of the study population.

Naïve Pre-infected

Number of individuals 45 20

Women(%) 67 65

Men (%) 33 35

average age (years) 42.2 (12) 39.9 (13)

minimum age (years) 24 29

maximum age(years) 57 58

Median age (years) 44 39

1st Quartile age (years) 37 36

3rd Quartile age (years) 49 49

Mean time from the onset of infection
to the first dose (months)

NA 6.6 (6)

Minimum time from onset of infection
to the first dose (months)

NA 1

Maximum time from onset of infection
to the first dose (months)

NA 10

Median time from onset of infection
to the first dose (months)

NA 7

1st Quartile time from onset of
infection to the first dose (months)

NA 3

3rd Quartile time from onset of
infection to the first dose (months)

NA 9
The study population is described, including the mean and, in parentheses, the ICR of the
quantitative variables.
NA, not applicable.
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(Figure 2). Considering that the size of the constructed ellipse

depends directly on the variance between the data, we can

assume that the differences in cell subpopulations and

cytokine concentration between pre-infected and naive

clusters at times T1 and T2 (Figures 2A, B) are less than the

variation that occurs between these two groups in

T3 (Figure 2C).
Frontiers in Immunology 04
Modified cell populations

The PCA allowed us to summarize and identify the most

critical parameters that differentiate the response generated by

the vaccine in pre-infection compared with naive individuals.

Of these principal components, the cell populations that

showed statistically significant differences are B lymphocytes,
A

B

C

FIGURE 2

Principal component analysis during vaccination. The study was applied during the three times evaluated [T1 (A), T2 (B), and T3 (C)]. Red
triangles represent pre-infected individuals (n = 20). Blue circles represent individuals without prior SARS-CoV-2 infection (n = 45). The more
prominent symbols represent each population’s centroid (mean), and the concentration ellipses represent the estimates according to a Gaussian
distribution at a 95% confidence level for each group.
A B

FIGURE 1

Production of Anti-RBD and Anti-Spike antibodies during vaccination. Individuals without previous infection (blue bars, n= 45) and with previous
SARS-CoV-2 infection (red bars, n = 20) showed an increase in the concentration (ng/mL) of Anti-RBD antibodies (A) throughout the three
times evaluated [T1 (1.084 and 4.12 mean), T2 (105.32 and 258.11 mean) and T3 (334.91 and 559.03 mean)]. Anti-Spike antibody concentration
(B) showed the same behavior [T1 (4.65 and 18.94 mean), T2 (664.71 and 1615.25 mean), and T3 (1819.72 and 2930.08 mean)]. (*p ≤ 0.05, **p ≤

0.01, ***p ≤ 0.001, two-sided t-test). vertical lines show the standard error.
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specifically the populations of CD19+ CCR7+, CD20+ and

CD20+ CCR7+ cells (Figure 3A). In addition, all these

populations were reduced in individuals with a previous

infection compared to naive individuals. Both results were

observed at the second vaccine dose (T2) and on day 14 after

the boost (T3) (Figures 3A, B), meanwhile on day zero, before

the application of the first dose (T1), no significant difference

was observed in these cell markers (data not shown), this could

be due to the variation in the time of infection and vaccination

in the population studied (Table 1).
Frontiers in Immunology 05
Modified cytokines

Of the principal components obtained from PCA that

correspond to cytokines, IL-10 (32.5 pg/mL from naïve and

29.3 pg/mL from pre-infected average concentration), IL-12p70

(28.9 pg/mL from naïve and 29.4 pg/mL from pre-infected

average concentration), and IL-6 (62.5 pg/mL from naïve and

64.0 pg/mL from pre-infected average concentration) showed

significant differences (p ≤ 0.005) (Figure 4), the concentration is

higher in individuals with an infection before vaccination. These
A

B

FIGURE 3

Increased cell populations in individuals without previous SARS-CoV-2 infection. Naive individuals (n = 45) showed higher counts of CD19+
CCR7+ (81.9 cells/µl mean), CD20+ (196.87 cells/µl mean) and CD20+ CCR7+ (79.95 cells/µl mean) cells during time 2 (A) compared to
previously infected individuals (n = 20) (52.85, 136.6 and 51.8 cells/µl mean respectively). During time 3 (B) naive individuals presented a higher
count of CD19+ CCR7+ (98 cells/µl on average) and CD20+ (181.04 cells/µl mean) populations compared to previously infected individuals
(57.5 and 116.8 cells/µl mean, respectively) (*p ≤ 0.05, two-sided t-test).
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differences are observable only before administering the

vaccine’s first dose.
Discussion

Consistently, with prior studies, we have found that

individuals with a previous infection show anti-Spike and anti-

RBD antibody titers before administering the first dose of the

vaccine, unlike individuals without the previous disease who

showed lower values (14, 15). Individuals in the first group

(previous infection) tested positive for SARS-CoV-2 before the

vaccine and generated a humoral immune response. After the

first dose, antibody production is higher in individuals with

previous immunity (Figure 1), consistent with findings

suggesting that a seropositive state causes a more rapid

antibody response to vaccination and reinforces the

justification for considering a one-dose vaccine regimen in this

population (14, 15).

Our monitoring of antibody titers throughout the

vaccination process (including the second dose and 14 days

later) showed that the response in individuals with immunity

before vaccination is more remarkable, as reported by previous

work (13, 16). In addition, individuals with prior infection

showed anti-Spike and anti-RBD antibody titers two-fold

higher than individuals without disease before vaccination
Frontiers in Immunology 06
(Figure 1), suggesting that immunity before immunization led

to a more intense response, not only after the first dose but

throughout the entire vaccine-induced response, providing more

robust and longer-lasting protection against infection (17).

Although this more intense response in the production of

antibodies has been previously reported by (14, 15, 18, 19), it is

clear that there may be more differences in the immune response

mounted by individuals with natural infection and without

previous natural disease, and some of them could even help to

explain the disparity in the humoral response. We evaluated a

panel of cytokines and cell populations in peripheral blood and

the follow-up to identify these differences. These data were

analyzed using a PCA which allowed us to explore and reduce

this large set of data, increasing the interpretability and

minimizing the loss of information; showing that the study

groups begin to show variance from T2, increasing in T3

(Figure 2), a result that coincides with reports where the

immune response due to the immunization process becomes

evident from day 14 (20).

The resulting principal components and their pattern

throughout the follow-up differed only by a couple of elements

between the two working groups; however, a higher

concentration of pre-vaccination of IL-6 IL-10 and IL12p70 in

naturally infected individuals (Figure 4). Although these

cytokines have not been previously analyzed in response to

vaccination, recent work has shown that these cytokines
FIGURE 4

Cytokines overexpressed at the beginning of vaccination in individuals with previous SARS-CoV-2 infection. At time 1 naive individuals presented
a lower concentration of cytokines IL-10 (11.08 pg/ml mean), IL-12p70 (14.4 pg/ml mean) and IL-6 (25.94 pg/ml mean) compared to individuals
with pre-vaccination SARS-CoV-2 infection (15.96, 20.50, and 38.36 cells/µl mean respectively) (*p ≤ 0.05, **p ≤ 0.01, two-sided t-test).
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increased their concentration very early during COVID-19 and

that their function could be related to the severity of the SARS-

CoV-2 infection (21–24).

In the case of IL-6, it is thought that this pro-inflammatory

cytokine could be part of an innate inflammatory response that

precedes an adaptive response in natural infection, including SARS-

CoV-2 infection (24, 25). Thus, the basal concentration is higher in

individuals with the previous disease (Figure 4), i.e., it could be

related to an earlier induction of an adaptive response, promoting a

rapid humoral reaction mediated by the differentiation and

proliferation of B cells (24), and therefore with the higher

concentration of antibodies in these same individuals. To analyze

this possible correlation, we performed a linear regression analysis

between IL-6 production in pre-infected individuals and antibody

production, finding a Correlation Coefficient with an R value lower

than 0.5 (Anti-RBD/IL-6 R = 0.006 and Anti-Spike/IL-6 R = 0.003).

Therefore, there is no direct correlation between I-L6 concentration,

and the antibody titer found, which is evidence that the increase of

IL-6 in the pre-infected individuals may be participating in the

increase of the antibody production seen. However, they do not

seem to be the only signals responsible for this process. Some other

cytokines, receptors, and signaling pathways must be involved.

IL-10 has recently been reported as a crucial biomarker of

severity and mortality in patients with COVID-19 disease (21,

26). The early expression of IL-10 could have an anti-

inflammatory or immunosuppressive effect, preventing the

hyper inflammation that characterizes SARS-CoV-2 infection

(24). However, it has been reported that when secreted by

regulatory T lymphocytes in patients with severe COVID-19

disease, it would decrease the immune response mediated by T

lymphocytes and even their depletion in peripheral blood (27–

30). Thus, in the current case of vaccinated individuals with

previous infection and high basal levels of IL-10 (Figure 4), this

cytokine could decrease the immune response mediated by T

lymphocytes to the vaccine but, on the other hand, polarized it to

a strong response mediated by B lymphocytes.

Although other studies have shown a differential effect at the

serological level of vaccination in individuals with a previous

infection by SARS-CoV-2 (13–16), few studies have addressed

the differences in vivo in the quantification of leukocyte

populations in peripheral blood.

In vitro evidence of a response mediated by T lymphocytes

in individuals with previous infection and the application of a

single dose of BNT162b2 is absent or minimal in individuals

without previous disease (31, 32). Our analysis considered the

identification of different subpopulations of T lymphocytes.

However, no significant differences were observed between the

two study groups throughout the follow-up. This result is

possibly due to the need to look for other subpopulations of T

cells, which may be analyzed by future research.

In the case of other cell populations, our work did identify

modifications in B lymphocyte populations in individuals with a

previous infection to vaccination, specifically a decrease in the
Frontiers in Immunology 07
count of B lymphocytes in peripheral blood that express the

chemokine receptor CCR7 (Figure 3).

The expression of CCR7 has been previously reported in

mature B cells on the way to differentiate into antibody-secreting

plasmablasts (33, 34). Therefore, the lower count of these cells in

peripheral blood could be related to their migration to the

secondary lymphoid organs. They differentiate into

plasmablasts and thus increase the concentration of antibodies,

which coincides with our finding of a higher average

concentration of individuals with the previous infection.

However, monitoring these memory plasma cells in peripheral

lymphoid organs is almost impossible due to the difficulty of

obtaining lymphoid samples from voluntary individuals. For this

reason, it could be confirmed using model organisms in

future works.

Our work is not the first to report a differential response of B

cells from individuals with previous infection and the use of the

vaccine (4, 12). However, it does coincide with reports where

infection induced a modification in the production of antibodies.

This result is possibly related to the activation of memory B

lymphocytes (12), which, as our findings suggest, could be

generated at the expense of a decrease in circulating mature B

lymphocytes (Figure 3).

More importantly, this increased immune response in

previously infected individuals could be related to the higher

baseline of specific cytokines before vaccination. An analysis

with a broader panel of cytokines, including those reported here

that participate in the natural response to SARS-CoV-2 infection

(24), might reveal a mechanism to explain the higher response

and possibly more protective in those suffering SARS-CoV-2

infection before the use of the vaccine.
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EJ, Huber-Lang M, et al. SARS-CoV-2/COVID-19: Evolving reality, global
response, knowledge gaps, and opportunities. Shock (Augusta Ga) (2020) 54:1–
22. doi: 10.1097/SHK.0000000000001565

2. ChakravartiA,UpadhyayS,BhararaT,BroorS.Currentunderstanding, knowledge
gapsandaperspectiveonthe futureofCOVID-19 infections:Asystematic review. Indian J
Med Microbiol (2020) 38:1–8. doi: 10.4103/ijmm.IJMM_20_138

3. Sokolowska M, Lukasik ZM, Agache I, Akdis CA, Akdis D, Akdis M, et al.
Immunology of COVID-19: Mechanisms, clinical outcome, diagnostics, and
perspectives–a report of the european academy of allergy and clinical
immunology (EAACI). Allergy Eur J Allergy Clin Immunol (2020) 75(10):2445–
76. doi: 10.1111/all.14462

4. Röltgen K, Boyd SD. Antibody and b cell responses to SARS-CoV-2 infection
and vaccination. Cell Host Microbe (2021) 29:1063–75. doi: 10.1016/
j.chom.2021.06.009

5. Wei J, Stoesser N, Matthews PC, Ayoubkhani D, Studley R, Bell I, et al.
Antibody responses to SARS-CoV-2 vaccines in 45,965 adults from the general
population of the united kingdom. Nat Microbiol (2021) 6(9):1140–9. doi: 10.1038/
s41564-021-00947-3

6. Rogliani P, Chetta A, Cazzola M, Calzetta L. Sars-cov-2 neutralizing
antibodies: A network meta-analysis across vaccines. Vaccines (2021) 9:227–44.
doi: 10.3390/vaccines9030227

7. Gozalbo-Rovira R, Gimenez E, Latorre V, Francés-Gómez C, Albert E, Buesa
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Avendaño-Borromeo. This is an open-access article distributed under the
terms of the Creative Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the
original publication in this journal is cited, in accordance with accepted
academic practice. No use, distribution or reproduction is permitted
which does not comply with these terms.
frontiersin.org

https://doi.org/10.1038/s41422-021-00541-6
https://doi.org/10.1080/22221751.2020.1770129
https://doi.org/10.1016/j.jaci.2020.05.008
https://doi.org/10.1016/j.jaci.2020.05.008
https://doi.org/10.1007/s00134-020-06065-8
https://doi.org/10.3389/fimmu.2021.771609
https://doi.org/10.3389/fimmu.2021.793142
https://doi.org/10.1172/jci.insight.139834
https://doi.org/10.1172/jci.insight.139834
https://doi.org/10.1002/cti2.1204
https://doi.org/10.1002/cti2.1204
https://doi.org/10.1038/s41467-020-17292-4
https://doi.org/10.1038/s41423-020-0401-3
https://doi.org/10.3389/fimmu.2020.00827
https://doi.org/10.1016/S0140-6736(21)00502-X
https://doi.org/10.1016/S0140-6736(21)00502-X
https://doi.org/10.1016/S2666-5247(21)00275-5
https://doi.org/10.1016/S2666-5247(21)00275-5
https://doi.org/10.1002/eji.201343907
https://doi.org/10.1182/blood-2011-03-343608
https://doi.org/10.1182/blood-2011-03-343608
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fimmu.2022.946770
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

	High baseline expression of IL-6 and IL-10 decreased CCR7 B cells in individuals with previous SARS-CoV-2 infection during BNT162b2 vaccination
	Introduction
	Materials and methods
	Study population and sampling
	Cytokine quantification by flow cytometry
	Cell population quantification by flow cytometry
	Anti-SARS-CoV-2 quantification by flow cytometry
	Principal component analysis (PCA)
	Statistical analysis

	Results
	Antibodies production
	Principal component analysis (PCA)
	Modified cell populations
	Modified cytokines

	Discussion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Supplementary material
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


