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ABSTRACT: In this work, we explore the possibility of
promoting the formation of ordered microphases by confinement
of colloids with competing interactions in ordered porous
materials. For that aim, we consider three families of porous
materials modeled as cubic primitive, diamond, and gyroid
bicontinuous phases. The structure of the confined colloids is
investigated by means of grand canonical Monte Carlo simulations
in thermodynamic conditions at which either a cluster crystal or a
cylindrical phase is stable in bulk. We find that by tuning the size of
the unit cell of these porous materials, numerous novel ordered
microphases can be produced, including cluster crystals arranged
into close packed and open lattices as well as nonparallel
cylindrical phases.

■ INTRODUCTION

Weakly charged colloidal particles can attract at short distances
due to depletion forces and repel at large distances due to
screened electrostatic charges.1,2 Colloidal systems with
competing interactions may form ordered microphases in
bulk such as crystal-cluster, hexagonal cylindrical, double
gyroid, and lamellar phases.3 Such structures are of interest,
both from the theoretical and technological points of view, for
example, in bioelectronics, sensor production, drug delivery,
and catalysis.4−6

Confinement offers an extra parameter to control the
behavior of complex colloidal systems. It has been demon-
strated in experiments7−10 and simulations11−16 that systems
with competing interactions under confinement exhibit new
thermodynamic as well as structural properties. When
confined, several novel structures that are not observed in
bulk may be created by tuning the shape of the confining
walls.8,10,12−14,17 An interesting approach to exploit all the
possibilities that confinement offers is template-assisted
fabrication. On the one hand, this technique has been used
to assemble colloidal particles on patterned solid surfaces to
create arrays of colloidal aggregates with potential applications
on photonics and electronics.7 On the other hand, it has made
use of diblock copolymer self-assembly as a tool to assist the
conceptual design of templates with lithographic purposes,18 to
direct the synthesis of nanoparticles while confined within a
carbon matrix,19 and to synthesize mesoporous materials.20

Typically, these nanofabrication techniques have been applied
to bidimensional or quasi-bidimensional systems such as
surfaces and thin films, unlike the templating processes within

three-dimensional confinement that are still to be explored in
more detail.
In this paper, we present an extensive simulation study of

colloidal particles with competing interactions confined into
periodic porous matrices. Interactions between colloidal
particles are modeled via a short-range attractive and long-
range repulsive potential (SALR) in the form of a square-well-
linear function.3 We investigate the effect of topology and
geometry of the porous material on the formation of ordered
structures composed of clusters of colloidal particles by varying
the chemical potential (μ) in the range where cluster crystal
and cylindrical phases are typically observed in bulk.3

In the first section, we present the model and the techniques
used for the simulation study. In the second section, we
present and analyze the results, and finally, in the third section,
we conclude and give some perspectives for future research.

■ THE MODEL AND THE SIMULATION METHOD

Colloidal particles with SALR interactions are modeled using
the square-well-linear potential, consisting of a hard core, an
attractive square-well, and a repulsive ramp
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Here, rij denotes the distance between particles i and j, λ is the
attraction range, κ is the repulsion range, ζ is the the repulsion
strength, σ is the diameter of the colloidal particles, and ε is the
depth of the energy well.21 These model parameters were
assigned the values ζ = 0.05, λ = 1.5, and κ = 4 because the
bulk phase diagram is known for this set of model parameters.3

We are convinced that the behavior of different systems with
competing interactions is universal and the specific details in
the interaction potential do not matter much. The same
qualitative phase behavior can be obtained for systems
modeled by the combination of Lennard-Jones and Yukawa
potentials with the appropriate choice of parameters. Each
choice of the parameters can be associated with some
experimental system. It is known that the attractive range of
the potential for colloidal systems22−24 is relatively small
compared with the attractive range in the potential studied by
us. We anticipate that even for such a small attractive range,
the behavior will be still the same. Nevertheless, colloidal
systems are not the only systems with competing interactions.
For example, block copolymers exhibit very similar phase
behavior. In the case of copolymers, there is much more
freedom to tune the attractive and repulsive ranges of the
interaction potential. Thus, for copolymers, it is easier to
construct the experimental systems with the interaction
potential studied by us. In this work, our main intention is
showing new physical phenomena that can be observed in such
systems.
We consider porous materials with structures of cubic

bicontinuous phases that can be formed from diblock
copolymers, lipid−water, and oil−water-surfactant mixtures.
Bicontinuous phases can be used as templates for production
of porous materials with ordered well-defined structures.
Mathematical models of porous materials with the structure
of simple cubic (primitive, P), diamond (D), and gyroid (G)
phases can be obtained by using the following expressions25
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where x, y, and z are the Cartesian coordinates, L is the length
of the simulation box edges, and n is the number of unit
elements that fit along one axis in the interval [0, L]. In Figure
1, we show the shape and topology of the porous materials
with the help of the isosurfaces plotted for the equations Ψα(x,
y, z) = 0, where α denotes P, D, and G. Note that the

structures of these regular porous materials can be charac-
terized by the number of approximately cylindrical pores that
meet in the same region. For the simple cubic structure, this
number is six, for diamond, this is four, and for the gyroid, this
is three.
The external potential resulting from the presence of the

porous material and acting on the colloidal particles is defined
as follows
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By locating the pore walls at the points of the isosurface
Ψα(x, y, z) = 0, the bicontinuous porous materials divide the
simulation box in two regions of identical volume: one of them
can be occupied by the adsorbed fluid particles, while the other
region represents the impenetrable porous material. We
calculate the number density as ρ = N/L3.
The total energy of the system is thus given by

U u r r( ) ( )
i

N

j i

N

ij
i

N

itot
1

1

SALR
1

∑ ∑ ∑= +
=

−

> = (6)

where N is the total number of colloidal particles.
The structure of the SALR fluid confined in these porous

materials was investigated by Monte Carlo simulations in the
grand canonical ensemble (μVT). All the magnitudes
(chemical potential, temperature, internal energy, density,
and distance) are reported using the values σ and ε as units of
distance and energy, respectively. Simulations were performed
at temperature T = 0.35 and at values of chemical potential in
the range −2.65 ≤ μ ≤ − 2.10. In these thermodynamic
conditions, the face-centered cubic (FCC) cluster crystal and
triangular cylindrical phases are stable in bulk.3 Periodic
boundary conditions are applied along the three directions of
space. The size of the pores can be modified by varying the
number of unit cells enclosed in the simulation box, i.e.,
assigning different integer values to n in eqs 2−4. For a given
value of L, the pore size adopts discreet values that depend on
the integer number n. Different system sizes were considered
within the range L = 20 − 25σ, varying also the number of unit
cells n. As our main interest is to promote the formation of
ordered cluster structures, results are only reported for those
combinations of L and n for which the confined fluid managed
to form that type of structure.
Different equilibration times were used in each case

depending, mainly, on the system size. Averages were taken
over 4 × 109 Monte Carlo steps, from which 4 × 105

independent configurations were taken for calculating the
local density. A Monte Carlo step is defined as a trial move that
may be a displacement, addition, or deletion of a particle.
The structure of the cluster crystals was identified by

measuring several structural properties. Density maps were
used to plot density isosurfaces that allow the visualization of

Figure 1. Structures of the porous materials. The surface describes the
boundary of the pores defined by eqs 2−4.
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the cluster shape and position. Clusters were also identified
using a cluster search algorithm,26 adopting the convention
that two particles are bonded and thus belong to the same
cluster if the distance between them is lower than the attractive
interaction range λσ. Besides calculating the particle−particle
radial distribution function, we also calculated the cluster−
cluster distribution function using the center of mass of the
clusters. This distribution function allows us to better observe
the superstructure formed by the clusters. Both distribution
functions were calculated up to a distance equal to half the
diagonal of the cubic simulation box, rather to half the edge
length as usual.27,28 Finally, we also calculate bond orienta-
tional order diagrams. These diagrams are calculated by
projecting the bonds formed by the clusters and its first
coordination shell on a unit sphere. The centers of mass of the
clusters were used for the evaluation of the BOOD, and the
first coordination shell was defined as those clusters that are at

a distance shorter than the first minimum in the cluster−
cluster distribution function. The unit sphere was then
projected in a plane using the area preserving Lambert
projection for easier visualization. Different crystal structures
are characterized by different BOOD, and thus, it is quite
common to use these diagrams in crystal structure identi-
fication.29

■ RESULTS

Our goal is to investigate how the process of self-assembly of
colloidal cluster crystals is influenced by confinement in
ordered porous materials. In particular, we are interested in
studying the influence of the topology, symmetry, and
geometry of the porous material on the formation of ordered
structures that are not encountered in bulk. For that aim, we
investigate the structures that adopted the confined fluids on
several models of porous materials with structures similar to

Figure 2. Structures of the SALR fluid confined in the porous material modeled as a primitive bicontinuous surface of edge length L = 20σ and
different pore sizes n. Simulations were performed in conditions at which the FCC cluster crystal is the stable phase in bulk (T = 0.35, μ = − 2.40).
The value of n is specified in the first column, the second column shows a snapshot of an equilibrium configuration, and the third column shows the
local density of the confined fluid. The gray surface corresponds to the isosurface with local density ρiso = 0.4, and the light blue surface corresponds
to the pore walls. The average densities are <ρ > = 0.1055(4),0.1199(9),0.1259(3) and the average numbers of particles are <N > =
844(3),959(7),1007(3) for n = 2,3,4, respectively. The fourth column shows the particle−particle and cluster−cluster pair correlation functions. In
the fifth column, the cluster crystal unit cells and Bond Orientational Order Diagram (BOOD), calculated using the centers of mass of the clusters,
are depicted.
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those of water channels in cubic primitive, diamond, and
gyroid phases.30

Confinement in the P Material. We start by presenting
the results for the simple cubic porous material (see Figure 1,
eq 2), which is the one with the simplest network of pores
considered in this work. Its porous structure can be described
as a collection of approximately spherical cavities arranged in a
simple cubic lattice, which are connected by necks somewhat
narrower than the spherical cavities. The sizes of the cavities
and necks can be modified by changing the number of unit
cells, n, which are accommodated in a cubic box of constant
edge length L. The diameter of spherical cavities is given by the
lattice constant Dsphere = L/n, whereas that of the cross section
of the necks can be approximated as Dneck ≈ 3/5Dsphere. In our
study, we generated three porous structures by placing n = 2, 3,
and 4 unit cells in a box of length L = 20σ (i.e., 5 times the
range of the intermolecular potential, 4σ). The diameters of
the spherical cavities in these structures are Dsphere/σ = 10.0,
6.667, and 5.0, whereas the diameters of the cross section of
the connecting necks are Dneck/σ = 6.0, 4.0, and 3.0,
respectively. For these three porous structures, we investigated
the behavior of the confined SALR fluid at μ = − 2.40 and T =
0.35. In these conditions, the FCC cluster crystal is the stable
phase in bulk.3

As can be seen in Figure 2, the size and distance between
pores play a significant role in the arrangement of the confined
SALR fluid. In this figure, we show two different views of the
structures formed, as well as the particle−particle and cluster−
cluster distribution function and BOOD used for identification
of the unit lattice, also shown. In the three cases, SALR
particles form spherical clusters (as in bulk), but the spatial
distribution of the clusters changes depending on the size and
distance between pores. Interestingly, the cluster size does not
change much with n. In the three cases, the cluster radius is r0
≈ 1.92σ (measured from local density plots at ρiso = 0.4). This
means that in these porous structures, the cluster size is mainly
determined by the intermolecular potential rather than from
the pore geometry.
In the system with the largest cavities (n = 2), clusters sit

preferentially at the necks. The distance between nearest
spherical cavities is too large (10σ) so that placing the clusters
in the spherical cavities would lead to a low density phase. It is
possible to obtain a better packed ordered structure occupying
instead the necks, for which the distance between nearest
neighbor sites is 7.071σ (Figure 2). In this structure,
designated as the edge-centered-cubic crystal (ECC), clusters
are located at the midpoints of the bonds of a simple cubic
lattice. The ECC has eight neighbors in the first coordination
shell at a distance L n L n( 2 /2) / 0.707 /= and six neighbors
in the second shell at distance L/n. The BOOD calculated up
to the first coordination shell exhibits 12 bright peaks, instead
of eight, as one would expect from the number of neighbors in
the first coordination shell. The reason is that there are two
local orientations of nearest neighbors in this structure.
For slightly smaller pores, n = 3, the clusters are located

inside the spherical cavities (exactly one cluster in each cavity)
and form a simple cubic crystal (SC). In this case, the distance
between necks (4.71σ) is too small to avoid repulsion between
neighbor clusters located at these sites. The distance between
spherical cavities (6.67σ), instead, allows the system to avoid
repulsion between nearest clusters and also a fairly efficient
packing. The six bright regions in the BOOD are fully
compatible with the first coordination shell of the SC lattice.

The SC cluster crystal is unstable in bulk for the model
considered in this work; however, our results indicate that it
can be stabilized inside a porous material. Besides the
calculations for L = 20 and n = 3, we checked the finite size
effects repeating the simulations for two additional cases: L =
13.33, n = 2 and L = 26.677, n = 4. With this choice of
parameters, we maintain the same size of the periodic element
of the porous material. We have obtained in all three cases the
spherical clusters arranged in the same way. It allows us to
conclude that the size of the system does not influence the
ordering of the clusters in the porous material.
If the size of the pores is further reduced by setting n = 4, the

clusters are still located inside the spherical cavities but not all
of them are occupied. The distance between the centers of the
cavities (5σ) becomes too short to enable full occupation.
Thus, only alternate spherical cavities host a cluster, forming a
face-centered-cubic (FCC) lattice, which is the stable phase in
bulk.3 The distance between nearest filled spherical cavities in
this case is 8.66σ, large enough to avoid a large repulsion
between nearest neighbor clusters. The BOOD shows 12
bright regions distributed on the sphere in the way expected
for an FCC lattice.29 Actually, the BOODs of the ECC and the
FCC look quite similar, which is due to the structural similarity
between these two lattices. The structure of the FCC-shifted
half lattice constant resembles the ECC’s but with an
additional cluster in the center of the unit cell. Note that the
FCC cluster crystal is the one exhibiting a cleaner BOOD, with
a lower probability of finding neighbor clusters outside the
expected orientation in the FCC lattice. We attribute this to
the fact that, whereas in the two previous cases, the occupied
sites were directly connected to each other, this is no longer
true in this porous structure.
The cluster−cluster pair distributions in these three

structures (ECC, SC, and FCC) are somewhat similar, with
the first two peaks appearing at similar distances. This is
expected because the ratio between distances of the first and
second coordination shells is the same in the three structures
(1/ 2 ). The difference between them relies on the number of
particles in these two first shells: the ECC has eight first
neighbors and six second neighbors, the SC has six first
neighbors and twelve second neighbors, and the FCC has
twelve first neighbors and six second neighbors. This is
consistent with our results, with the FCC exhibiting the
stronger first peak and SC exhibiting the weaker first peak.
Another common feature of the three cluster crystals is that
peaks in the cluster−cluster pair distribution function,
especially the first one, are quite broad, indicating that the
clusters have quite the freedom to move within the cavities in
which they are hosted.
Finally, it is interesting to note that the particle−particle pair

correlation function of the fluid is fairly similar for all the
crystals, which means that the local structure of the fluid is the
same in all cases.
Next, we investigated the structures formed at the same

temperature (T = 0.35) but at a higher chemical potential, μ =
− 2.10, at which a hexagonal phase of cylindrical clusters is
stable in bulk.3 The results of the simulations are presented in
Figure 3. In these conditions, the confined SALR fluid forms
both cylindrical and spherical clusters despite the fact that
cluster phases are not stable in bulk.
For the size of the pores set by n = 3, only cylindrical clusters

are formed. These cylinders are arranged into layers, in which
cylindrical clusters are parallel but are stacked randomly so that
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adjacent layers might be oriented parallel or perpendicular to
each other (see Figure 3). With the range of the pair potential
equal to 4σ, we may expect that interactions between the
molecules belonging to adjacent cylindrical clusters (located in
channels separated by a distance of L/n = 6.667σ) are not
significant. Note that the equilibrium separation distance
between nearest cylinders in the bulk triangular phase is
appreciably smaller (Leq = 6.20σ) than that in the confined
structure. Configurations with cylinders oriented parallel and
perpendicular to each other in adjacent layers seem to have
comparable stability. Both the average energy and density are
almost identical in any of those configurations shown in Figure
3. For n = 3, the average energy and density are (1) <u> = −
3.2949 and <ρ> = 0.1836 and (2) <u> = − 3.2925 and <ρ> =
0.1842. The radius of the cylindrical clusters is r0 ≈ 1.68σ, very
close to the bulk equilibrium radius of the cylindrical phase
under the same thermodynamic conditions req = 1.70σ.
For the size of the pores defined by n = 4, the confined fluid

does no longer form cylindrical clusters as in bulk. Instead, we
observe the nucleation of spherical clusters of radius r0 ≈
2.17σ, slightly larger than the radius of the clusters found at
lower chemical potential in the primitive porous material, at
the three considered porous sizes (Figure 2). The size of the
bottlenecks that link the cavities of the porous network (Dneck

≈ 3σ) is not large enough to host straight cylinders of radius
comparable to those obtained for n = 3. Thus, cylinders could
only fit in these channels if they exhibited periodic narrowings
at the necks. In this situation, the confined fluid prefers to
organize again into nearly spherical clusters, arranged in the
FCC lattice similar to the behavior observed at a lower

Figure 3. Structures of the SALR fluid confined in the primitive
porous material in conditions at which the hexagonal arrangement of
cylindrical clusters is the stable phase in bulk (μ = − 2.10 and T =
0.35). The length of the simulation box edge is L = 20σ. The gray
surface corresponds to the isosurface with local density ρiso = 0.4, and
the light blue surface corresponds to the pore walls. The average
densities are <ρ > = 0.1669(4),0.1836(8),0.1842(8) and the average
numbers of particles are <N > = 1335(3),1469(7),1474(6) for n =
4,3, respectively. Three views are shown for each structure. For n = 4,
an FCC cluster crystal is obtained.

Figure 4. Structures of a confined SALR fluid in porous materials with a diamond structure at T = 0.35 and μ = − 2.40, conditions at which the
FCC cluster crystal is the stable phase in bulk. The length of the simulation box edge is L = 20σ. In the second column, a snapshot of an
equilibrium configuration is shown, and in the third one, the local density is presented. The gray surface corresponds to the isosurface with local
density ρiso = 0.4, and the light blue surface correspond to the pore walls. The average densities are <ρ > = 0.0884(8),0.1301(3) and the average
numbers of particles are <N > = 707(7),1041(3) for n = 1,2, respectively. The fourth column shows the particle−particle and cluster−cluster pair
correlation functions, whereas the fifth column shows the unit cell and BOOD calculated using the clusters’ centers of mass.
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chemical potential. The fact that the FCC crystal is able to
survive up to higher chemical potentials than in bulk is
evidence of the high stability of this crystal but also of the
phase diagram shift experienced by fluids under confine-
ment.15,16

Confinement in the D Material. Next, we focus on the
diamond porous structure. Let us start by discussing the
assembly behavior for pore sizes obtained by setting L = 20σ
and varying the number of unit cells n. Simulations were
performed at T = 0.35 and μ = − 2.40, i.e., the same
thermodynamic conditions used in the first study with the
primitive structure and for which the FCC cluster crystal is the
stable phase in bulk. In this case, ordered cluster structures
were obtained for the porous materials with n = 1 and 2 (see
Figure 4). For n = 1, the spherical clusters are located at the
midpoint of the pores that connect adjacent diamond lattice
sites, with an analogous behavior to that found for the
primitive porous matrix with L = 20 and n = 2. In the diamond
matrix, the distance between the nearest lattice sites is
D L n L n3 /4 / 8.667 /sphere = × = × and that between the
m i d p o i n t s o f t h e c o n n e c t i n g p o r e s i s
D L n L n2 /4 / 7.071 /neck = × = × . For n = 1, the distance
between nearest connecting pores allows the system to avoid
repulsion between clusters and a more efficient packing than
occupying the lattice nodes. As a consequence, the clusters
organize into the pyrochlore crystal structure, which results
from full occupation of the pores connecting the diamond
lattice sites. This crystal structure has been previously observed
in silicate compounds (high cristobalite), in triblock Janus
particles,31,32 and in a repulsive square shoulder isotropic
model.33

For n = 2, the distance between the diamond lattice sites
becomes Dsphere = 4.33σ and that between the pores connecting
these sites is Dneck = 3.52σ. Both distances are too small to
avoid repulsion between clusters hosted in either of these two
types of sites. The solution that the system finds is to occupy
the second neighbor cavities of the diamond pore structure
separated by a distance L n2 /2 / 7.071× = , forming an
FCC structure. Note that a diamond lattice can also be viewed
as two interpenetrated FCC lattices displaced a distance (L/
n)/4 along the diagonal of the cube. The resulting FCC lattice

is obtained by occupying only one of these two interpenetrated
lattices.
The pair distribution functions of these two cluster crystals

are shown in Figure 4. The particle−particle distribution
functions are very similar for the two values of n and for the
cluster crystal obtained with the primitive porous system.
However, the cluster−cluster distribution functions are clearly
different, evidencing the different structural arrangement of the
clusters. The pyrochlore structure has six neighbors in the first
coordination shell and twelve on the second one, with the
second shell appearing at a distance 3/ 3 larger than the first
shell in a perfect lattice. This is consistent with the cluster−
cluster distribution function whose first and second peaks
appear at distances 7σ and 12σ, approximately. The cluster−
cluster pair distribution of the fluid confined in the material
with n = 2 instead shows peaks at distances 7σ and 10σ, with a
ratio between the two distances close to the value 2 ,
corresponding to a perfect FCC lattice. The BOOD diagram
displays 12 bright spots in both cases that are blurry in the
pyrochlore lattice and quite sharp in the FCC lattice. The
reason why there are 12 bright spots in the BOOD diagram of
the pyrochlore structure is again because, although there are six
neighbors in the first coordination shell, they can be found in
two different orientations in the crystal. Note that the FCC
structure found in the primitive porous material also exhibited
sharper peaks, as compared to the other formed cluster
crystals. As in that case, this can be reflecting that not only the
FCC cluster crystal is the stable phase in bulk but also that the
occupied sites in the porous materials when the FCC is formed
are not connected directly to each other.
At this point, we found it somewhat surprising that the

SALR fluid did not manage to assemble into a diamond cluster
crystal when confined in a porous material with a diamond
structure. One would expect that this porous matrix would act
as a mold to promote the formation of the diamond cluster
crystal. However, the confined fluid prefers to organize into
other ordered structures. One possible reason for not obtaining
the diamond cluster crystal is that the dimensions of the
porous material were not chosen appropriately to favor its
formation. Reviewing the cluster crystals obtained so far for the
P and D lattices in thermodynamic conditions at which the
FCC cluster crystal is the stable phase in bulk, one can identify

Figure 5. Structure of a confined SALR fluid in a porous material with a diamond structure at T = 0.35 and μ = − 2.48, conditions at which the
FCC cluster crystal is the stable phase in bulk. The length of the simulation box edge, L = 28σ with n = 2, was chosen to promote the formation of a
diamond cluster crystal. In the second column, a snapshot of an equilibrium configuration is shown, and in the third one, the local density is
presented. The gray surface corresponds to the isosurface with local density ρiso = 0.4, and the light blue surface corresponds to the pore walls. The
average density is <ρ > = 0.08386(146), and the average number of particles is <N > = 1840(32). The fourth column shows the particle−particle
and cluster−cluster pair correlation functions, whereas the fifth column shows the unit cell and BOOD calculated using the clusters’ centers of
mass.
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two common features in these examples: the spherical clusters
exhibit roughly the same size (with a diameter of about 1.92σ
measured from the isosurface of density ρiso = 0.4), and the
interdistance between nearest clusters is within the interval
6.7−8.6σ that guarantees that repulsion between clusters is
small. The distance between lattice points in the system with n
= 1 falls within the upper limit of this range, but a higher
density structure is obtained by occupying the midpoints of the
pores connecting adjacent diamond lattice sites. On the other
hand, in the porous material obtained with n = 2, the distance
between lattice points becomes too short so that repulsion
between clusters located at those sites is expected to be
significant. Thus, we decided to change the size of the unit cell
by modifying the length of the box edge within the interval L =
13 − 17σ, keeping the value of n = 1 constant. The distance
between nearest diamond sites in porous systems with these
dimensions ranges from 5.6 to 7.36σ, and that between the
midpoints of nearest connecting pores goes from 4.95 to 6.01σ.
These values are, in principle, compatible with the formation of
the diamond cluster crystal, and simulations confirmed its
appearance for systems with L = 13.5−16 and n = 1. Once we
identified the appropriate unit cell dimensions, we doubled the
system size (with edge length 2L and setting n = 2, so that the
unit cell dimensions remain constant) to see if the results were
affected by finite size effects. As can be seen in Figure 5, in this
bigger system, the fluid organizes on average into a diamond
crystal, but the clusters are quite mobile and often adopt fairly
elongated shapes. Still, the diamond lattice is clearly
distinguished in the density maps, and the measured
cluster−cluster pair distribution function and BOOD are
compatible with those of diamond. Diamond has four particles
in the first coordination shell at distance L n3 /4 / and twelve
in the second shell at L n1/ 2 / . The BOOD of perfect
diamond exhibits eight bright peaks as a result of two possible
orientations of the first shell in the crystal. In our case, those
eight peaks are visible but are connected to each other by
regions of fairly large probability that evidence the high
mobility of the clusters. Clusters often leave the lattice node
sites, occupying also the connecting pores of the D material. A
possible reason why the diamond cluster crystal exhibits fewer
defects in the smaller system containing one single unit cell is
that this small system might be overconstrained, artificially
favoring the formation of the diamond crystal. It seems
plausible that the more disordered structure found in the larger
system exhibits a higher entropy but similar energy and
packing as “perfect” diamond. We speculate that the entropy
gain of partly disordered structures might be less significant in
small periodic systems but becomes higher once that clusters
can adopt different configurations in adjacent unit cells. It is
also worth noting that, different from the primitive porous
material in which cavities at the lattice sites were nearly
spherical, in the diamond bicontinuous porous materials, the
lattice nodes are delimited by surface folds that might favor
more disordered structures.
Diamond-like structures have been obtained before in

colloidal systems by designing specific isotropic potentials
with competing interactions34,35 and more recently using DNA
strands to direct the self-assembly of such structures aiming the
development of materials with applications in photonics.36

However, the structures obtained in the abovementioned
works are simple crystals in the sense that each lattice position

is occupied by an individual colloidal particle unlike the
structure we present here that is composed of clusters.
Next, we investigated the assembly behavior in the diamond

porous structure at the same temperature but at a higher
chemical potential, corresponding to conditions at which the
cylindrical phase is the stable state in bulk. Intuitively, one
would expect that the confined fluid can still form a triangular
arrangement of cylindrical clusters running through the pores
parallel to the face diagonals of the cube ([110] direction).
This is indeed what we found in a porous matrix built by
setting L = 20σ and n = 2 at a chemical potential μ = − 2.175
(see Figure 6). The distance between nearest cylinders is now

imposed both by the interaction potential and by the confining
material, and in this particular case, the average distance
between nearest cylinders is L n2 /2 / 7.07σ× = . Cylinders
are no longer straight as in bulk; instead, they adopt a
sinusoidal shape to adjust to the confining geometry. This
cylindrical structure appears to be degenerated with other
structures in which cylinders in successive layers are randomly
oriented along the possible directions allowed by the confining
material. In the example shown in Figure 6, cylinders are
parallel to the [110] and [101] directions in alternate layers so
that cylinders belonging to two adjacent layers form an angle of
π/3. Both structures exhibit virtually the same energy (<u> =
−3.30) and the same density (<ρ> = 0.188 in the structure in
which all the cylinder axes are parallel to each other versus <ρ>
= 0.186 when cylinders arrange in layers in which cylinders
rotate by an angle π/3). The estimated radius of the cylindrical
clusters in both examples is r0 = 1.95, which is quite similar to
that found in the primitive porous material (see Figure 3).

Confinement in the G Material. Finally, we consider
gyroid porous materials, which are the ones with more
complex structures studied in this work. The gyroid porous
matrix exhibits channels running along the diagonal of the cube
([111] direction) and along the x-axis ([100] direction), which
are interconnected by additional segments so that three
channels meet at each junction (8 junctions per unit cell, and 8
× 3/2 = 12 connecting segments). The junctions and
connecting segments form octagonal helical structures of
alternating chirality that are interconnected by porous
segments. The porous structures were built by setting the

Figure 6. Structures of the confined SALR fluid in porous materials
with a diamond structure in thermodynamic conditions at which the
hexagonal cylindrical phase is stable in bulk, T = 0.35 and μ = − 2.175
and −2.20 as indicated. The length of the simulation box edge is L =
20σ and contains two unit cells of the porous material (n = 2). The
gray surface corresponds to the isosurface with local density ρiso = 0.4,
and the light blue surface correspond to the pore walls. The average
densities are <ρ > = 0.1877(5),0.1861(4), and the average numbers of
particles are <N > = 1502(5),1488(7). Four views of the structures
are presented.
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edge length to L = 24σ. In thermodynamic conditions at which
the FCC cluster crystal is the stable phase in bulk (namely, T =
0.35 and μ = − 2.46), we found ordered cluster phases for the
porous matrices with n = 2 and n = 3. In the case of n = 2, the
clusters are arranged into an ordered structure whose unit cell
contains four lattice positions (Figure 7). The clusters are
located at the three-channel junctions, but only half the
junctions are occupied. After identification of the unit cell with
the aid of the density maps of the adsorbed fluid, using the
FindSym software,37,38 we found that this structure exhibits
P4132 point group symmetry (space group 213 in crystallo-
graphic tables). In this structure, each cluster is surrounded by
other six clusters in the first coordination shell at an average
distance of roughly 7.35σ and 12 clusters in the second shell at
11.2σ, as revealed by the two first maxima in the cluster−
cluster distribution function. The BOOD diagram shows that
the structure is orientally ordered, with a very distinctive
signature formed by 24 bright spots arranged in clover-shaped
groups of three. The emergence of so many bright spots in the
BOOD is again caused by the fact that the first coordination
shell of each atom in the unit cell is oriented differently from
each other.
For the system with n = 3, the clusters are arranged forming

a BCC lattice. Clusters are now located at the connecting pores
between junctions, but only two per gyroid unit cell are
occupied (one per turn of each octagonal helical structure).
The average distance between nearest neighbor clusters in this
case is about 6.9σ, large enough to avoid significant repulsion
between nearest clusters, similar to the other ordered cluster
structures found in the P and D porous materials. The second

coordination shell that contains six neighbors is located at
about 8σ. This is reflected in the cluster−cluster distribution
function that shows a rather broad double peak with maxima
around these two distances. The BOOD diagram measured
with those clusters whose centers of mass are at a distance
shorter than the first minimum in the cluster−cluster
distribution function exhibits 14 bright peaks, as it is typical
of BCC materials.29 Note that there is a small but non-
negligible probability of finding the neighbors at orientations
outside these brightest regions, evidencing that clusters are
quite mobile in this structure.
At the same temperature and at a higher chemical potential

(T = 0.35, μ = − 2.25), at which a triangular lattice of
cylindrical clusters is stable in bulk, we could only obtain
ordered structures for the porous material with n = 3. In this
case, the confined fluid organizes into approximately cylindrical
clusters arranged into a triangular lattice with the cylinders
running along the cube diagonal as shown in Figure 8. The
cylinders are not completely straight, again showing a
sinusoidal shape to adapt to the pore geometry. The average
distance between nearest cylinders is imposed by the confining
material. Six cylinders are formed along the cube diagonal so
that the dis tance between nearest cy l inders is

L3 /6 6.93σ× = . The estimated equilibrium radius is r0 =
2.05σ, of the same order of the cylindrical phases found in the
other confining materials.

The Effect of Temperature. Once we have identified the
stable ordered structures in the different porous materials, we
wonder whether these microphases become locally ordered at
low temperature. To answer this question, we perform

Figure 7. Structures of SALR colloidal particles confined in gyroid porous materials in thermodynamic conditions at which the FCC cluster crystal
is the stable phase in bulk (T = 0.35 and μ = − 2.46). The length of the simulation box edge was set to L = 24σ. In the second column, a snapshot
of an equilibrium configuration is shown, and the average local density is presented in the third column. The gray surface corresponds to the
isosurface with local density ρiso = 0.4, and the light blue surface correspond to the pore walls. The average densities are <ρ > =
0.08743(109),0.1148(6) and the average numbers of particles are <N > = 1209(15),1587(7) for n = 2,3, respectively. The fourth column shows the
particle−particle and cluster−cluster pair correlation functions, and the fifth column shows the unit cell and BOOD diagram calculated up to first
minimum in the cluster−cluster distribution function.
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simulations in the grand canonical ensemble at the same
chemical potential at which cluster crystals were found to be
stable in the previous section, while the temperature is varied
in the range 0.25 ≤ T ≤ 0.55. Note that all the cluster crystal
phases are expected to be stable at low temperature, but the
range of stability shifts to lower chemical potential as
temperature decreases. However, internal ordering of the
clusters might only occur at low temperature for the upper
limit of densities for which cluster crystals are stable. We try to
reach those thermodynamic conditions by performing a
quench at constant chemical potential.
As expected, at low temperatures, the amount of adsorbed

particles increases. However, in many cases, this leads to the
formation of elongated clusters that grow through the cavities
of the material linking the lattice nodes of the original
structure. On the other hand, as the temperature is increased,
the desorption is favored and the cluster size decreases until
the structure melts into a cluster-fluid. However, as can be seen
in Figure 9, there are differences between the different cluster

crystals. Rather unsurprisingly, the FCC is the most stable
phase, whereas those stabilized in the G material are the less
stable.
Interestingly, the FCC cluster crystal formed in the D

material (n = 2) is less stable than the one templated with the
P matrix (n = 4). In the P material, the clusters are located at
alternate spherical cavities that act as strong nucleation sites.
Additionally, the necks connecting the cavities are too narrow
(Dneck/σ ≈ 3.0) for the clusters to grow through them. Thus,
the system can achieve a better packing by rearrangement of
the clusters in the spherical cavities. On the contrary, in the D

material, cavities at the lattice nodes are connected along the
face diagonals of the simulation box by pores of comparable
dimension to the lattice cavities, favoring that adjacent clusters
can merge as temperature decreases (thus increasing density).
The fact that the FCC in the P material is able to survive at

T = 0.25 by improving the packing inside the cavities must be
accompanied by a rearrangement of the particles within the
clusters. In Figure 10, we present the results of the effect of the

temperature on such a structure. From the density maps, we
observe that as the temperature increases, the size of the
clusters decreases, as expected. On the contrary, at low
temperature, the size increases, reflecting the higher density.
Interestingly, particles within the clusters become often
ordered forming a stacking of triangular layers. The building
up of intracluster ordering is reflected in the particle−particle
distribution function at T = 0.25. The two first peaks are
sharper, and the third and fourth peaks are now split in
additional smaller but clearly visible peaks (see Figure 10). The
presence of crystalline-like microphases has already been
reported previously,39−41 and it seems to be a common feature
of colloidal systems interacting via potentials with a clear
minimum in the attractive range. Since the square-well-linear
potential has a flat attractive interaction, solid-like microphases
are not often found, although it might appear at very low
temperature.2,3,21 Our results show that confinement can be
used to promote local ordering in microphases.

■ SUMMARY AND CONCLUSIONS
In this work, we investigated the possibility of using porous
materials with ordered structures as three-dimensional
templates to direct the self-assembly of colloidal fluids with
competing interactions into ordered microphase structures that
might be potentially useful in nanotechnology. Using grand
canonical Monte Carlo simulations, we investigated the
assembly of an SALR fluid in porous materials with primitive,

Figure 8. Structure of SALR particles confined in gyroidal pores built
by setting L = 24σ and n = 3 in thermodynamic conditions at which
the cylindrical phase is the stable state in bulk (T = 0.35, μ = − 2.25).
The gray surface corresponds to the isosurface with local density ρiso =
0.4, and the light blue surface correspond to the pore walls. The
average density is <ρ > = 0.1817(4), and the average number of
particles is <N > = 2511(5). Four views of the structures are
presented.

Figure 9. Temperature stability scheme of the cluster crystals
obtained under confinement in the porous materials. The states where
the structure is not stable are represented with red squares, and the
states of stability are represented with blue circles. The structures are
ordered from the most stable (bottom) to the less stable(top).

Figure 10. Effect of temperature on the FCC cluster crystal obtained
for the material P with n = 4. The walls of the porous material are not
shown to better visualize the effect of the temperature on the local
structure of the system.The top panels show the local density maps,
and the isosurfaces with ρiso = 0.4 are plotted. The central panels show
equilibrium snapshots. The bottom panel shows the pair correlation
functions of the colloidal particles. The average density is <ρ > =
0.1960(26),0.1259(3),0.0767(27) and the average number of
particles is <N > = 1568(21),1007(3),613(22) for the temperature
T = 0.25,0.35,0.45, respectively.
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diamond, and gyroid structures, using the pore size as another
independent variable.
We found that indeed these porous materials can be used to

control the structure of the adsorbed fluid. For a given porous
structure and at chemical potentials at which the cluster crystal
is the stable phase in bulk, different cluster crystals can be
obtained by varying the size of the porous unit cell so that both
the pore size and distance between pores change. Besides
obtaining cluster crystals with the same structure as the
confining material (in the case of P and D porous materials,
albeit with some defects in the latter case), we found that it is
also possible to obtain cluster crystals with a different structure
by tuning the unit cell of the porous material. If the unit cell is
so big that the distance between nearest lattice sites becomes
too large compared to the interaction range, cluster crystals
form by occupying the connecting segments between the
lattice sites. On the contrary, if the porous unit cell is too small
compared with the interaction range, cluster crystals form by
occupying a sublattice for which the nearest neighbor sites
achieve a better compromise between avoiding repulsion
interactions and efficient packing. Interestingly, we were able
to stabilize open structures that are often difficult to achieve
using isotropic units but that are particularly appealing for
applications.
By setting a higher chemical potential, at which the

cylindrical phase is stable in bulk, the absorbed fluid can also
adopt different configurations from that found in bulk. Besides
having certain control over the distance between cylinders, it is
also possible to obtain stacking of layers of cylinders with
different orientations.
Despite considerable effort, ordered cluster phases formed

by colloids with competing interactions have not been
experimentally observed.42,43 Our results suggest that a
possible route to obtain such ordered microphases is to use
three-dimensional porous materials as templates. The reduced
configurational space might possibly promote the formation of
ordered microphases with less interference from dynamically
arrested states as in bulk.44−47 The regular porous structure
enhances the formation, ordering, and stability of clusters. We
may speculate that the time necessary to form a well-ordered
cluster crystal may depend on the sizes of the pores and their
connectivity. The diffusion of the molecules in confined
geometry may be slower than that in bulk. It may result in
kinetically arrested states, but once the order structure is
formed, it should be more stable than the ordered structure in
bulk.
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confinement on the structure of colloidal systems with competing
interactions. Soft Matter 2020, 16, 718−727.
(14) Shi, A.-C.; Li, B. Self-assembly of diblock copolymers under
confinement. Soft Matter 2013, 9, 1398−1413.
(15) Bores, C.; Almarza, N. G.; Lomba, E.; Kahl, G. Inclusions of a
two dimensional fluid with competing interactions in a disordered,
porous matrix. J. Phys.: Condens. Matter 2015, 27, 194127.
(16) Qiao, C. Z.; Zhao, S. L.; Liu, H. L.; Dong, W. Connect the
Thermodynamics of Bulk and Confined Fluids: Confinement-
Adsorption Scaling. Langmuir 2019, 35, 3840−3847.
(17) Lima, E. O.; Pereira, P. C. N.; Löwen, H.; Apolinario, S. W. S.
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