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Abstract
Background: Heme and non-heme iron from diet, and recycled iron from hemoglobin are important products of the 
synthesis of iron-containing molecules. In excess, iron is potentially toxic because it can produce reactive oxygen 
species through the Fenton reaction. Humans can absorb, transport, store, and recycle iron without an excretory 
system to remove excess iron. Two candidate heme transporters and two iron transporters have been reported thus far. 
Heme incorporated into cells is degraded by heme oxygenases (HOs), and the iron product is reutilized by the body. To 
specify the processes of heme uptake and degradation, and the reutilization of iron, we determined the subcellular 
localizations of these transporters and HOs.

Results: In this study, we analyzed the subcellular localizations of 2 isoenzymes of HOs, 4 isoforms of divalent metal 
transporter 1 (DMT1), and 2 candidate heme transporters--heme carrier protein 1 (HCP1) and heme responsive gene-1 
(HRG-1)--in non-polarized and polarized cells. In non-polarized cells, HCP1, HRG-1, and DMT1A-I are located in the 
plasma membrane. In polarized cells, they show distinct localizations: HCP1 and DMT1A-I are located in the apical 
membrane, whereas HRG-1 is located in the basolateral membrane and lysosome. 16Leu at DMT1A-I N-terminal 
cytosolic domain was found to be crucial for plasma membrane localization. HOs are located in smooth endoplasmic 
reticulum and colocalize with NADPH-cytochrome P450 reductase.

Conclusions: HCP1 and DMT1A-I are localized to the apical membrane, and HRG-1 to the basolateral membrane and 
lysosome. These findings suggest that HCP1 and DMT1A-I have functions in the uptake of dietary heme and non-heme 
iron. HRG-1 can transport endocytosed heme from the lysosome into the cytosol. These localization studies support a 
model in which cytosolic heme can be degraded by HOs, and the resulting iron is exported into tissue fluids via the 
iron transporter ferroportin 1, which is expressed in the basolateral membrane in enterocytes or in the plasma 
membrane in macrophages. The liberated iron is transported by transferrin and reutilized for hemoglobin synthesis in 
the erythroid system.

Background
Iron has an essential function in mammalian metabolism
because of the ease with which it can gain and lose elec-
trons. It is involved in biological functions as a metal
cofactor for many proteins and enzymes that are used in
oxygen transport (hemoglobin and myoglobin), electron
transfer (mitochondrial cytochrome), and DNA synthesis
(ribonucleotide reductase). Thus, iron is indispensable
for eukaryotes and prokaryotes; however, it is also poten-
tially toxic because of the generation of the superoxide
anion and hydroxyl radical. These oxygen metabolites

readily react with biological molecules, including pro-
teins, lipids, and DNA. Iron overload diseases owing to
genetic misregulation of iron uptake are referred to as
primary iron overload disease or hereditary hemochro-
matosis [1]. On the other hand, an acquired anemia that
is associated with iron deficiency is referred to as anemia
of inflammation or anemia of chronic disease [2]. Organ-
isms have a system to maintain normal iron homeostasis;
iron deficiency and overload are associated with cellular
dysfunction. Therefore, all mammalian species tightly
regulate the iron concentration in body fluids. Because
humans lack a regulated pathway for iron excretion, regu-
lation of iron absorption from the intestine and the recy-
cling of iron from senescent red blood cells (RBCs) are
crucial in maintaining iron balance. Normal iron loss in
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humans occurs through exfoliation of enterocytes and
skin cells, and through menstruation and childbirth. The
absorption of dietary iron, composed mostly of heme and
non-heme iron, occurs predominantly in the duodenum
and upper jejunum, and is highly regulated [3]; this
involves transport of absorptive enterocytes across the
apical membrane into the cytosol and across the basolat-
eral membrane into body fluids. Divalent metal trans-
porter 1 (DMT1) is the only known intestinal iron
importer and is a member of the natural resistance-asso-
ciated macrophage protein family [4-7]. DMT1 is highly
conserved from prokaryotes to eukaryotes, expressed in
the apical membrane of absorptive enterocytes in the
small intestine, and is also present in the endosomes of all
human cells [8]. Proper endosomal recycling of DMT1 is
important for efficient uptake of iron and depends on a
retromer-mediated sorting mechanism [9]. Iron
imported by DMT1 enters into the cytosol of the absorp-
tive cells where it can be stored in the cytosolic iron-stor-
age molecule ferritin or exported into body fluids
through the basolateral iron exporter ferroportin 1
(FPN1) [10-12]. FPN1, the only known cellular iron
exporter, is found on all cell types, including the duodenal
mucosa, macrophage, and placenta. The bactericidal pep-
tide hepcidin functions as an iron regulatory hormone
[13,14]. The hepcidin gene encodes an 84-amino-acid
pre-pro-peptide that is cleaved to form a bioactive 25-
amino-acid peptide found in the plasma and urine. Hep-
cidin is synthesized in the liver, and its gene expression is
increased by iron overload and inflammation, especially
interleukin 6 and interleukin 1 [15], and decreased by
hypoxia and anemia [16]. Hepcidin induces irreversible
internalization of FPN1 through lysosomal degradation,
which results in a depletion of plasma iron and an accu-
mulation of iron in duodenal enterocytes and mac-
rophages [13].

Humans are able to utilize 2 types of iron, heme and
non-heme. Heme is an important nutritional source of
iron and is believed to be more readily absorbed than
non-heme iron. Heme is a ubiquitous molecule with an
active iron center carrying a high affinity to oxygen,
which allows for reversible binding and transport of oxy-
gen in hemoglobin. Heme groups serve as the catalytic
site; they tightly bind to a variety of proteins involved in
aerobic metabolism, including respiratory chain cyto-
chromes and numerous cytochrome P450 isoenzymes.
Heme is mostly absorbed in the proximal half of the duo-
denum, the absorptive capacity of which is decreased in
the distal position of the small intestine [17]. In mac-
rophage, senescent RBCs are phagocytosed and digested
into heme in the lysosome. Heme degradation is cata-
lyzed by heme oxygenases (HOs), the activities of which
are particularly high in the spleen, testes, brain, and liver
[18]. At present, cDNAs encoding 2 isoenzymes, HO-1

[19] and HO-2 [20], have been cloned. Although HO-1
and HO-2 catalyze the same reaction and have similar
cofactor requirements (NADPH-cytochrome P450
reductase and O2) [21], they substantially differ in regula-
tion and expression patterns. HO-1 and HO-2 proteins
differ in molecular weight. HO-1 is an inducible isoen-
zyme, while HO-2 is constitutive. HO-1 has been identi-
fied as the major 32-kDa heat shock protein hsp32 [19]
and is highly sensitive to various stimuli, including oxida-
tive stress, heavy metals, UV radiation, and inflamma-
tion. Several reports investigated HO localization to
various subcellular compartments, including endoplas-
mic reticulum (ER) [22], nucleus [23], mitochondria [24],
or caveola [25]. HO-1 has also been reported to change
its location under hemin treatment [23,26].

Because the catalytic sites of HOs are supposed to be in
the cytosol, heme needs appropriate transporters for its
import into the cytosol through the plasma or endosomal
membrane. Two heme transporters have thus far been
reported--heme carrier protein 1 (HCP1) [27] and heme
responsive gene-1 (HRG-1) [28]. HCP1 is highly con-
served and is a member of a large family of proton-cou-
pled transporters known as the major facilitator
superfamily. Within this family, HCP1 well resembles a
bacterial protein that transports the antibiotic tetracy-
cline [27]. Notably, there are structural similarities
between the planar heme ring and tetracycline-metal
structures that must be transported across the apical
membrane of absorptive enterocytes. Moreover, HCP1
has recently been identified as a transporter that medi-
ates the translocation of folate across the plasma mem-
brane and is suggested to be the possible molecular entity
of the carrier-mediated intestinal folate transport system
[29]. HRG-1 and HRG-4 have been reported to be essen-
tial in heme homeostasis and heme sensing in
Caenorhabditis elegans, and HRG-1 knockdown leads to
profound defects in erythropoiesis in zebrafish [28].
HCP1 was found to be expressed in the duodenum and
small intestine [27], and HRG-1 in the brain, heart, kid-
ney, and small intestine [28]. The expression of HCP1 and
HRG-1 was also investigated in some cultured cell lines
and detected in macrophage and epithelial cell lines. It is
not clear yet which transporter predominantly functions
as the heme transporter in enterocytes or macrophages,
both of which are main iron-regulatory cells in the
human body.

To understand heme catabolism in humans, it is impor-
tant to analyze the relationship among heme transport-
ers, HOs, and iron transporters. In the current study, we
investigate the expression and subcellular localization of
HOs, DMT1, HRG-1, and HCP1 in non-polarized and
polarized epithelial cells. Our results suggest that HCP1
functions on the apical membrane of enterocytes, HRG-1
transports heme from the inside of the lysosome into the
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macrophages, and HOs on smooth ER catalyze the degra-
dation of heme in the cytosol.

Results
HOs are localized to smooth ER
Four types of HO-1 and HO-2 constructs were con-
structed to examine the effect of the tagging molecule,
GFP or HA, on the localization of HOs (Additional file 1
Figure. S1B). HO localization was not affected by the
addition of either of these two tags on either the N or C
terminus. HO-1 and HO-2 are completely colocalized
with each other (Additional file 1 Figure. S1C). Thus, we
used HOs with a suitable tag for each experiment
throughout this study. Previous reports show that HO-1
is localized to the endosome or caveola. We compared
the localization of HO-1 with some endosome markers or
caveola. GFP-tagged HO-1 was not colocalized with TfR
(recycling endosome), LAMP2 (late endosome/lyso-
some), EEA1 (early endosome), or caveolin (Additional
file 2 Figure. S2). GFP-tagged HO-1 was cotransfected
with mCherry-tagged NADPH-cytochrome P450
reductase [32] or mCherry-tagged syntaxin 17 [33] (Fig-
ure. 1A). Cells were additionally immunostained with
anti-calnexin or anti-PDI mAb. NADPH-cytochrome
P450 reductase is a donor protein that gives an electron
to HOs. NADPH-cytochrome P450 reductase is specu-
lated to be located in smooth ER [32]. Syntaxin 17 and
calnexin are located in both rough and smooth ER
[33,34]. PDI catalyses disulfide interchange between thi-
ols and protein dilsulfides, and has the highly conserved
ER retention sequence Lys-Asp-Glu-Leu (KDEL) in its C
terminus [35,36]. GFP-tagged HO-1 completely colocal-
ized with NADPH-cytochrome P450 reductase (Figure.
1A, a-c) and partly colocalized with syntaxin 17 (Figure.
1A, g-i) and calnexin (Figure. 1A, j-k). On the other hand,
GFP-tagged HO-1 showed distinct localization from that
of PDI, which is located in rough ER (Figure. 1A, d-f). To
separate rough and smooth microsomes, subcellular frac-
tionation was performed with a 2-layered sucrose gradi-
ent using HEp-2 cells stably expressing HA-tagged HO-2.
In the rough microsomal fraction, we did not observe
HO-2 but observed both calnexin and PDI (Figure. 1B,
lane 2). In the smooth microsomal fraction, mainly HO-2
and calnexin were detected (Figure. 1B, lane 3). These
data strongly support the results obtained by immunoflu-
orescence microscopic analysis. Hence, it is assumed that
HOs are located on the smooth ER membrane and not on
the rough ER membrane.

HO-1 does not change its location under hemin treatment
HO-1 is highly inducible by hemin and is thought to
inhibit inflammation and protect against oxidative dam-
age [37]. Before the examination of HO localization
under hemin treatment, hemin was confirmed to induce

gene expression of endogenous HO-1 in HEp-2 cells (Fig-
ure. 2A). Previous reports show that under hemin treat-
ment, HO-1 was cut off from its C-terminal
transmembrane region and then relocated to the nucleus
[23] or mitochondria [26]. If the protease that cuts off the
C-terminal half of HO-1 is induced by hemin, both
endogenous and transfected HO-1 should be modified by

Figure 1 HOs are localized to smooth ER. A. GFP-tagged HO-1 was 
cotransfected with mCherry-tagged NADPH-cytochrome P450 re-
ductase or mCherry-tagged syntaxin 17 into HEp-2 cells and visualized 
by confocal microscopy. Cells were fixed and incubated with antibod-
ies against GFP (a, d, g, and j), mCherry (b and h), PDI (e), and calnexin 
(k). Each inset shows a higher magnification image of the boxed area. 
B. Separation of rough and smooth microsomes. The subcellular frac-
tionation method is described in detail in the Methods section. Pro-
teins were detected by anti-HA, anti-PDI, and anti-calnexin mAbs. Lane 
1, post mitochondrial supernatant; lane 2, rough microsomal fraction; 
lane 3, smooth microsomal fraction. Similar results were obtained in 3 
independent experiments.
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this protease, and the change of localization should be
observed in both HO-1 molecules. Endogenous HO-1
molecule could not be detected without hemin induction
(Figure. 2A) and it was impossible to compare the local-
ization of endogenous HO-1 with or without hemin treat-
ment. Then, we analyzed the possible change of HO-1
localization by using recombinant HO-1 molecule. N-ter-
minally GFP-tagged HO-1 was transfected into HEp-2
cells, and then cells were cultured with 100 μM hemin for
36 h. Transfected GFP-tagged HO-1 did not change its
location to the nucleus or mitochondria (Figure. 2B, a-f);
this suggests that the localization of the N-terminal half
of HO-1 is not affected by hemin. Because it can be pre-
sumed that under hemin treatment, the C-terminal half
of HO-1 changes its location to the nucleus or mitochon-
dria after being cut off by the protease, we investigated
whether C-terminally HA-tagged HO-1 could change its
location under hemin treatment. N-terminally GFP-
tagged HO-1 and C-terminally HA-tagged HO-1 were
cotransfected and their localizations under hemin treat-
ment were analyzed. N-terminally tagged HO-1 and C-
terminally tagged HO-1 still completely colocalized with
each other (Figure. 2B, g-l). Therefore, these results indi-
cate that the localization of HO-1 does not switch from

ER to the nucleus or mitochondria under hemin treat-
ment.

HRG-1 and HCP1 are localized to the plasma membrane 
and lysosome
Two heme transporter candidates have recently been
reported: HCP1 and HRG-1. We analyzed their subcellu-
lar localizations. HRG-1 was localized to the plasma
membrane and partly colocalized with TfR (Figure. 3A, a-
c) and LAMP2 (Figure. 3A, d-f). HRG-1 has been
reported to be trafficked from the endosome to the
plasma membrane when the cells were cultured under
serum-starvation conditions [38]. We examined HRG-1
translocation using HEp-2 and MDCK cells stably
expressing GFP-tagged HRG-1 under serum starvation.
In 2 h (Additional file 3 Figure. S3b, e) or 24 h (Additional
file 3 Figure. S3c, f ) under serum starvation, we observed
HRG-1 both in the cytosolic organelles and plasma mem-

Figure 2 HO-1 localization is not changed under the hemin treat-
ment. A. Western blot analysis of endogenous HO-1. HEp-2 cells were 
treated with 100 μM hemin and cultured for 36 h. Tubulin was used as 
an internal control. B. N-terminally GFP-tagged HO-1 was transfected 
into HEp-2 cells (a-f) and cultured for 36 h with 100 μM hemin. Cells 
were incubated with 250 nM MitoTracker Deep Red (b and e) for 45 
min, and then fixed with 4% PFA. N-terminally GFP-tagged HO-1 and 
C-terminally HA-tagged HO-1 were cotransfected into HEp-2 cells and 
incubated with 100 μM hemin for 36 h. The cells were fixed and stained 
with antibodies against GFP (g and j) and HA (h and k). Each inset 
shows a higher magnification image of the boxed area.

Figure 3 Subcellular localizations of HRG-1 and HCP1 in HEp-2 
cells. A. GFP-tagged HRG-1 was transfected into HEp-2 cells. The cells 
were fixed and stained with antibodies against GFP (a and d), TfR (b), 
and LAMP2 (e). B. mCherry-tagged HCP1 was transfected into HEp-2 
cells. The cells were fixed and stained with antibodies against mCherry 
(a and d) TfR (b), and LAMP2 (e). Each inset shows a higher magnifica-
tion image of the boxed area.
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brane. HRG-1 translocation was not observed under
these conditions. HCP1 was localized to the plasma
membrane and partly colocalized with LAMP2 (Figure.
3B, d-f) but not with TfR (Figure. 3B, a-c). These results
suggest that both HRG-1 and HCP1 are located in the
plasma and lysosomal membranes in HEp-2 cells.

Subcellular localizations of 4 isoforms of the iron 
transporter DMT1
DMT1 has 4 isoforms. The differences in their N-termi-
nal regions are produced by 2 different promoters (1A or
1B in Figure. 4A), whereas those in their C-terminal
regions are produced by alternative splicing [IRE (I) or
non-IRE (II) in Figure. 4A] [6,8,39,40]. Each of the DMT1
isoforms has been reported to be expressed in specific
tissues or cells [40]. Thus, each DMT1 isoform was trans-
fected into HEp-2 cells and compared with several organ-
elle markers. As shown in Figure. 4, DMT1A-I was
mainly localized in the plasma membrane and partly
colocalized with LAMP2 but not with TfR (Figure. 4B, a-1
to b-3), whereas DMT1A-II colocalized with TfR (Figure.
4B, c-1 to d-3). The localizations of the DMT1B-I and
DMT1B-II isoforms were previously reported [40] (data
not shown). These results show that the C-terminal
region conducts the subcellular localization of DMT1A
as in the case of DMT1B, and the addition non-IRE (II)
C-terminal cytosolic domain leads DMT1A and DMT1B
to the recycling endosome. These data are summarized in
Figure. 4C. The main locations of each DMT1 isoform are

as follows: DMT1A-I, plasma membrane; DMT1A-II,
recycling endosome; DMT1B-I, late endosome and lyso-
some; DMT1B-II, recycling endosome.

16Leu at the N-terminal cytosolic domain is a crucial signal 
for DMT1A-I plasma membrane localization
To identify the structural requirements for the plasma
membrane localization signal of DMT1A-I, we per-
formed a detailed mutational analysis of the N-terminal
cytosolic domain sequence. We constructed various
mutants of DMT1A-I, which had deletions or amino acid
substitutions within the 29-amino-acid sequence specific
for DMT1A (Figure. 5A). Deletion analyses showed that
the His13-Ser18 region contains the crucial region for
DMT1A-I localization to the plasma membrane. Then,

Figure 4 Subcellular localizations of 4 DMT1 isoforms. A. Four iso-
forms of DMT1. B. GFP-tagged DMT1A-I (a and b) or GFP-tagged 
DMT1A-II (c and d) was transfected into HEp-2 cells. The cells were 
fixed and stained with antibodies against TfR (a-2 and c-2) and LAMP2 
(b-2 and d-2). C. The localizations of the 4 DMT1 isoforms are indicated. 
Bold letters indicate the main localization of each isoform.

Figure 5 Mutational analysis of the N-terminal cytoplasmic do-
main of DMT1A-I reveals the crucial signal for localizing to the 
plasma membrane. A. Summary of the mutational analysis of the N-
terminal cytoplasmic domain of DMT1A-I. Amino acid sequences of 
the N-terminal cytoplasmic domain of wild-type DMT1A-I and its vari-
ous mutants are displayed together with their localizations. GFP-
tagged DMT1A-I L16A (a and d) and mCherry-tagged DMT1A-I WT (b) 
are transfected into HEp-2 cells. The cells were fixed and stained with 
antibodies against LAMP2 (e). B. MDCK cells stably expressing GFP-
tagged DMT1A-I (a), GFP-tagged DMT1B-I (b), and GFP-tagged DMT1A 
L16A (c) were grown on Transwell and analyzed after their polarization.
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we performed alanine scanning to investigate which
amino acid in this region is crucial for DMT1A-I localiza-
tion. Notably, the L16A mutant displayed a severe mislo-
calization of DMT1A-I to late endosome and lysosome
(Figure. 5A, a-f). Then, we constructed MDCK cells sta-
bly expressing GFP-tagged DMT1A-I, GFP-tagged
DMT1B-I, or GFP-tagged DMT1A-IL16A to investigate
the localization in polarized cells. We observed that
DMT1A-I was localized to the apical membrane and
DMT1B-I to the cytosolic organelle. DMT1A-IL16A was
not localized to the apical membrane but was in the cyto-
solic organelle, as was observed in DMT1B-I.

HRG-1 localization is distinct from that of HCP1 or DMT1A-I 
in polarized cells
GFP-tagged HRG-1 and mCherry-tagged HCP1 showed
very similar localizations in HEp-2 cells (Figure. 6A); we
also examined HRG-1, HCP1, and DMT1A-I localiza-
tions in polarized MDCK cells (Figure. 6B). GFP-tagged
HRG-1 and mCherry-tagged HCP1 were cotransfected in
HEp-2 cells. HRG-1 colocalized with HCP1 in the plasma
membrane and partly in the cytosolic organelle of non-

polarized HEp-2 cells (Figure. 6A). HRG-1 showed much
more cytosolic accumulation, and HCP1 showed thick
accumulation in the plasma membrane (Figure. 6A, a-c).
Then, we constructed MDCK cells stably expressing
GFP-tagged HRG-1 and mCherry-tagged HCP1 or
mCherry-tagged DMT1A-I to investigate the localization
of HRG-1, HCP1, and DMT1A-I in polarized MDCK
cells. HRG-1 was detected in the basolateral membrane
and in the cytosolic organelle just under the apical mem-
brane (Figure. 6B, a, d). On the other hand, HCP1 (Figure.
6B, b) and DMT1A-I (Figure. 6B, e) were mainly localized
to the apical membrane. Figure 3 shows that this cytosolic
organelle is assumed to be late endosome and lysosome.
To confirm our immunofluorescence assay, the cell sur-
face proteins of these MDCK cells were labeled with bio-
tin, lysed, solubilized, and immunoprecipitated with an
anti-GFP or anti-mCherry antibody. Cell surface GFP-
tagged HRG-1 was mostly detected in the fraction that
contains biotinylated basolateral membrane (Figure. 6C).
On the other hand, cell surface mCherry-tagged HCP1
and mCherry-tagged DMT1A-I were mostly detected in
the fraction that contains biotinylated apical membrane.
These results suggest that HRG-1 might transport heme
through the lysosomal or the basolateral membrane, and
it may not contribute to heme absorption from the diet
through the apical membrane in polarized cells. There-
fore, these candidates may play different roles in absorp-
tive epithelial cells.

Discussion
In this study, we showed the precise subcellular localiza-
tions of HOs. Previous reports on HO localizations indi-
cated that HOs are located in the ER [22], nucleus [23],
mitochondria [24], or caveola [25]. To understand heme
catabolism and iron recycling in cells, it is important to
determine the localizations of HOs and other molecules
related to heme and iron metabolism. Heme is a pros-
thetic group that consists of a protoporphyrin ring and an
iron atom. Because the cell membrane is not freely per-
meable to heme, it is necessary to allocate certain heme
transporters at appropriate locations and orientations in
the cells so HOs can adequately access their substrates.
We constructed recombinant HOs with 2 different types
of tagging molecules on their N or C termini to examine
their exact localizations in cells. Before comparing their
localizations with appropriate marker molecules, it is
necessary to make sure that the addition of tagging mole-
cules has no effect on HO localizations. Our results show
that HO-1 and HO-2 clearly colocalized with each other
without any influence from the tagging molecules.

Both HO-1 and HO-2 did not colocalize with PDI (Fig-
ure. 1-A, d, e, f), which is mainly located in the rough ER,
but partly colocalized with syntaxin 17 and calnexin (Fig-
ure. 1A, g-l), both of which are located in smooth and

Figure 6 Subcellular localizations of HRG-1, HCP1, and DMT1A-I 
in polarized or non-polarized MDCK cells. A. GFP-tagged HRG-1 (a) 
or mCherry-tagged HCP1 (b) were cotransfected into HEp-2 cells. The 
cells were cultured on glass coverslips for 48 h after replating. B. MDCK 
cells stably expressing GFP-tagged HRG-1 (a and d) and mCherry-
tagged HCP1 (b) or mCherry-tagged DMT1A-I (e) were grown on Tran-
swell and analyzed after their polarization. C. Cell surface labeling as-
say. MDCK cells stably expressing GFP-tagged HRG-1, mCherry-tagged 
HCP1, or mCherry-tagged DMT1A-I were grown on Transwell, and 
each apical or basolateral surface proteins were biotinylated. The bioti-
nylated proteins were immunoprecipitated with protein A conjugated 
with anti-GFP or anti-mCherry polyclonal antibodies, and analyzed by 
Western blot. Similar results were obtained in 3 independent experi-
ments.
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rough ER [33,34]. NADPH-cytochrome P450 reductase,
which supplies an electron to HOs and is reported to be
located in smooth ER [32], showed a clear colocalization
with HOs (Figure. 1B, a, b, c). Subcellular fractionation
study confirmed the specific location of HOs in smooth
ER, as obtained by immunofluorescence analyses (Figure.
1B). HO localizations are discussed in previous reports,
and this study shows that HO-1 does not change its loca-
tion even under hemin treatment.

Humans incorporate two-thirds of the total absorbed
iron as heme in enterocytes and recycles iron from senes-
cent RBCs in macrophages. Two candidate molecules are
thus far reported as heme transporters [27,28]: HCP1,
which is believed to transport heme [27] or folate [29]
through the plasma membrane, and HRG-1, which was
identified in C. elegans by genome-wide microarrays as a
heme-regulated gene. HRG-1 is also proven to be an
essential molecule for erythropoiesis and development in
zebrafish, and has a heme-uptake activity in human cul-
tured cells and Xenopus laevis oocytes [28]. To investigate
on which organelles these 2 molecules function, we ana-
lyzed the localizations of HRG-1 and HCP1 in non-polar-
ized epithelial cells. Both HRG-1 and HCP1 are
cotransfected in MDCK cells, and we observed these 2
molecules to be localized to the plasma membrane and
lysosome. HRG-1 is located almost equally in the plasma
membrane and lysosome, whereas HCP1 is located
mostly in the plasma membrane and slightly in the lyso-
some. A previous report on HRG-1 localization showed
that HRG-1 is distributed in an intracellular compart-
ment punctuated throughout the cytoplasm, with about
10% of total HRG-1 on the cell periphery [28], and
another reported that HRG-1 is localized to the endo-
some and plasma membrane [38]. In addition, the loca-
tion of HRG-1 was changed under serum-starvation
conditions [38]. In our study, HRG-1 is localized to both
the lysosome and plasma membrane, and we did not
observe HRG-1 translocation under serum-starvation
conditions. These differences possibly arise from the dif-
ferences in the cell lines or in the expression constructs
used. Both HRG-1 and DMT1 are localized to lysosome,
and a more detailed analysis using endogenous HRG-1
and DMT1 will be needed in future works. DMT1, which
functions as a non-heme iron transporter, has 4 isoforms
[39]. Alternative splicing of the DMT1 gene produces 2
distinct classes of DMT1 transcripts, which differ in the
C-terminal amino acids and subsequent 3'-untranslated
regions. One form, IRE (I) (Figure. 4A), has an iron
responsive element (IRE) by which intracellular iron con-
centration can affect its translation; the other form, non-
IRE (II), does not have IRE on its mRNA. Alternative use
of DMT1 gene promoters generates 2 variant DMT1
transcripts that differ in nucleotide sequences encoding
the 5'-untranslated region and their subsequent N-termi-

nal amino acids. A polypeptide transcribed from the 5'-
upstream promoter and exon 1A is indicated as 1A, and a
polypeptide transcribed from another promoter and exon
1B is indicated as 1B in Figure. 4A. These 4 DMT1 iso-
forms showed distinct subcellular localizations. DMT1A-
I is mainly located in the plasma membrane, DMT1B-I in
late endosome and lysosome, and both DMT1A-II and
DMT1B-II in the recycling endosome. The protein
expression levels of these 4 isoforms differ among tissue
types; DMT1A-I is expressed in the duodenum and kid-
ney and absorbs non-heme iron into the cytosol, whereas
DMT1B-I is expressed in the macrophage and transports
non-heme iron from the lysosome into the cytosol.
DMT1A-II is expressed in the duodenum; its expression
level is considerably lower compared with other isoforms.
DMT1B-II is expressed in peripheral tissues and trans-
ports iron released from transferrin in the recycling
endosome [40]. Notably, we investigated the crucial sig-
nal for DMT1A-I localization to the plasma membrane.
DMT1A-I L16A mutant localizes to the late endosome
and lysosome. We reported that the non-IRE (II) C-ter-
minal cytosolic region conducts the proper endosomal
recycling of DMT1A and DMT1B [9]. As a next step,
analysis of the detailed function of N-terminal cytosolic
region in the sorting mechanism of DMT1A is needed.

We compared the localization of HRG-1 with that of
HCP1 in epithelial cells: HRG-1 colocalized with HCP1
in the plasma membrane in non-polarized epithelial cells.
On the other hand, HRG-1 and HCP1 show different
localizations in polarized epithelial cells; HCP1 is located
in the apical membrane and HRG-1 is in the basolateral
membrane and lysosome. HRG-1 can be detected very
slightly in apical membrane in this system, and we will
examine in the next stage whether endogenous HRG-1 is
localized in apical membrane and can function to uptake
heme from diet. HCP1 is able to transport folate more
efficiently than heme [27,29,41]. HCP1 has a higher affin-
ity for folate (Km = 1.67 μM) than heme (Km = 125 μM),
and thus folate may be the more physiologically relevant
target of HCP1. However, our localization study indicates
that HRG-1 cannot function as a heme transporter to
absorb heme from diet because of its location in epithelial
cells, and that HCP1 may play a role in dietary heme
uptake, because heme concentration in meat is roughly
estimated to be 100 - 250 μM [42].

Conclusions
We summarize a putative heme transport and iron recy-
cling pathway in Figure. 7. In non-polarized cells (Figure.
7A), both HRG-1 and HCP1 are located in the plasma
membrane and can mediate heme uptake from body flu-
ids. HRG-1 is located in the lysosome and can transport
heme from the inside of the lysosome. "Professional"
phagocytic cells such as macrophages are one of the most
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important non-polarized cells that can scavenge senes-
cent RBCs and the hemopexin-heme and haptoglobin-
hemoglobin complexes from the bloodstream. We there-
fore propose that there are 2 putative heme uptake path-
ways present in the macrophage: one is direct uptake of
heme from body fluids to the cytosol via HRG-1 or HCP1
on the plasma membrane, and the other is through the
lysosomal membrane. In the latter pathway, lysosomal
heme is derived from the heme complexes that are endo-
cytosed by the CD163 hemopexin-heme [43] or LRP1/
CD91 haptoglobin-hemoglobin [44] receptors, and the
senescent RBCs that are phagocytosed and digested in
the lysosome. Lysosomal heme is transported through
HRG-1 into the cytosol. Once heme is incorporated into
the cytosol, it can be degraded by the aid of HOs local-
ized just at the cytosolic side of smooth ER. Released iron

from heme is excreted into body fluids via FPN1 and
reutilized as cofactors for many enzymes and proteins,
such as hemoglobin and mitochondrial cytochrome. In
polarized cells (Figure. 7B), HCP1 and DMT1A-I are
localized to the apical membrane, and absorb heme and
non-heme iron from diets, respectively. HRG-1 is located
in the basolateral membrane and transport heme from
body fluids into the enterocyte. The significance of this
molecule as a heme transporter in enterocytes is not clear
thus far.

In this study, we analyze the localizations of HOs,
HRG-1, HCP1, and DMT1 in non-polarized and polar-
ized cells, and add new knowledge concerning heme
transport and iron recycling system. Future work will be
needed to further define the functions of HRG-1 and
HCP1 in enterocytes and macrophages, the significance
of HRG-1 localization to the basolateral membrane in
enterocytes, the capability of HRG-1 to transport heme
from body fluids or lysosome in macrophages, and the
capability of HCP1 to transport heme from diet.

Methods
Antibodies and reagents
Mouse anti-human transferrin receptor (TfR) monoclo-
nal antibody (mAb) (N-2) was prepared as described pre-
viously [30]. Mouse anti-human EEA1 mAb, mouse anti-
human GW130 mAb, mouse anti-human calnexin mAb,
and mouse anti-human α-tubulin mAb were purchased
from BD Transduction Laboratories (San Jose, CA).
Mouse anti-HA mAb was purchased from Covance
(Berkeley, CA), and mouse anti-human protein disulfide
isomerase (PDI) mAb was purchased from Daiichi Fine
Chemical (Toyama, Japan). Mouse anti-human LAMP2
mAb (H4B4, developed by Drs. J.E.K. Hildreth and J.T.
August) was obtained from the Developmental Studies
Hybridoma Bank (Baltimore, MD). Alexa 594-labeled
anti-rabbit IgG and anti-mouse IgG, Alexa 488-labeled
anti-rabbit IgG and anti-mouse IgG, and MitoTracker
Deep Red 633 were purchased from Invitrogen Corp.
(Carlsbad, CA).

The amino-acid-coding regions of human HOs,
NADPH-cytochrome P450 reductase, syntaxin 17,
HCP1, and HRG-1 were amplified using HEp-2 or Caco-2
cell cDNAs as templates. The fragments containing the
full-length ORF were ligated into pEGFP-C1, pEGFP-N1,
and pIRES-HA vectors (Clontech, Palo Alto, CA).
pRSET-B-mCherry vector was kindly provided by Dr.
Roger Y. Tsien (University of California, San Diego, CA).
The mutant forms of DMT1 were made by PCR muta-
genesis using KOD plus DNA polymerase (Toyobo,
Osaka, Japan). Nucleotide sequences of PCR-oriented
constructs were confirmed by the dideoxynucleotide
chain-termination method using an ABI 3100 automated
DNA sequencer.

Figure 7 Summary of heme and iron transport. Schemas A and B 
indicate the possible mechanisms of heme transport and catabolism 
in non-polarized and polarized cells, respectively. See Discussion and 
Conclusion for further details.
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Cell culture and transfection
Human HEp-2 epithelial cells and Madin-Darby canine
kidney (MDCK) cell line were maintained in high-glucose
Dulbecco's minimal essential medium containing 10%
fetal calf serum, 50 μg/ml penicillin, and 50 μg/ml strep-
tomycin. FuGENE 6 transfection reagent (Roche Molecu-
lar Biochemicals, Mannheim, Germany) was used for the
transfection of HEp-2 cells and MDCK cells, which was
done according to the manufacturer's instructions. After
transfection, cells were cultured for 48 h on glass cover-
slips. For the polarity studies and cell surface labeling
assay, clonal MDCK cells were cultured as confluent
monolayers on polycarbonate filter chamber (Transwell,
Corning, NY) for 6 days.

Immunofluorescence microscopy
Cells grown on glass coverslips and Transwell were fixed
with 4% paraformaldehyde (PFA) in PBS for 15 min at
room temperature, and permeabilized with 0.2% Triton
X-100 in PBS for 20 min. The coverslips and Transwell
were washed and blocked in 0.1% fish skin gelatin in PBS.
Cells were incubated with primary antibodies for 60 min
at room temperature. Coverslips and Transwell were
washed with 0.1% fish skin gelatin in PBS. Secondary
antibodies coupled to Alexa 488 or Alexa 594 were incu-
bated on cells for 60 min at room temperature.
MitoTracker Deep Red was used to stain the mitochon-
dria. HEp-2 cells grown on coverslips were incubated in
fresh medium with 250 nM MitoTracker Deep Red at
37°C for 45 min. Coverslips and Transwell were washed
and mounted on slides with VECTASHIELD (Vector
Laboratories, Burlingame, CA). The XY and XZ images
were obtained by using a Leica TCS SP2 AOBS confocal
laser scanning microscope system.

Cell surface labeling
Cells grown on Transwell were washed with ice-cold PBS
containing 0.1 mM CaCl2 and 1 mM MgCl2 [PBS(+)]. For
selective labeling of the apical or the basolateral surface,
sulfo-NHS-LC-biotin was added either to the apical or
the basolateral compartment of the filter chamber. The
compartment not receiving sulfo-NHS-LC-biotin was
filled with an equivalent volume of PBS(+). Three filter
chambers were used per experimental condition. Cells
were washed with Tris-buffered saline with mild agita-
tion. Then, cells were extracted in RIPA buffer [150 mM
NaCl, 50 mM Tris (pH 8.0), 5 mM EDTA, 1% Nonidet P-
40, 0.5% deoxycholate, and 0.1% SDS] and the extracts
were clarified by centrifugation at 14,000 × g for 15 min.
The resulting supernatants were added to anti-green flu-
orescent protein (GFP) or anti-mCherry antibody conju-
gated protein A beads. After 2-h incubation, the beads
were washed and the proteins were eluted with Laemmli
buffer. Eluants were analyzed by immunoblotting. Bioti-

nylated proteins were detected by ImmunoPure Avidin,
Horseradish Peroxidase, Conjugated (Pierce Biotechnol-
ogy, Rockford, IL).

Subcellular fractionation
HEp-2 cells stably expressing HA-tagged HO-2 were
grown to confluency in a 100-cm2 dish. Cells were
washed once with PBS and scraped in homogenizing buf-
fer (0.25 M sucrose and 10 mM Tris-HCl, pH 7.4). Cells
were homogenized in glass-Teflon Potter homogenizer
rotating at 1,000 rpm, 25 strokes. The homogenate was
centrifuged at 1,000 × g for 10 min to obtain post nuclear
supernatant (PNS). PNS was centrifuged at 10,000 × g for
20 min to obtain the post-mitochondrial fraction (PMF).
Then, to obtain smooth and rough microsomal fractions,
PMF was loaded onto 3.5 ml of 1.3 M sucrose. Samples
were centrifuged at 100,000 × g for 2 h at 4°C. Aggregated
rough microsomes sedimented through the 1.3 M
sucrose layer and pelleted at the bottom of the tubes,
whereas smooth membranes collected on top of the 1.3
M sucrose layer [31].

Western blot analysis
HEp-2 cells were cultured with 100 μM hemin for 36 h.
After incubation, cells were washed in cold PBS. Proteins
were collected in tube and solubilized in 2% SDS-Laem-
mli buffer; protein contents were determined by the
method of Lowry. The samples were resolved by SDS-
PAGE using 12% acrylamide gels and blotted onto polyvi-
nylidene difluoride membranes. HO-1 was detected by
rabbit anti-HO-1 polyclonal antibody (Stressgen, Victo-
ria, BC, Canada).

Recombinant constructs
The recombinant constructs used in this study are indi-
cated in Additional file 1 Figure. S1A.

Additional material

Additional file 1 Figure S1: Recombinant constructs. A. Schematic rep-
resentation of recombinant HOs, NADPH-cytochrome P450 reductase, 
HRG-1, HCP1, DMT1, and syntaxin 17 showing the locations of transmem-
brane (TM) domains (blue box) and the order of tags. TM domains were 
predicted using the TMHMM program. HO-1 and HO-2 have a single TM 
domain at the C-terminal region, and NADPH-cytochrome P450 reductase 
has a single TM domain at the N-terminal region. HRG-1, HCP1, DMT1, and 
syntaxin 17 have multiple TM domains. These proteins are tagged with HA, 
GFP, or mCherry as depicted. B. GFP-tagged HO-1 and HA-tagged HO-1 
were cotransfected in HEp-2 cells and visualized by confocal microscopy. 
Recombinant construct combinations were N-terminally GFP-tagged HO-1 
(a and g), C-terminally GFP-tagged HO-1 (d and j), N-terminally HA-tagged 
HO-1 (b and k), and C-terminally HA-tagged HO-1 (e and h). C. GFP-tagged 
HO-1 and HA-tagged HO-2 were cotransfected into HEp-2 cells and stained 
with antibody against GFP (a) and HA (b). Each inset shows a higher magni-
fication image of the boxed area.
Additional file 2 Figure S2: Subcellular localizations of HOs. GFP-
tagged HO-1 was transfected into HEp-2 cells and visualized by confocal 
microscopy. The cells were fixed and incubated with antibodies against GFP 
(a, d, g, and j), TfR (b), LAMP2 (e), EEA1 (h), and caveolin (k).

http://www.biomedcentral.com/content/supplementary/1471-2121-11-39-S1.TIFF
http://www.biomedcentral.com/content/supplementary/1471-2121-11-39-S2.TIFF
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