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A B S T R A C T

Here, we present the draft genome (377.3 Mbp) of Corchorus olitorious cv. JRO-524 (Navin), which is a leading
dark jute variety developed from a cross between African (cv. Sudan Green) and indigenous (cv. JRO-632) types.
We predicted from the draft genome a total of 57,087 protein-coding genes with annotated functions. We
identified a large number of 1765 disease resistance-like and defense response genes in the jute genome. The
annotated genes showed the highest sequence similarities with that of Theobroma cacao followed by Gossypium
raimondii. Seven chromosome-scale genetically anchored pseudomolecules were constructed with a total size of
8.53 Mbp and used for synteny analyses with the cocoa and cotton genomes. Like other plant species, gypsy and
copia retrotransposons were the most abundant classes of repeat elements in jute. The raw data of our study are
available in SRA database of NCBI with accession number SRX1506532. The genome sequence has been
deposited at DDBJ/EMBL/GenBank under the accession LLWS00000000, and the version described in this paper
will be the first version (LLWS01000000).

Specifications

Organism/cell
line/tissue

Dark jute (Corchorus olitorius cv. JRO-524)/
leaves

Sex Hermaphrodite
Sequence or

array type
Illumina MiSeq

Data format Raw and processed
Experimental

factors
The draft genome sequence of Corchorus olitorius
cv. JRO-524 (Navin)

Experimental
features

DNA was extracted from seedling leaves of C.
olitorius cv. JRO-524, and shotgun libraries were
prepared followed by paired-end sequencing on
an Illumina MiSeq platform, generating
2 × 250 bp overlapping reads. The cleaned
sequence reads were merged with PANDASeq
and assembled de novo using Newbler software.

Genes were predicted by FGENESH and
annotated using BLASTx against the NCBI non-
redundant protein database. We used SyMap for
pairwise synteny mapping and ALLMAPS to
integrate our draft genome with a RAD-SNP-
based genetic map of C. olitorius.

Consent N/A
Sample source

location
Barrackpore, Kolkata, India (22°46′2.7372″ N
88°23′18.0384″ E)

1. Direct link to deposited data

http://www.ncbi.nlm.nih.gov/bioproject/PRJNA278717 for Corchorus
olitorius cv. JRO-524 (http://www.ncbi.nlm.nih.gov/sra/SRX1506532).

(https://www.ncbi.nlm.nih.gov/biosample/SAMN04160039).
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2. Introduction

Corchorus olitorius L. (2n= 2× = 14; Malvaceae s. l.), commonly
known as dark jute or jute mallow, is an important ligno-cellulosic bast
fibre crop, with> 80% acreage of jute growing areas of the world.
Grown in tropical lowland areas, it produces one of the strongest
vegetable fibres and is only next to cotton in terms of production [1].
Though it is ideally suited for transplanted paddy-based crop rotation
and makes softer and stronger fibre than its other cultivated counter-
part C. capsularis (white jute), there are several biological constraints
that limit its diversified uses in textile industry [2]. Besides yield
enhancement, there is an urgent need to develop dark jute varieties
with quality fibre in terms of fibre fineness and tensile strength
including low-lignin content using genomics-assisted breeding ap-
proaches. Recently, the draft genome sequence of C. olitorius cv. O-4
has been released by Bangladesh [3]. However, the variety sequenced
by Bangladesh is a pure line selection from a local landrace [4]. Since C.
olitorius originated in Africa [5] and reached India together with many
African crops in prehistory [6], it is of potential interest to decode one
of its genomes that represents an admixture of both African and Indian
gene pools. In this study, we sequenced a leading Indian variety JRO-
524 (Navin), which was developed from a cross between African (cv.
Sudan Green from Sudan) and indigenous (cv. JRO-632; a local
selection) types. Our results provide new insights into the C. olitorius
genome, and its availability would not only facilitate jute research and
development, but also foster the application of translational genomics
in jute improvement.

3. Experimental design, material and methods

3.1. Plant material and DNA isolation

Seeds of C. olitorius cv. JRO-524 were germinated in petri dishes and
leaves were collected from 10-day-old seedlings. Twenty leaves col-
lected from ten seedlings were pooled and used for DNA extraction
using the GenElute™ Plant Genomic DNA Miniprep Kit (Sigma-Aldrich
Co., St. Louis, USA).

3.2. Genome sequencing, de-novo assembly and annotation

DNA was fragmented using the Covaris AFA™ system (Covaris, Inc.,
Woburn, USA) with a median fragment size of 544 bp, and shotgun
libraries were prepared using the Illumina TruSeq DNA PCR-Free
Sample Preparation Kit (Illumina, San Diego, USA). Paired-end sequen-
cing was performed on two flow cells of an Illumina MiSeq
(2 × 250 bp) platform. The sequence reads were quality-checked using
FASTQC (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
). Following adapter trimming, the poor-quality bases were removed
using Trimmomatic v0.36 [7]. The genome size was evaluated using the
K-mer Analysis Toolkit (KAT) [8]. High-quality reads were merged
using PANDASeq v2.7 [9], and then assembled de novo using Newbler v.
2.6 with default parameters (Roeche Inc. Germany). We used the
FGENESH gene prediction pipeline from the software package Molquest
v4.5 (http://www.softberry.com) for the in silico prediction of genes.
The predicted genes were annotated using BLASTX (E < 10−6) search
against the NCBI non-redundant (nr) protein database.

3.3. Synteny mapping and pseudomolecule construction

SyMap v3.4 [10] was used for pairwise synteny mapping with cocoa
(Theobroma cacao) and diploid cotton (Gossypium raimondii) that
showed the highest sequence similarities with our assembled C. olitorius
genome during the BLAST similarity search. For the construction of
seven chromosome-scale pseudomolecules, we used ALLMAPS [11] to
integrate the genome assembly with a RAD-SNP-based genetic map of
C. olitorius [12].

3.4. Identification of disease resistance-like and defense response genes

The disease resistance-like (R-like) and defense response (DR) genes
were manually categorized using different keywords/phrases that
represent R-like and DR genes into five main classes as follows: (i)
NBS-LRR (matching with NBS-LRR, but not with LZ-NBS-LRR and LRR,
CC-NBS-LRR, Pib, Pita, Rp 1-d8, Lr10, Mla 1 and rust resistance), (ii) LZ-
NBS-LRR (matching with LZ-NBS-LRR, but not with NBS-LRR, CC-NBS-
LRR, LRR and RPM1), (iii) LRR-TM (matching with Xa21, serine/
threonine kinases and Cf2/Cf5 resistance), (iv) LRR (matching with
disease resistance, viral resistance, Yr10, LRR, but not with NBS-LRR,
CC-NBS-LRR, LZ-NBS-LRR), and (v) defense response genes (matching
with glucanases, chitinases and thaumatin like genes) [13]. We mapped
these R-like and DR genes to an integrated RAD-SNP-based genetic map
of jute [12].

3.5. Repeat elements and SSR identification

All assembled contigs were screened for the presence of simple
sequence repeats (SSRs) using MISA (http://pgrc.ipk-gatersleben.de/
misa/). The assembled contigs were analyzed to identify repeat
sequences using RepeatModeler and RepeatMasker with Repbase
library v22.01 [14].

4. Data description

Illumina MiSeq sequencing generated 52,507,986 overlapping
2 × 250 bp paired-end raw reads (~15.65 Gbp sequence) that were
processed to yield 24,996,514 merged high-quality reads with an
average read length of 450 bp (~12.9 Gbp) and a 31.32× coverage
of the K-mer based estimated 415 Mbp genome of C. olitorius cv. JRO-
524. The longer merged reads from Illumina MiSeq platform facilitated
economical de-novo assembly of jute genome into 52,373 contigs
(377.3 Mbp) covering 90.8% of the estimated genome size. The mean
contig size was 7206 bp, while the N50 size was 16,573 bp (Table 1).
The raw sequence data are available in NCBI SRA database with
accession number SRX1506532, and the assembled genome sequence
has been deposited at DDBJ/EMBL/GenBank with the accession
number LLWS00000000 vide BioProject PRJNA278717 and BioSample
SAMN04160039. We predicted 76,881 gene models, with an average
and the largest gene size of 1.3 kbp and 37 kbp, respectively. In total
59,531 (77.4%) of the predicted genes were annotated using BLASTx,
while 17,350 genes (22.6%) remained non-annotated and were thus
unique to C. olitorius cv. JRO-524 genome. Of these, 57,087 were
protein-coding genes with annotated functions. The predicted genes
showed the highest sequence similarity with that of T. cacao (37.45%),
followed by G. raimondii (9.68%). Using a restriction site-associated
DNA (RAD)-SNP linkage map, we have shown earlier that C. olitorius
has the maximum syntenic relationship with cocoa followed by diploid
cotton [12]. Recently, Islam et al. [3] have also reported the same

Table 1
Summary statistics of de novo-assembled draft genome of C. olitorius cv. JRO-
524.

Index Statistics

Raw reads 52,507,986
High-quality merged reads 24,996,514
Number of assembled contigs 52,373
Size of assembled contigs (bp) 377,376,943
Longest contig (bp) 177,749
Shortest contig (bp) 500
Number of contigs> 1 kb 41,086
Number of contigs> 10 kb 11,958
Number of contigs> 100 kb 38
Mean contig size (bp) 7206
Contig N50 (bp) 16,573
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pattern of syntenic relationship for C. olitorius. In the present study, 501
(99.6%) of the published RAD-SNP markers were mapped to 288
contigs (8.53 Mbp) of the draft genome (Table 2).

Further, we annotated 1765 genes with disease resistance (R-like)
and defense response (DR) functions. Of the total R-like and DR genes,
831 (47.1%) belong to LRR-TM, 440 (25%) to NBS-LRR, 352 (19.9%) to
LRR and 44 (2.49%) to LZ-NBS-LRR categories. Further, we identified
87 (4.9%) DR genes and categorized them into three sub-categories of
chitinases (40 genes), glucanases (28 genes) and thaumatin-like pro-
teins (19 genes).

In the genome of C. olitorius cv. JRO-524, 51.9% of the repeat
elements were masked, which was much higher than that reported for
its closest related published genome of T. cacao (25.7%) [15], but less
than that its second-closest related species of G. raimondii (57.0%) [16].
Expectedly, our assembled jute genome was characterized by much
higher proportion of retro-transposons (45.7%) than DNA transposons
(5.5%). The most dominant classes of transposable elements (TEs) were
identified as gypsy (34.3%) and copia (5.7%) that belongs to the LTR
superfamily. Earlier, Begum et al. [17] have also predicted high number
of LTR retro-transposons in jute. Further, we identified a total of
185,698 genomic SSRs, with mononucleotide repeats being the most
abundant class (76.0%), followed by di- (16.0%), tri- (5.7%), tetra-
(0.8%), penta- (0.2%) and hexa-nucleotide (0.2%) repeats.

Using genetically anchored contigs seven chromosome-scale pseu-

domolecules were constructed with a mean size of 1,219,051 bp and
N50 of 2,038,915 bp (Table 2). Chromosome1 was the longest, while
chromosome 6 was the shortest pseudomolecule. Comparative analysis
of seven genetically anchored jute chromosomes with 10 chromosomes
of T. cacao [15] revealed significant syntenic relationship between the
two species, however, collinearity was not conserved (Fig. 1). Jute
chromosomes 1, 4 and 7 showed synteny with cocoa chromosomes 9, 5
and 2, respectively, whereas chromosome 2 shared synteny with cocoa
chromosomes 3 and 10 and chromosome 3 with cocoa chromosomes 4
and 2. However, jute chromosomes 5 and 6 shared synteny with a single
cocoa chromosome 1. Similarly, comparative analysis of jute and
diploid cotton species G. raimondii [16] revealed synteny of jute
chromosomes 6 and 7 with cotton chromosomes 4 and 13, respectively
(Fig. 1), with chromosomes 1, 2 and 3 showing matches with multiple
chromosomes of cotton, viz., (1, 4, 9 and 10), (3, 4, 8 and11) and (5, 6,
7 and 12), respectively. Thus comparative analysis with a small fraction
(8.53 Mbp) of genetically anchored jute genome revealed chromosomal
level synteny of jute with both cocoa and cotton genomes.

5. Conclusions

To our knowledge, the work presented here is the first whole
genome sequence for a C. olitorius genotype derived from an African
jute. C. olitorius cv. Sudan Green, one of the parents of cv. JRO-524, was
primarily used to transfer premature flowering resistance (in early
sowing) to indigenous types [18]. Thus an in-depth comparison of the
present sequence with the recently published draft genome [3], would
provide new insights that could help understand the mechanisms
underlying premature flowering vis-à-vis photoperiodic control of bast
fibre development in jute. This would allow breeding of high-yielding
varieties with durable premature flowering resistance, which has been
recently observed to be breaking down when dark jute crops are sown
early under long-day conditions, possibly due to climate change.
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Summary of seven chromosome-scale pseudomolecules of C. olitorius cv. JRO-524. The
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Chromosome No. of RAD-
SNP markers
in genetic map

No. of mapped
RAD-SNP
markers in
genome

No. of
anchored
contigs

Size of
anchored
contigs (bp)

Chr1 139 139 76 2,336,828
Chr2 119 119 65 1,979,308
Chr3 114 114 69 2,035,515
Chr4 48 47 38 742,950
Chr5 32 32 17 582,942
Chr6 29 29 6 400,300
Chr7 22 21 17 441,461
Total 503 501 288 8,519,304

Fig. 1. Genomic syntenic relationships of C. olitorius (2n = 2x = 14) with T. cacao (2n= 2x = 20) and G. raimondii (2n = 2x = 26).
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