
Research Article
Cloud Services for Patient Cohort Identification Using the
Informatics for Integrating Biology and the Bedside Platform

Kavishwar B. Wagholikar ,1,2,3 Shreekanth V. Joshi ,4 Vishal V. Pai Vernekar,4

Yuri Ostrovsky ,4 Somnath D. Desai ,4 Pooja B. Magdum,4 Sachin B. Wakle ,4

Sheetal Jain ,4 Akshay Zagade ,4 Rahul Patel,4 and Shawn N. Murphy1,2,3

1Harvard Medical School, Boston, MA, USA
2Massachusetts General Hospital, Boston, MA, USA
3Partners Healthcare, Boston, MA, USA
4Persistent Systems, Pune, India

Correspondence should be addressed to Kavishwar B. Wagholikar; waghsk@gmail.com

Received 13 December 2019; Revised 8 June 2020; Accepted 15 June 2020; Published 8 July 2020

Academic Editor: Yun-Peng Chao

Copyright © 2020 Kavishwar B. Wagholikar et al. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work
is properly cited.

Despite the widespread use of the “Informatics for Integrating Biology and the Bedside” (i2b2) platform, there are substantial
challenges for loading electronic health records (EHR) into i2b2 and for querying i2b2. We have previously presented a
simplified framework for semantic abstraction of EHR records into i2b2. Building on our previous work, we have created a
proof-of-concept implementation of cloud services on an i2b2 data store for cohort identification. Specifically, we have
implemented a graphical user interface (GUI) that declares the key components for data import, transformation, and query of
EHR data. The GUI integrates with Azure cloud services to create data pipelines for importing EHR data into i2b2, creation of
derived facts, and querying for generating Sankey-like flow diagrams that characterize the patient cohorts. We have evaluated
the implementation using the real-world MIMIC-III dataset. We discuss the key features of this implementation and direction
for future work, which will advance the efforts of the research community for patient cohort identification.

1. Introduction

I2b2 has been widely deployed to enable researchers to iden-
tify patient cohorts for clinical studies [1, 2]. Over 200 insti-
tutions have deployed i2b2 worldwide, and the deployments
at several institutions in the United States are connected into
networks for federated querying [3, 4]. However, despite the
widespread use of the i2b2 platform, there remain substantial
challenges for importing EHR data into i2b2 and for query-
ing the data in i2b2.

First, there currently exist no good practice guidelines or
tooling that information technology (IT) teams can use to
import EHR data into i2b2, and the IT team faces a steep
learning curve to understand the i2b2 web services and data-

base schema to load data into i2b2 [5, 6]. Due to lack of tool-
ing, IT teams resort to ad hoc methods to import the data.
They develop data import pipelines and also perform the
“Devops” tasks to create and manage the computational
environment for running the pipelines. Consequently, con-
siderable manual effort is expended on data import.

Secondly, although the i2b2 web client interface allows
development of complex queries, it is challenging for most
users to construct queries for complex patient cohorts.
Moreover, there is no functionality to visualize the query
results or understand the effect of different filters to gain a
better perspective of the patient cohort. For instance, it is
nontrivial to query patients with a last laboratory value
(e.g., last serum glucose > 176mg/dl). Several such criteria

Hindawi
BioMed Research International
Volume 2020, Article ID 2851713, 8 pages
https://doi.org/10.1155/2020/2851713

https://orcid.org/0000-0002-6219-861X
https://orcid.org/0000-0002-7418-7248
https://orcid.org/0000-0002-7367-6111
https://orcid.org/0000-0002-5281-2495
https://orcid.org/0000-0002-4106-0347
https://orcid.org/0000-0001-8900-9850
https://orcid.org/0000-0001-5029-9694
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/2851713


need to be combined to represent the eligibility criteria for
most clinical studies, and it is tedious to examine the effect
of individual criteria on the patient count, using the i2b2
web client.

To address the above shortcomings, building on our pre-
vious work, we have implemented a proof-of-concept system
using cloud-based services to augment patient cohort identi-
fication on the i2b2 data store. In our previous work, we had
described a framework involving four facets: (1) transform-
ing EHR into a simplified schema for import into i2b2; (2)
use of standard vocabularies to create a concept catalogue;
(3) mapping local codes to those from standard vocabularies;
and (4) definition of clinically meaningful “derived concepts”
that involve computation on imported i2b2 facts, resulting in
generation of “derived facts” [7]. Together, these four facets
facilitate data import and simplify querying. However, our
previous implementation lacked a GUI and a mechanism to
compute derived facts.

Building on the previous work, we have now imple-
mented a scalable system that links a graphical user inter-
face (GUI) to Microsoft Azure cloud services. The GUI
enables data analysts to define processes for data import
and transformation, and the back-end cloud services then
execute the defined processes. Furthermore, the GUI
enables clinical users to construct queries using Sankey-
like flow diagrams, which are rendered by the cloud ser-
vices. We have evaluated this system using the real-world
MIMIC-III dataset.

The main contribution of this paper is to describe the
functionality needed to use cloud services to load and trans-
form EHR data into an i2b2 patient store. Another contribu-
tion is the graphical search interface that serves an alternative
to the i2b2 search web interface. We anticipate that our sys-
tem will minimize the ad hoc programming effort to load
and transform EHR data in i2b2 and that the flow diagram-
based GUI will facilitate querying for patient cohort. Overall,
the design of our system will inform other implementations
and tools for patient cohort identification.

2. Methods

We define two types of users or roles for the system: (1)
knowledge engineer or data analyst and (2) primary/clini-
cal user. The knowledge engineer sets up the system by
loading data and transforming it into a query-friendly
form, and the primary user queries the system to generate
patient cohorts.

We implemented a GUI for knowledge engineers to set
up an i2b2 data store and for primary users to easily create
and execute complex queries and to visualize their results.
The GUIs are connected at the back end to the Azure Data
Factory application programming interface (API). Figure 1
below provides the architectural overview of the system.
Framework GUI is an Angular-based web application for
authoring. It uses the Framework API which is a Java-based
REST API that wraps around Azure Data Pipeline REST
API. The Framework API can be used to create metadata
and to configure Azure Data Pipelines. The resulting Azure
Data Pipelines can ingest data from data sources such as rela-

tional database, file system, and streaming HL7 messages and
can transform the ingested data to create derived data using
either Azure Functions, stored procedures, lookups, or a
Pyspark script. Patient data store uses the i2b2 schema to
store observation fact data. Videos demonstrating the fea-
tures of the system are available at the following link.

The web-based GUI enables a knowledge engineer to
define the logical components of a data construct we refer
to as “Logic” (described below). When the engineer saves a
Logic, the Azure Data Pipelines API is called in the back
end to create an Azure-managed data pipeline. The pipeline
can be immediately executed or scheduled to run at a partic-
ular time or run when triggered by an event. When a data
pipeline is triggered, an instance of execution of the pipeline
is created. An executed data pipeline reads data from a
source, performs the appropriate transformation, stores it
in the i2b2 observation_fact table, and outputs logs.

2.1. Knowledge-Modeling GUI.We have implemented a con-
struct called Logic, which can be one of 4 types: (1) import-
logic: to import EHR data; (2) concept-hierarchy logic: for cre-
ating concepts, along with their standard codes in the i2b2
concept hierarchy; (3) code map logic: to map the imported
local data to a standard coding system; and (4) derived-con-
cept logic: to transform the imported data into clinical mean-
ingful “derived concepts.” Examples of the four types of
“Logics” are as follows:

(1) The Labs-Import import-logic sets up an Azure job to
query the staging repository for most of the labora-
tory data, which is inserted into the i2b2 database
including the fact, patient, provider, and encounter
tables

(2) The Lab-Hierarchy is a concept-hierarchy logic that
imports the LOINC coding system from UMLS to
create a concept hierarchy. For instance, it creates a
concept “Serum Glucose”: glucose [mass/volume]
within the i2b2 ontology under the heading of
“Serum or Plasma” with LOINC code 2345-7 as a leaf
node with path Labs/…/Serum Glucose

(3) The Serum-Glucose-Mapping is a concept-map logic
that maps the local codes for glucose to the LOINC
code 2345-7 and links the fact table to the standard
concept definition. It does so by extending the i2b2
hierarchy by adding the local codes as children of
the standard codes

(4) “Last-Serum-Glucose” is a derived-concept logic to
create a derived concept of the same name, where
the facts for serum glucose for each patient are sorted
by date, and the last one is copied as last serum
glucose

2.2. Logic Modality. The logics can be defined in one of four
modalities: Structured Query Language (SQL), a file follow-
ing the i2b2-cdi format, Python code (Pyspark), or Azure
Functions. Typically, SQL can be used to implement the
import-logics for data in a database source system (e.g.,

2 BioMed Research International



MIMIC-III). SQL can also be used to compute derived facts
(e.g., last serum glucose > 176mg/dl). Loading data from a
file compliant with the i2b2-cdi format will implement both
import-logic and local-concept-map logic using metadata
within the file. We recommend the use of Pyspark-based
algorithms for computing complex derived concepts like
for risk scores and machine learning models [8]. Simple
computations that complete within a few minutes can be
implemented with Azure Functions that can be written in
a variety of programming languages (e.g., Java, C#, and
TypeScript).

Knowledge engineering GUI supports creation of con-
cept and derived concepts as show in Figure 2 below.

Knowledge engineering GUI supports creation of a con-
cept as shown in Figure 3. Creation of a concept, e.g., LDL,
sets up an Azure Data Pipeline to ingest LDL data from
source system into the system. The below UI shows an exam-
ple of configuring the source system and query to extract data
from the source system incrementally, apply Azure Function
and code mapping to transform data, and store in the patient
data store.

Most of the fields are self-explanatory. Below are the ones
that need description:

(i) Extract query—query that will be used to extract
data from the source system

(ii) Algorithm—Azure function that can be used to
transform the incoming data

(iii) Concept Mapping—local to standard or standard to
local code mapping

(iv) Watermark Field Name—incremental loading

(v) Batch count—batch size that is used to read the data
from the source system

Knowledge engineering GUI supports creation of a
derived concept as show in Figure 4. Most of the fields are self
explanatory. Below are the ones that need description:

(i) Algorithm—Pyspark script that contains the
algorithm

Once a concept/derived concept is created, it is reusable
and can be used to build various cohorts using the query con-
struction GUI.

2.3. Query Construction GUI. Researchers can add the
concepts (standard and derived) defined by the knowledge
engineer to form filters/nodes that go into a flow diagram,
as shown in Figure 5.

HL7
messages

Azure Data Pipeline

Azure IOT Edge

Relational
database

Azure Blob Storage

Lookup

Stored
procedure

Copy

Foreach Axure Functions

Patient data
source

i2b2
Until Pyspark

Azure Blob Storage

Framework GUI

Framework API

Azure API

Figure 1: High-level technical block diagram.

Select Concept Type

Concept

Derived Concept

Concept Using Spark

Obtain data from the source database,
transform this data using azure functions
and store it in patient data store.

Aggregate data from the patient data
store to create new derived concepts e.g.
Last LDL

Create derived concepts using pyspark
based custom scripts

Next Cancel

Figure 2: Creating concepts and derived concepts.

3BioMed Research International



Note that sibling node represent “OR” condition and
children nodes represent “AND” in the cohort querying UI.
Within each node, several operators are supported, e.g., >,
<, and ≥, within a time window. Any complex query (e.g.,
algorithm, temporal, and exclusion) requires to be first
decomposed into constituent criteria, and then, the concepts
representing each criteria are selected in the GUI to build the
query.

2.4. Connection to Azure API. GUI uses the Azure Data Fac-
tory REST API to create Azure data jobs. Azure Data Factory
REST API is a cloud data integration service to compose data
storage, movement, and processing services into automated
data pipelines [9].

2.5. Azure Data Jobs. Azure data jobs are managed Azure
Data Pipelines that contain various activities like lookup
activity, copy data activity, and stored procedure activity that
are chained together. Azure Data Pipelines can be manually
triggered or can automatically run at specified frequency or
trigged based on an event. Azure Data Pipelines also provide
the ability to monitor the jobs and to view logs.

Concept Name Source Database

Select data source

Create Concept

Extract Query

Concept Code

Concept Mapping

select concept mapping

Watermark Field Name

Batch Count

Create Cancel

SELECT T.patient_num, T.provider_id,
T.encounter_num, T.concept_cd,
T.nval_num,T.tval_char, T.units_cd,
T.start_date, CAST(T.import_date AS
timestamp(2)) as import datr,

Concept Description

Algorithm

Select algorithm

Destination Database

select destination

Table Name

dbo.observation_fact

Schedule Pipeline

Figure 3: Creating a concept.

Concept Name

Create Concept With Spark

Concept Description

Algorithm

select algorithm

Schedule Pipeline

Create Cancel

Figure 4: Creating a derived concept using Pyspark.

4 BioMed Research International



2.6. Evaluation. To evaluate the performance of the system,
we imported a subset of the MIMIC-III dataset [10], using
the GUI to define Logics for importing the data, creating
derived facts, and for querying for diabetes patients.

We created an Azure SQL database with a Max storage
space of 250GB, on a standard S2 (50 data throughput unit)
pricing tier in the West US location. The source database
used for the evaluation was a Postgres database running on
CentOS7 on a machine with 8GB RAM and 2 CPUs on an
Azure VM.

MIMIC-III (Medical Information Mart for Intensive
Care III) dataset was loaded into the Postgres databases from
the SQL dump files following the documented installation
instructions [10]. MIMIC-III is a large, freely available data-
base comprising deidentified health-related data associated
with over 40,000 patients who admitted to critical care units
of the Beth Israel Deaconess Medical Center between 2001
and 2012. The database includes information such as demo-
graphics, vital sign measurements made at the bedside, labo-
ratory test results, procedures, medications, caregiver notes,
imaging reports, and mortality (both in and out of hospital).
We imported the diagnosis and laboratory records from this
dataset. The diagnoses were encoded using the International
Classification of Diseases version 9 (ICD-9) coding system,
and the laboratory records were encoded using “Logical
Observation Identifiers Names and Codes” (LOINC) coding
system.

3. Results

For querying for a cohort of diabetic patients from the
MIMIC-III dataset, we created Logics for importing relevant
data and for creating the required derived facts, as summa-
rized in Table 1. For example, the first row of table denotes

that SQL query for importing diagnosis is named Diagno-
sis-import, and catalogued with hierarchical path Import/-
Diagnosis-import. Execution of the system resulted in the
import of all of the 651,047 diagnoses and 27,854,055 labora-
tory records from the MIMIC-III dataset. Table 2 shows the
criteria for the diabetes cohort.

The flow diagram resulting from the query for the diabe-
tes cohort is shown in Figure 6 below. It shows the criteria as
nodes along with the count of patients that matched the cri-
teria. Selection of a node expands the view in the right pane
which shows the details of the patients that matched the cri-
teria. Clicking on a particular patient row gives the entire
patient chart for the selected patient.

4. Discussion

We evaluated our system for querying the MIMIC-III dataset
for diabetes patients. The results demonstrate that the “Logic
construct” is useful to capture the knowledge required to
import data from an external repository and to transform it
into a query-friendly form and that the GUI successfully pro-
vides the functionality to visualize the results of a cohort
query [11]. The four Logic types cover the process of moving
the data into the i2b2 repository, while mapping it to stan-
dard vocabulary and transforming it into clinically meaning-
ful intermediate “derived” concepts that are semantically
closer to the target query.

4.1. Data Transformations. Our system presents an imple-
mentation of “derived concepts” that were introduced in
our previous work. The primary advantage of derived con-
cepts, in the context of querying, is that they allow a complex
query to be broken down into modular components. With-
out the “derived concepts,” it would be very difficult (if not

LAST2FBSS126
Get all records

Append Existing Cohort

Diabetes Cohort

Append Cohort

Cohort :

Add/Delete Node

Parent :

Concept :

Operator :

Value :

Time : 180

Add Node

Delete Selected Node

Save Graph as Cohort

Days

Get all records

DIABETES

LAST2FBS126 Get all rec
LASTHBA1C > 6.4

DIABETES
Get all records

[182]

Figure 5: Graphical user interface for cohort querying. The flow diagram shows each node in the selection criteria.

5BioMed Research International



impossible, given the limitations of the i2b2 query tool) to
execute the query for a diabetes cohort described in this man-
uscript. For instance, is it nontrivial to define the criteria of
“Last HbA1c” using the temporal querying capability of the
i2b2 web client. Moreover, each of the criteria would have
to be defined as queries in themselves and then joined into
a compound query by dragging the query components into
the web client query windows. Hence, by availing assistance
from the knowledge engineer who can create the required
derived concepts, the clinical user can easily build complex
queries that were not possible before.

However, the creation of derived concepts requires them
to be defined in one of the implementation modalities, which
is beyond the expected knowhow of a typical “clinical” user
desirous of querying the i2b2 instance. We anticipate the
derived concept queries to be created by the knowledge engi-
neer and then precomputed and made available for querying
by the primary users. Consequently, a disadvantage of this
approach is that the advanced querying capabilities of pri-
mary users are limited to the availability of a set of predefined
derived concepts created by the knowledge engineer. This
can, however, also be viewed as an advantage, as it encour-
ages standardization and correctness of the underlying con-
cepts. Currently, only the knowledge engineer can define
the derived concepts, although we anticipate that this will
translate to a privileged role that can be assigned to primary
users who have the technical knowhow to create derived
concepts.

4.2. Reusability. As mentioned above, the derived concepts
created by the knowledge engineer are available to the pri-

mary user to build queries from. The derived concepts cre-
ated for a particular use case or project may likely be useful
for other projects.

4.3. Clinical Inference Layer. Derived concepts essentially
embed medical knowledge that yields an inference layer in
the form of inferred/derived facts around the raw patient
data. For instance, the knowledge that last HbA1C > 6:4%
is a clinically significant fact and that it is indicative of diabe-
tes is available for the primary user in the form of derived
concepts with canonical paths: /Derived/Labs/Blood/Chem-
istry/HbA1c/LastHbA1c>percent and /Derived/Diagnosis/-
Diabetes/lastHbA1c>6.4%, respectively.

4.4. Manage Complexity. The extract, transform, and load
(ETL) process for creating an i2b2 repository is inherently
complex as multiple sources and transformations are
involved. Our system decomposes the entire process into
named components that are organized in a “Logic hierarchy”
which facilitates code organization and debugging.

As shown in Table 1, the path of each “logic” component
is used to create a hierarchical catalogue that helps find the
component.

4.5. Automated Orchestration. A key feature of our system is
that the GUI enables the authoring of the components needed
to move and transform the data. The web services orchestrate
the creation, execution, and destruction of processes to exe-
cute the data movement and transformations. In the absence
of the Azure data pipe services, the Health IT teamwould need
to write the programs to create daemons for accomplishing the
above tasks and would also need to perform the “devops” tasks
to create andmanage the computational environment for run-
ning the daemons [6, 12]. Use of cloud services minimizes the
need for writing programs for orchestration of the data pro-
cessing and management of the compute environment, which
significantly reduces manual programming effort.

4.6. Cohort Visualization. Our evaluation also demonstrates
(see video at link <https://www.youtube.com/watch?v=
4mCZRAFI_9U>) that the query GUI successfully provides

Table 1: Logic definitions.

Logic type Name Logic path
Modality of

implementation

Import Diagnosis-import Import/Diagnosis-import SQL query

Import Labs-import Import/Labs-import SQL query

Concept hierarchy Diagnosis hierarchy Concept_Hierarchy/Diagnosis-hierarchy Tab separated file

Concept hierarchy Labs hierarchy Concept_Hierarchy/Labs-hierarchy Tab separated file

Derived concept:
Boolean

Diagnosis-diabetes Derived_Concept/Diagnosis-Diabetes SQL query

Derived concept:
numeric

Last HbA1c Labs/BloodTest/Chemistry/HbA1c/Last HbA1c SQL query

Derived concept:
numeric

Serum glucose Labs/BloodTest/Chemistry/Glucose/Last-Glucose SQL query

Derived concept:
Boolean

Last two consecutive serum
glucose > 126

Labs/BloodTest/chemistry/glucose/last-
twoSerumGlucose/LastTwoSerumGlucose_> _126 SQL query

Table 2: Diabetes cohort criteria.

Rationale for filter Description for filter

Based on ICD9 codes Diagnoses code of diabetes

Based on serum glucose
Last two consecutive serum

glucose > 126
Based on HbA1c LastHbA1c > 6:4

6 BioMed Research International

https://www.youtube.com/watch?v=4mCZRAFI_9U
https://www.youtube.com/watch?v=4mCZRAFI_9U


the drag and drop functionality to create a flow diagram that
shows the effect of query criteria, as attritions in patient
counts. For instance, the flow diagram in the diabetes exam-
ple query that we generated shows that the query by diagnos-
tic codes yields a large number of patients, as it has high
recall. Querying by stringent criteria like using the last HbA
1C > 9:4%, yields a smaller set that is expected to have high
positive predictive value. Adding a criteria like “last two
serum glucose > 120” further improves the precision at the
cost of recall. The investigator can decide on the precision
of the query and choose the suitable criteria using the flow
diagram as a guide. While querying by the individual criteria
is possible using the i2b2 web client, our GUI provides rapid
insight about the query performance by generating the flow
diagram.

4.7. Cloud Service Provider. Although we have utilized the
Azure cloud service to develop our system, we anticipate that
our system can be adapted or ported to data processing ser-
vices on the Google and Amazon cloud using the data pipe-
line constructs in the respective cloud [13].

4.8. Limitations. A limitation of our evaluation is that we did
not evaluate the “local-concept-map” Logic, as the MIMIC-

III dataset already has standard codes for diagnosis and
laboratory result, i.e., ICD and LOINC, respectively. Sec-
ond, we limited our derived concepts to simple rules
although machine learning models can be modeled using
our current implementation mechanism [14]: our system
supports machine learning via Pyspark-based algorithms
that can run within a data pipeline. Our systems provide
the mechanism to execute a programming script that
results into a derived fact for each patient. This functional-
ity can be used to deploy machine learning models. For
instance, models to compute risk score of a particular dis-
ease can be deployed.

Third, we have currently not addressed the problem of
circular dependency that can arise when two derived con-
cepts are defined as referencing each other. Fourth, we expect
that the i2b2 repository generated by our system will seam-
lessly integrate with the i2b2 wildfly services and will be
queryable using the web client; but we have not validated this
currently.

Finally, we have limited our evaluation to test the func-
tional aspects of the system. A rigorous usability evaluation
is required with real-world use cases to determine if the sys-
tem truly can reduce the manual effort to load and transform
EHR data into i2b2 and whether the flowchart query

Diabetes Cohort
v1

Patient
Id

LAST2FBS126
Get all records
Count = 1569

LASTHBA1C > 6.4
Count = 3

DIABETES
Get all records

[182]
Count = 0

1

7

12

17

20

32

33

34

44

50

51

1 2 3 4 5

47

First Name

Cody

Milton

Bessie

Travis

Ryan

Andrew

Ina

Cody

Nettie

Cole

Cody

Cole

Warner

Lewis

Marshall

McKinney

Leonard

Jenkins

Spencer

Brock

Patrick

McKinney

Lee

Fuller

17

32

16

20

38

74

102

102

8

32

74

101

Last Name Age

LAST2FBS126 Get all
records Count= 1569

Figure 6: Flow diagram summarizes the result of the query, where each node shows the patient count resulting from filters in the current node
and parent.

7BioMed Research International



interface can augment the search capabilities already pro-
vided by the i2b2 web client.

5. Concluding Remarks and Future Work

We have implemented a system that allows the knowledge
engineer to define the components needed for importing
EHR data and for transforming it into a form that facilitates
querying. As the defined components are automatically con-
verted into processes managed by the cloud service, our sys-
tem significantly reduces the need for manual programming
and for managing the compute environment. The systems’
graphical interface facilitates querying for patient cohorts,
by providing a quantitative visualization of the query results
as a flow diagram. The design of the system will inform other
implementations and tools for patient cohort identification.
Our future work includes evaluation of usability of the sys-
tem in a real-world setting and benchmarking the scalability
of the system on larger datasets.

Data Availability

The data used in this paper is available on request at https://
mimic.physionet.org/.

Disclosure

The reported content is solely the responsibility of the
authors and does not necessarily represent the official views
of the National Institutes of Health.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This work was supported by the National Institutes of
Health (award numbers R00-LM011575, R01-HG009174,
and R01HL151643), Partners Healthcare, and Persistent
Systems.

References

[1] K. B. Wagholikar, M. Mendis, P. Dessai et al., “Automating
Installation of the Integrating Biology and the Bedside
(i2b2) platform,” Biomedical Informatics Insights, vol. 10,
p. 117822261877774, 2018.

[2] S. N. Murphy, G. Weber, M. Mendis et al., “Serving the enter-
prise and beyond with informatics for integrating biology and
the bedside (i2b2),” Journal of the AmericanMedical Informat-
ics Association : JAMIA, vol. 17, no. 2, pp. 124–130, 2010.

[3] A. J. McMurry, S. N. Murphy, D. MacFadden et al., “SHRINE:
Enabling Nationally Scalable Multi-Site Disease Studies,” PLoS
ONE, vol. 8, no. 3, p. e55811, 2013.

[4] G. M. Weber, S. N. Murphy, A. J. McMurry et al., “The Shared
Health Research Information Network (SHRINE): a prototype
federated query tool for clinical data repositories,” Journal of
the American Medical Informatics Association : JAMIA,
vol. 16, no. 5, pp. 624–630, 2009.

[5] A. Abend, D. Housman, and B. Johnson, “Integrating clinical
data into the i2b2 repository,” Summit Transl Bioinform,
vol. 2009, pp. 1–5, 2009.

[6] K. B. Wagholikar, P. Dessai, J. Sanz, M. E. Mendis, D. S. Bell,
and S. N. Murphy, “Implementation of informatics for inte-
grating biology and the bedside (i2b2) platform as Docker con-
tainers,” BMC Medical Informatics and Decision Making,
vol. 18, no. 1, p. 66, 2018.

[7] K. B. Wagholikar, L. Ainsworth, V. P. Vernekar et al., “Extend-
ing i2b2 into a framework for semantic abstraction of EHR to
facilitate rapid development and portability of health IT appli-
cations,” in AMIA Joint Summits on Translational Science pro-
ceedings AMIA Summit on Translational Science, vol. 2019,
pp. 370–378, 2019.

[8] K. B. Wagholikar, H. Estiri, M. Murphy, and S. N. Murphy,
“Polar labeling: silver standard algorithm for training disease
classifiers,” Bioinformatics, vol. 36, no. 10, pp. 3200–3206,
2020.

[9] Azure Data Factory documentation and Microsoft, 2019,
https://docs.microsoft.com/en-us/azure/data-factory/.

[10] A. E. W. Johnson, T. J. Pollard, L. Shen et al., “MIMIC-III, a
freely accessible critical care database,” Scientific Data, vol. 3,
no. 1, 2016.

[11] D. R. Harris and D. W. Henderson, “i2b2t2: unlocking visual-
ization for clinical research,” in AMIA Joint Summits on
Translational Science proceedings AMIA Summit on Transla-
tional Science, vol. 2016, pp. 98–104, 2016.

[12] G. Fylaktopoulos, G. Goumas, M. Skolarikis, A. Sotiropoulos,
and I. Maglogiannis, “An overview of platforms for cloud
based development,” Springerplus, vol. 5, no. 1, 2016.

[13] AWS Data Pipeline and Amazon, 2019, https://aws.amazon.
com/datapipeline/.

[14] K. B. Wagholikar, C. M. Fischer, A. P. Goodson et al., “Pheno-
typing to facilitate accrual for a cardiovascular intervention,”
Journal of clinical medicine research, vol. 11, no. 6, pp. 458–
463, 2019.

8 BioMed Research International

https://mimic.physionet.org/
https://mimic.physionet.org/
https://docs.microsoft.com/en-us/azure/data-factory/
https://aws.amazon.com/datapipeline/
https://aws.amazon.com/datapipeline/

	Cloud Services for Patient Cohort Identification Using the Informatics for Integrating Biology and the Bedside Platform
	1. Introduction
	2. Methods
	2.1. Knowledge-Modeling GUI
	2.2. Logic Modality
	2.3. Query Construction GUI
	2.4. Connection to Azure API
	2.5. Azure Data Jobs
	2.6. Evaluation

	3. Results
	4. Discussion
	4.1. Data Transformations
	4.2. Reusability
	4.3. Clinical Inference Layer
	4.4. Manage Complexity
	4.5. Automated Orchestration
	4.6. Cohort Visualization
	4.7. Cloud Service Provider
	4.8. Limitations

	5. Concluding Remarks and Future Work
	Data Availability
	Disclosure
	Conflicts of Interest
	Acknowledgments

