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Abstract

RNA-binding proteins (RBPs) bind to their target RNA molecules by recognizing specific RNA sequences and structural
contexts. The development of CLIP-seq and related protocols has made it possible to exhaustively identify RNA
fragments that bind to RBPs. However, no efficient bioinformatics method exists to reveal the structural specificities of
RBP–RNA interactions using these data. We present CapR, an efficient algorithm that calculates the probability that
each RNA base position is located within each secondary structural context. Using CapR, we demonstrate that several
RBPs bind to their target RNA molecules under specific structural contexts. CapR is available at https://sites.google.
com/site/fukunagatsu/software/capr.

Background
RNA-binding proteins (RBPs) play integral roles in var-
ious post-transcriptional regulatory processes, including
the splicing, processing, localization, degradation and
translation of RNA molecules [1]. RBPs typically con-
tain a limited set of RNA-binding domains, such as the
RNA recognition motif and K homology domain, and
they must bind to specific RNA molecules to function.
The human genome contains more than 400 annotated
RBPs [2]. Although most of these RBPs are still poorly
characterized, it is known that the dysfunction of certain
RBPs causes severe diseases, such as neurodegenerative
disorders, heart failure and cancers [3,4]. RBP–RNA inter-
actions and their specificities are important for under-
standing the complex gene regulatory networks and the
mechanisms of human diseases.
Recent advances in ‘ribonomic’ technologies, such

as cross-linking immunoprecipitation high-throughput
sequencing (CLIP-seq, also referred to as HITS-CLIP)
[5], individual-nucleotide resolution CLIP (iCLIP) [6],
and photoactivatable-ribonucleoside-enhanced CLIP
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(PAR-CLIP) [7], have enabled the study of RBP–RNA
interactions, both on a genomic scale and at high
resolution. The use of microarrays in the classical
RNA-binding protein immunoprecipitation microarray
(RIP-Chip) method [8] prevented the precise identifi-
cation of binding sites. In contrast, CLIP-seq methods
bond an RBP and RNAs covalently by ultraviolet cross-
linking, collect them by immunoprecipitation and directly
sequence the RBP-bound sites of the RNAs. Using these
technologies, researchers can identify sequential RNA
motifs that are over-represented around the binding
sites of each RBP using bioinformatics methods sim-
ilar to those used for analyzing transcription-factor
binding DNA motifs [9]. Such sequential motifs are
often very short (up to ten bases), and there are many
unbound sites that have the same motif. Thus, sequential
motifs alone cannot explain the specificity of RBP–RNA
interactions.
RBPs bind to their target RNA molecules by recogniz-

ing specific RNA sequences and their structures. Sev-
eral studies have addressed this issue by calculating the
accessibility of RNA regions around the RBP-binding
sites [10]. Here, the accessibility of an RNA region is
defined by the probability that the region exhibits a single-
stranded conformation. Theoretically, the accessibility
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can be efficiently and exactly calculated using an energy
model of RNA secondary structures [11,12]. Double-
helical RNAs usually form the A-form helical structure,
whose major grooves are too narrow to be accessed by
RBPs [13], and Li et al. showed that the accessibilities tend
to be high around the RBP-bound motif sites by analyzing
RIP-Chip data [10]. However, it is not sufficient to con-
sider accessibility alone in analyzing the structure-specific
target recognition by RBPs. For example, Vts1p, which is
a yeast RBP regulating mRNA stability, binds to its target
CNGG sequential motif when it is located within hair-
pin loops but not when it is located in single-stranded
regions or other structures [14,15]. The human FET family
of proteins, whose mutations are associated with amy-
otrophic lateral sclerosis, bind to its target sequential
UANnY motif within hairpin loops [16]. Computational
methods for calculating the secondary structural contexts
of RNA molecules, such as bulge loops, hairpin loops and
stems, are required to uncover the characteristics of the
RNA structures that are recognized by the RBPs in vivo.
In the present study, we developed an efficient algorithm

that calculates the probabilities that each RNA base posi-
tion is located within each secondary structural context.
Six contexts of RNA secondary structures were taken into
account, according to the well-established Turner energy
model of RNAs [17]. These structures included stems (S),
hairpin loops (H), bulge loops (B), internal loops (I), multi-
branch loops (M) and exterior loops (E) (see Figure 1).
We defined a structural profile of an RNA base as a set of

Figure 1 Visual representation of the six structural contexts. The
six structural contexts are represented by six colors: stems (red),
exterior loops (light green), hairpin loops (purple), bulge loops (pink),
internal loops (blue) and multibranch loops (green). The unstructured
context is the union of the exterior and multibranch loops. These
colors are used throughout the paper.

six probabilities that the base belongs to each context. At
present, Sfold [18] is the only software that can calculate
a structural profile. Sfold cannot be readily applied to
tens of thousands RNA fragments because it uses a sta-
tistical sampling method that requires huge sample sizes
and computational costs, particularly when analyzing long
RNAs or mRNAs. We implemented our efficient algo-
rithm as software named ‘CapR’, which can compute the
structural profiles for tens of thousands of long RNAs
within a reasonable time by enumerating all the possible
secondary structures of the RNAs.

Results
Methods overview
We have developed a new algorithm that calculates the
structural profiles of any RNA sequence based on the
Turner energy model with time complexity O(NW 2) [17].
Here, N is the input sequence length and W is the
maximal span, which is a given parameter of the maxi-
mal length between the bases that form base pairs. The
parameter W was introduced because considering very
long interactions does not improve the accuracy of the
secondary structure predictions but does increase the
computational costs [19].
Let x be an RNA sequence of length N and σ be a

possible secondary structure on x without pseudoknots.
We refer to a base in x as stem if it forms a base pair
with another base, and represent it using the character
S. Single-stranded bases are categorized into five struc-
tural contexts, namely, bulge loop (represented by B),
exterior loop (E), hairpin loop (H), internal loop (I) and
multibranch loop (M), which are defined as follows. In a
secondary structure representation, RNA bases are ver-
tices of polygons whose edges are the RNA backbone
or hydrogen bonds, which are shown as solid or dotted
lines, respectively, in Figure 1. The exterior loop context
is given to single-stranded bases if they do not form poly-
gons. The hairpin loop context is given to single-stranded
bases if they form a polygon that has a single hydrogen
bond. The bulge and internal loop contexts are given to
single-stranded bases if they form a polygon that has two
hydrogen bonds, which are connected by a single back-
bone edge for bulge loops and which are not connected
by a single backbone edge for internal loops. Finally, the
multibranch loop context is given to single-stranded bases
if they form a polygon that has more than two hydro-
gen bonds. Note that for a given secondary structure σ ,
any base of x is unambiguously classified as one of the six
structural contexts. Additionally, we define unstructured
(U) to represent collectively the exterior and multibranch
loop contexts.
We assume that the probability distribution of the sec-

ondary structures follows the Boltzmann distributionwith
respect to the Turner energy model [17]. The probability
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p(i, δ) that a base at position i has the structural context
δ ∈ {B, E,H , I,M, S} is given by

p(i, δ) = 1
Z(x)

∑
σ∈�(i,δ)

exp (−�G(σ , x)/RT)

Z(x) =
∑

σ∈�0

exp (−�G(σ , x)/RT)

where �G(σ , x) is the difference of the Gibbs energies of
the given structure σ and the structure σ0 that contains
no base pairs, R is the gas constant and T is the temper-
ature (we used T = 310.15 K in this study). �0 is the set
of all the possible secondary structures of x, and �(i, δ) is
the set of all the possible secondary structures in which
the base at position i is in the structural context δ. Then,
the structural profile of i is defined as the probabilities
of the structural contexts {p(i, δ)|δ ∈ {B, E,H , I,M, S}}.
Note that the structural profile satisfies the probability
condition

∑
δ p(i, δ) = 1.

Our algorithm efficiently calculates structural profiles
by referring to the Rfold model, which is a variant of the
stochastic context-free grammar (SCFG) that calculates
all the RNA secondary structures without redundancy
[20]. In formal language theory, the RNA secondary struc-
tures without pseudoknots are modeled by SCFG [21].
While the state transition rules of the Rfold model contain
seven non-terminal symbols, our algorithm associated
them with the six structural contexts. The details of the
algorithm, which is a variant of the inside-outside algo-
rithm of SCFG, are given in the Materials and methods
section.

Influence of themaximal span and the GC content on the
structural profile calculations
Before we investigated the structure-specific target recog-
nition by RBPs, we evaluated the performance of CapR.
Because we introduced the maximal span W, we needed
to investigate an appropriate range for this parameter.
Because GC content is known to affect the RNA sec-
ondary structures, its effect was also analyzed.
To investigate the dependence on the maximal span

W, we applied CapR to 1,000 random RNA sequences of
2,000 nucleotides with a fixed GC content (GC = 0.5).
Figure 2A shows how the proportions of the calculated
structural profiles depend on W. As expected, if W is
small, the predictions are dominated by exterior loops
because few bases form base pairs under this condition.
Whereas the probabilities for bulge loops, hairpin loops,
internal loops and stems are relatively stable forW ≥ 100,
the exterior loop probabilitiesmonotonically decrease and
themultibranch loop probabilitiesmonotonically increase
with increasing W. This is because at large W new base
pairs form in exterior loops and exterior loops turn into
multibranch loops. On the other hand, the probabilities

of the unstructured context, which collectively represents
the exterior andmultibranch loop contexts, are insensitive
toW (Additional file 1: Figure S1). Therefore, the unstruc-
tured context can be adopted instead of the exterior and
multibranch loop contexts to avoid the influence of the
parameterW, if a discrimination of the two contexts is not
critical.
Although Kiryu et al. revealed the dependence of the

accessibilities on the GC content [12], the dependence
of structural profiles on the GC content has not been
investigated. We investigated the dependence on the
GC content by applying CapR to 1,000 random RNA
sequences of 2,000 nucleotides with a fixed maximal span
(W = 100). Figure 2B shows how the proportions of the
computed structural profiles depend on the GC content.
The stem probability is high and the unstructured prob-
ability is low with a high GC content, probably because
the energy of the G-C pairs is larger than that of the A-U
pairs and palindromic sequences are more likely to occur
in the high-GC background. This result suggests that
users should carefully interpret the results when analyzing
RNAs with biased GC content.

Performance of CapR
We evaluated the speed of CapR by comparing its compu-
tational run-time with that of Sfold. The input sequences
were generated randomly with equal probabilities of A,
C, G and U. For Sfold, the number of sampled structures
was set to its default value (1,000). The computation was
performed on an AMD Opteron 6276 2.3 GHz with 1 GB
memory. Figure 3A shows the computational run-times,
which depended on the maximal span W and sequence
lengths. In all cases, CapR was much faster than Sfold.
Sfold could not run for N ≥ 4, 000 while CapR did for
N = 10, 000. These results show that CapR can compute
structural profiles for long RNAs within a reasonable time.
Next, we evaluated the accuracy of the structural pro-

files computed by CapR using 8,775 RNA genes that have
experimentally validated secondary structure annotations
in the Rfam database [22]. We set W = 800 to allow for
stem-forming of the base pairs with the longest distance
observed in the Rfam dataset. To estimate the accuracy
of the structural profiles, we calculated the area under
the receiver operating characteristic curve (AUROC) for
each structural context. Briefly, the AUROC is high if the
probability p(i, δ) for the structural context δ annotated in
Rfam is high.
Table 1 and Figure 3B show the AUROC values and the

receiver operating characteristic curves, respectively. The
AUROC value for each structural context was larger than
0.75, indicating that the computed structural profiles were
very consistent with the Rfam annotation. For example,
the structural profile of transfer RNAs (tRNAs), whose
secondary structures are well characterized, is shown in
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Figure 2 Dependence of the structural profiles on the maximal spanW and GC content. (A) Dependence of the structural profiles on the
maximal spanW. The x-axis represents the maximal spanW. The y-axis represents the averaged p(i, δ) over all the nucleotides. (B) Dependence of
the structural profiles on the GC content. The x-axis represents the GC content. The y-axis represents the averaged pδ(i) over all the nucleotides. The
unstructured context is represented by light blue. B, bulge loop; E, exterior loop; H, hairpin loop; I, internal loop; M, multibranch loop; S, stem; U,
unstructured.

Figure 3C. Each line represents averaged probabilities that
each base belongs to each structural context across all
tRNA genes in the Rfam dataset. Probabilities of the stem,
hairpin loop, multibranch loop and exterior loop contexts
were high at the corresponding parts of the tRNA clover-
leaf structure (Figure 3D). Calculated structural profiles
are interpreted by considering that stem probabilities
tend to be overestimated by the Turner energy model.
In the tRNA example, the calculated stem probabilities
were slightly higher than the multibranch loop probabil-
ities at positions 25, 43 and 44, which are annotated as
multibranch loops in Rfam.
Finally, the same analysis was conducted using Sfold,

and the accuracies of the structural profiles predicted by
CapR and Sfold were compared. The accuracies of CapR
were comparable to those of Sfold (Table 1).

Datasets andmethods used in the CLIP-seq data analysis
Because it was shown that CapR is accurate in calcu-
lating structural profiles of RNA molecules, we applied
it to several CLIP-seq datasets to reveal the structural
specificities of RBP–RNA interactions. For the sub-
sequent analyses, we downloaded CLIP-seq data of
RBP-bound RNAs from the doRina database [23], and
selected ten RBPs: GLD-1 (nematode), QKI (human),
Pum2 (human), SRSF1 (human), Nova (mouse), Lin28A
(mouse), FXR1 (human), FXR2 (human), FMR1_7
(human) and FMR1_1 (human) [7,24-28] (refer to
Materials and methods for the criteria for the data
selection). FMR1_7 and FMR1_1 are two splicing iso-
forms of FMR1. RBPs with two known sequential motifs
(FXR1, FXR2, FMR1_7 and FMR1_1) were analyzed sep-
arately for each of the motifs. Hereafter, these cases are

represented by the protein names with their sequential
motifs: FXR1(ACUK), FXR1(WGGA), FXR2(ACUK),
FXR2(WGGA), FMR1_7(ACUK), FMR1_7(WGGA),
FMR1_1(ACUK) and FMR1_1(WGGA).
We created one positive dataset and two negative

datasets for each of these 14 cases. The positive dataset
was a collection of transcribed sequences of ±2, 000
nucleotides around each RBP-bound site. The RBP-bound
sites were defined as sites of sequential motifs within
the CLIP-seq peak regions. The two negative datasets
are referred to as the unbound and shuffled datasets.
The unbound dataset was a collection of transcribed
sequences of ±2, 000 nucleotides around a sequential
motif site that was in the same transcriptional unit and
within ±1, 000 nucleotides of any RBP-bound site, but
was not an RBP-bound site. In short, this dataset repre-
sents the sequential motif sites that are transcribed but
unbound by the RBP. The shuffled dataset was generated
by randomly shuffling each of the upstream and down-
stream sequences of each RBP-bound site by preserving
nucleotide di-nucleotide frequencies for every sequence
in the positive dataset. Thus it represents the sequential
motif sites flanked by sequences with preserved sequence
compositions. The details of the datasets are described in
the Materials and methods section.
We calculated the structural profiles of the positive,

unbound and shuffled datasets for each of the RBPs
(W = 200). Then, to evaluate the structural contexts that
are significant in the positive dataset statistically, we
defined a P score as follows. First, we calculated a P
value using the one-sidedWilcoxon–Mann–Whitney test
for each side for each position. Second, we selected the
smaller P value of the two hypotheses and transformed it
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Figure 3 Performance of CapR. (A) Computational run-times for different values of maximal spanW and sequence length N. The x-axis represents
the sequence length N. The y-axis represents the computational run-time. (B) The receiver operating characteristic curve for each loop context. The
x-axis represents 1-specificity and the y-axis represents the sensitivity. The specificity and sensitivity are defined as true positive/(true positive + false
negative) and true negative/(true negative + false positive), respectively. (C) The structural profiles of tRNAs. The x-axis represents the nucleotide
positions from 5′ to 3′. The y-axis represents averaged probabilities that each base belongs to each structural context across all tRNA genes in the
Rfam dataset [22]. The black boxes represent the nucleotides annotated as stem in Rfam. (D) tRNA cloverleaf structure annotated in Rfam. B, bulge
loop; E, exterior loop; H, hairpin loop; I, internal loop; M, multibranch loop; S, stem.

into − log10 P, which we designated the P score. Third, if a
P score was calculated under the hypothesis that each con-
text probability of the positive dataset was smaller than
that of the negative dataset, we changed the sign of the P
score. For example, a large positive P score indicates that
the probability of that structural context is significantly
larger in the positive dataset. Finally, the two P scores cal-
culated for the two negative datasets were compared for
each position, and the smaller P score was taken (if one
P score was positive and the other was negative, we used
0 instead of the two P scores). Note that the Bonferroni

Table 1 AUC score of each structural context

Software Bulge Exterior Hairpin Internal Multibranch Stem

CapR 0.847 0.866 0.890 0.765 0.852 0.805

Sfold 0.842 0.817 0.890 0.769 0.853 0.804

correction was used for multiple testing. To avoid the
effects of the artificial value selection for the parameterW,
we used the unstructured context instead of the exterior
and multibranch loop contexts in the following analysis.
We confirmed that the choice ofW actually did not affect
the results (Additional file 1: Figure S2).

Specific RNA structural contexts recognized by
RNA-binding proteins
We investigated the preferred RNA structural contexts
for each RBP and revealed that most RBPs prefer a spe-
cific structural context (Figure 4 and Additional file 1:
Figure S3). Our method was robust regarding the selec-
tion of the negative datasets, because selecting the larger
P scores did not affect the results overall (Additional file 1:
Figures S4 and S5). Among the 14 cases analyzed, six cases
showed a preference for the unstructured context (GLD-1,
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Figure 4 The distribution of the P scores for each RNA-binding protein. The x-axis represents the nucleotide positions and the y-axis represents
the P score of ±20 bases around the sequential motif site. The position 0 denotes the start position of the sequential motif. Positive P scores for each
structural context indicate that the positions tend to prefer the structural context. The black box represents the sequential motif site. The dotted
lines show the corrected significance levels of the Bonferroni correction (α = 0.05). The panels represent the distribution of P scores for (A) QKI, (B)
Pum2, (C) Lin28A, (D) FXR2(WGGA), (E) FMR1_7(ACUK), (F) FXR2(ACUK), (G) Nova and (H) SRSF1. B, bulge loop; H, hairpin loop; I, internal loop; S,
stem; U, unstructured.
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QKI, SRSF1, Nova, FXR1(ACUK) and FXR2(ACUK)).
Except for Nova, the RBP-bound sites tended to form the
unstructured context, but did not show preferences for
the bulge, internal or hairpin loop contexts (Figure 4A and
Additional file 1: Figure S3). It should be noted that these
results could not be obtained by analyzing the accessi-
bility alone, which does not discriminate between these
non-stem contexts.
Pum2 showed a preference for the hairpin loop context

(Figure 4B). To our knowledge, this is the first report of
the structural preference for the hairpin loop context by
Pum2, which is known to be involved in germ cell devel-
opment [29]. Lin28A showed preferences for the hairpin
and internal loop contexts (Figure 4C). Lin28A is known
to inhibit the maturation of let-7 miRNAs and the trans-
lation of mRNAs that are destined for the endoplasmic
reticulum [27]. The specificity of Lin28A to the hairpin
loop context is consistent with the previous study [27].
In addition, our result is the first to suggest that Lin28A
prefers the internal loop context in mRNA binding, and
Lin28A has been reported to bind to the internal loop of
let-7 miRNAs [27].
FXR1(WGGA), FXR2(WGGA) and FMR1_7(WGGA)

showed preferences for the stem context (Figure 4D and
Additional file 1: Figure S3), although RBPs were con-
sidered to be unlikely to be bound to the stem regions
of RNAs as already mentioned. These three RBPs (and
FMR1_1) aremembers of the FMRP family and are known
to be responsible for the fragile X syndrome. Darnell
et al. showed that FMRP-bound WGGA sites tend to
form a G-quadruplex, which is composed of guanine-rich
sequences forming a four-stranded RNA structure [30].
We suppose that the preference for the stem contexts
could reflect the tendency that these family members rec-
ognize the G-quadruplex; however, this should be investi-
gated further as currently our energy model and grammar
cannot deal with G-quadruplexes.
FMR1_7(ACUK) showed preferences for the internal

and bulge loop contexts (Figure 4E). To our knowl-
edge, this is the first report of the structural specificities
of FMR1. In contrast, FXR2(ACUK), where FXR2 is a
homolog of FMR1, preferred neither the internal nor
bulge loop context (Figure 4F). FMR1_7 has an exon inser-
tion in its K homology domain that recognizes the ACUK
sequential motifs [28]. This insertion appears to under-
lie the differences in the structural specificity between
FMR1_7(ACUK) and FXR2(ACUK).

Positional preferences in the RNA structure recognition by
RNA-binding proteins
The present understanding of the structural specifici-
ties of RBP–RNA interactions overlooks structures of
the flanking sequences of RBP-bound sites. Therefore,
we investigated the secondary structures not only of the

RBP-bound sites but also of their flanking sequences.
In fact, the positions with the highest P scores were
not within the RBP-bound sites in some RBPs. QKI
(Figure 4A), Nova (Figure 4G) and SRSF1 (Figure 4H)
preferred the unstructured context. High P scores were
observed within the RBP-bound sites for SF2ASF, whereas
they were observed in the flanking and upstream
sequences for QKI and Nova, respectively. These results
suggest that RBPs also recognize specific structures exist-
ing outside of sequential motif sites, and CapR can
uncover these positional preferences from ribonomic
datasets.
Figure 5A,B shows the nucleotide compositions around

the RBP-bound sites of QKI and Nova. The flanking
sequences of QKI-bound siteswere guanine poor, whereas
those of Nova-bound sites were uracil rich. Because
sequences with low GC content tend to form an unstruc-
tured context, the aforementioned positional preferences
could be generated by the biased nucleotide composi-
tions. To address this possibility, we investigated the rela-
tions between the nucleotide compositions and structural
specificities in the flanking sequences. We generated par-
tially shuffled datasets by randomly shuffling sequences
outside of the ±5 or 10 nucleotides of the RBP-bound
sites with preserving di-nucleotide frequencies, and com-
pared their structural profiles with those of the posi-
tive datasets using the Wilcoxon–Mann–Whitney test.
Then, the P scores for the shuffled and partially shuf-
fled datasets were compared (Figure 6A,B). For QKI,
whereas the shuffled dataset had positional preferences
in the flanking sequences, the partially shuffled datasets
had no significant preferences. This means that the struc-
tural specificities of QKI could be generated by the biased
nucleotide compositions in the flanking sequences. For
Nova, the partially shuffled datasets still had significant
P scores upstream of the RBP-bound sites. Therefore,
the nucleotide compositions in the flanking sequences
alone cannot generate the positional specificities of Nova,
that is, sequences in distant regions could also con-
tribute to the position-specific RNA binding of Nova. The
nucleotide compositions around the RBP-bound sites and
the analyses of the partially shuffled datasets of other
RBPs are described in Additional file 1: Figures S6 and S7,
respectively.

Discussion
In this study, we developed an efficient algorithm that cal-
culates the structural profiles of RNAs, and implemented
it as CapR. It is the fastest software that can be applied to
tens of thousands of long RNAs.
Using CapR, we investigated structural specificities of

RBP target recognition using several CLIP-seq datasets.
Our analysis revealed that most RBPs prefer specific
structural contexts and some RBPs show positional
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Figure 5 The nucleotide compositions around the RBP-bound sites. The nucleotide compositions of ±20 bases around the RBP-bound sites for
(A) QKI and (B) Nova. The x-axis represents the nucleotide position and the y-axis is the probability of each nucleotide. The black box represents the
sequential motif site.

preferences in their structural recognition. These findings
could provide insights into the mechanisms of diseases
involving RBPs. FMR1_7, where FMR1 is a causative gene
of the fragile X syndrome, was revealed to bind specifically
to internal and bulge loops. The observed structural speci-
ficity raises the possibility that disruption of the internal
or bulge loop structures within the target sites of FMR1_7
may cause this disease. On the other hand, the structural
specificities of Nova were revealed to be affected by the
sequences of distant regions. This means that a muta-
tion of a nucleotide distant from the RBP-bound sites
can cause changes to the secondary structures around
the RBP-bound sites. Because some disease-associated
single nucleotide polymorphisms in non-coding regions

are reported to affect RNA secondary structures [31,32],
CapR could also contribute to exploring disease mecha-
nisms behind such polymorphisms.
It has been shown that the secondary structures around

the target sites of small interfering RNAs (siRNAs) and
miRNAs influence their activities [33,34]. Kiryu et al.
showed that the activity of an siRNA depends on the
accessibility of the 3′ end of the siRNA target site, and
Marin et al. showed that the 3′ end of anmiRNA target site
is more accessible than the other positions [12,35]. As sup-
ported by the X-ray crystal structure of the guide-strand-
containing Argonaute [36], these positional tendencies
in the accessibility can reflect the kinetic aspects of the
siRNA and miRNA binding mechanisms. We hypothesize

A B

Figure 6 Comparison of P scores of the positive datasets with P scores of the shuffled and partially shuffled datasets. In the legend of this
figure, ‘0’, ‘5’ and ‘10’ represents the shuffled, the partially shuffled (±5) and the partially shuffled (±10) datasets, respectively. The x-axis represents
the nucleotide position and the y-axis is the P score of (A) QKI and (B) Nova. The black boxes are the RBP-bound sites, and the horizontal dotted
lines the corrected significance levels of the Bonferroni correction. The vertical dotted lines indicate the±5 or 10 nucleotides of RBP-bound sites.
RBP, RNA-binding protein.
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that the positional preferences of RBPs discovered in this
study also reflect the kinetic aspects of the RBP–RNA
interactions. For example, Nova had a positional pref-
erence for upstream of the sequential motif site in the
unstructured context recognition. In fact, the co-crystal
structure of human Nova with the target RNA (PDBID:
1EC6) [37] showed that the area upstream of the sequen-
tial motif site interacts with the C-terminal amino acids of
Nova [38] (see Figure 7; note that the CLIP-seq data were
for a highly similar ortholog, mouse Nova). In addition,
the deletion of these C-terminal amino acids inhibits the
RNA binding function of Nova [39]. Therefore, the posi-
tional preference does likely reflect the kinetic aspects of
the RNA binding function of Nova. We argue that this
example demonstrates the potential power of ribonomic
analysis.
Three future perspectives are envisioned based on

the present study. The first perspective is to estimate
the sequential and structural specificities simultaneously.
Throughout this study, we focused on the RBPs with
known and well-defined sequential motifs. Nonetheless,
for several RBPs, no such sequential motifs have been
identified (for example, FET binds to a highly flexible
UANnY motif within the hairpin context [16]). To exam-
ine the binding specificities of these RBPs, CapR needs
to be extended. The second perspective is prediction of

RBP-bound sites. Li et al. showed that prediction of RBP-
bound RNAs in vivo was improved by a motif-finding
algorithm that considers accessibility [10]. Thus, consid-
eration of structural profiles may also improve the pre-
diction of RBP-bound sites in vivo, although we did not
directly show this in the present study. Further investiga-
tion is necessary for evaluating whether discrimination of
RBP-binding sites from a background sequence would be
improved using the structural specificities of RBP target
recognition. Other factors or subcellular localizations also
need to be considered. The third perspective is application
of CapR to functional RNAs. For example, the kissing hair-
pin, which is a hairpin–hairpin interaction that stabilizes
RNA structures [40], may be predicted accurately using
CapR because CapR enables the calculation of the hairpin
loop probabilities. Another target would be small nucleo-
lar RNAs (snoRNAs), where the detection algorithms still
have room for improvement [41]. Because snoRNAs are
characterized by specific internal loops, they may also be
predicted accurately by taking advantage of the accurate
calculation of internal loop probabilities by CapR.

Conclusions
We developed a highly efficient algorithm that calcu-
lates the probabilities that each RNA base position is
located within each secondary structural context for tens

Figure 7 Co-crystal structure of Nova and the target RNA. This figure was generated using Pymol. The ten amino acids of the C-terminal tail are
shown in red. RNA is represented by green sticks. The positions and the nucleotides are shown in yellow. Position 1 is the start position of the
sequential motif.
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of thousands of RNA fragments. The algorithm was
implemented as software named CapR and was applied
to the CLIP-seq data of various RBPs. Our algorithm
demonstrated that several RBPs bind to their target RNA
molecules under specific structural contexts. For exam-
ple, FMR1, which is an RBP responsible for the fragile
X syndrome, was found to bind specifically to the inter-
nal and bulge loops of RNA. Another example is Nova,
a neuron-specific RBP related to a paraneoplastic neuro-
logic disorder, which showed positional preference in the
structural contexts of binding targets.
Secondary structures are known to be essential for

the molecular functions of RNA. As large-scale, high-
throughput approaches are becoming more popular in
studying RNAs and RBPs, our algorithm will contribute
to the systematic understanding of RNA functions and
structure-specific RBP–RNA interactions.

Materials andmethods
Rfold model
The state transition rules of the Rfold model are given by

Outer −→ ε|Outer · a|Outer · Stem
Stem −→ b< · Stem · b>|b< · StemEnd · b>

StemEnd −→ sn|sm · Stem · sn(m + n > 0)|Multi
Multi −→ a · Multi|MultiBif

MultiBif −→ Multi1 · Multi2
Multi1 −→ MultiBif|Multi2
Multi2 −→ Multi2 · a|Stem

where ε represents the null terminal symbol, a is an
unpaired nucleotide character, sk is an unpaired base
string of length k and (b<, b>) is a base pair. There
are seven non-terminal symbols: Outer, Stem, StemEnd,
Multi, MultiBif, Multi1 and Multi2. Outer emits exte-
rior bases. Stem emits all the base pairs. StemEnd rep-
resents the end of each stem from which a hairpin
loop (StemEnd −→ sn), and internal and bulge loop
(StemEnd −→ sm · Stem · sn(m + n > 0)), or a multi-
branch loop (StemEnd −→ Multi) is emitted. Multi
represents a complete multibranch loop. Multi1, Multi2
and MultiBif represent parts of a multibranch loop struc-
ture that contains one or more, exactly one, and two or
more base pairs in the loop, respectively. Based on this
grammar, the structural profiles are calculated by using
a variant of the inside-outside algorithm for SCFG. First,
we give an illustrative example to show how to calcu-
late the internal loop probabilities from the inside and
outside variables αs(i, j) and βs(i, j) (i, j = 0, . . . ,N , s ∈
{Outer,Stem,StemEnd,Multi,MultiBif,Multi1,Multi2}). In
the subsequent section, we completely describe how to
calculate structural profiles.

Algorithm for calculating internal loop probabilities
When a base at position i has an internal loop con-
text, the base i is caught in two base pairs, (j, k) and
(p, q) where j ≤ p ≤ q ≤ k (Figure 8). Then, the out-
side structure of base pair (j, k) and the inside structure
of base pair (p, q) may take arbitrary structures. The sums
of Boltzmann weights of all patterns of the outside struc-
ture of base pair (j, k) and the inside structure of base pair
(p, q) are represented by outside variable βStemEnd(j, k−1)
and inside variable αStem(p − 1, q), respectively. There-
fore, Boltzmann weights that the base i is caught in two
base pairs (j, k) and (p, q) are obtained by the multiplica-
tion of βStemEnd(j, k − 1), the score for transition StemEnd
(j, k − 1) → Stem(p− 1, q), and αStem(p− 1, q). Here, we
sum these Boltzmann weights for all combinations of base
pairs (j, k) and (p, q). Finally, we obtain p(i, I) by dividing
the sum by the partition function.

Figure 8 Schematic illustration of calculation of internal loop
probability. This figure shows the transition patterns that emit an
internal loop. This figure was generated by modifying the output of
VARNA [42].
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The calculation formulas are given by:

w(i, I) = wInternalLeft(i, I) + wInternalRight(i, I)

wInternalLeft(i, I) =
i∑

j=max(1,i−W )

min(n,j+W )∑
k=i+1

min(j+C+1,k−1)∑
p=i+1

k∑
q=max(p+4,k−C−p+j−1)

βStemEnd(j, k − 1) · αStem(p − 1, q) · t(StemEnd → (Interior) → Stem)

wInternalRight(i, I) =
i∑

j=max(1,i−W )

min(n,j+W )∑
k=i+1

min(j+C+1,i−1)∑
p=j+1

i∑
q=max(p+4,k−C−p+j−1)

βStemEnd(j, k − 1) · αStem(p − 1, q) · t(StemEnd → (Interior) → Stem)

p(i, I) = w(i, I)/Z(x)

where t(s → s′) is the score for transition s → s′ and C is the maximal length of the internal and bulge loops. Many
software programs, including RNAfold [43], adopt this parameter. In this study, following the default setting of RNAfold,
we set C = 30.

Algorithms for calculating the structural profile
The inside algorithmand the outside algorithm
To calculate the inside and outside variables, we developed a variant of the inside-outside algorithm corresponding to
the Rfold model. The inside algorithm is described as follows:

αStem(i, j) =
∑{

αStem(i + 1, j − 1) · t(Stem → Stem)

αStem(i + 1, j − 1) · t(Stem → StemEnd)

αMultibif(i, j) =
∑{

αMulti1(i, k) · αMulti2(k, j) · t(MultiBif → Multi1 · Multi2)
for i < k < j

αMulti2(i, j) =
∑{

αStem(i, j) · t(Multi2 → Stem)

αMulti2(i, j − 1) · t(Multi2 → Multi2)

αMulti1(i, j) =
∑{

αMulti2(i, j) · t(Multi1 → Multi2)
αMultiBif(i, j) · t(Multi1 → MultiBif)

αMulti(i, j) =
∑{

αMulti(i + 1, j) · t(Multi → Multi)
αMultiBif(i, j) · t(Multi → MultiBif)

αStemEnd(i, j) =
∑

⎧⎪⎪⎨
⎪⎪⎩
t(StemEnd → (Hairpin))

αStem(i′, j′) · t(StemEnd → (Interior) → Stem)

for i ≤ i′ ≤ j′ ≤ j, 0 < (j − j′) + (i′ − i) ≤ C
αMulti(i, j) · t(StemEnd → Multi)

αOuter(i) =
∑

⎧⎪⎪⎨
⎪⎪⎩
1 if j = 0
αOuter(i − 1) · t(Outer → Outer)
αOuter(k) · αStem(k, i) · t(Outer → Outer · Stem)

for (i − W ) < k < i
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The outside algorithm is described as follows:

βOuter(i) =
∑

⎧⎪⎪⎨
⎪⎪⎩
1 if i = N
βOuter(i + 1) · t(Outer → Outer)
αStem(i, k) · βOuter(k) · t(Outer → Outer · Stem)

for i < k < i + W
βStemEnd(i, j) = βStem(i − 1, j+ 1) · t(Stem → StemEnd)

βMulti(i, j) =
∑ {

βStemEnd(i, j) · t(StemEnd → Multi)
βMulti(i − 1, j) · t(Multi → Multi)

βMulti1(i, j) =
∑ {

βMultiBif(i, k) · αMulti2(j, k) · t(MultiBif → Multi1 · Multi2)
for j < k < (i + W )

βMulti2(i, j) =
∑

⎧⎪⎪⎨
⎪⎪⎩

βMulti2(i, j + 1) · t(Multi2 → Multi2)
βMulti1(i, j) · t(Multi1 → Multi2)
βMultiBif(k, j) · αMulti1(k, i) · t(MultiBif → Multi1 · Multi2)
for (j − W ) < k < i

βMultiBif(i, j) =
∑ {

βMulti1(i, j) · t(Multi1 → MultiBif)
βMulti(i, j) · t(Multi → MultiBif)

βStem(i, j) =
∑

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

αOuter(i) · βOuter(j) · t(Outer → Outer · Stem)

βStemEnd(i′, j′) · t(StemEnd → (Interior) → Stem)

for i′ ≤ i < j ≤ j′, 0 < (i − i′) + (j − j′) ≤ C
βMulti2(i, j) · t(Multi2 → Stem)

βStem(i − 1, j + 1) · t(Stem → Stem)

The original computational complexity of both algorithms is O(NW 3); because we adopted the parameter C, it
becomes O(NW 2) as described below.

Calculation of the structural profile
We calculate the structural profiles from the inside and outside variables computed by the inside-outside algorithm.
The calculation formula is described as follows:

Z = αO(N)

p(i,B) = 1
Z

⎛
⎝ i∑

j=max(1,i−W )

min(n,j+W )∑
k=i+1

min(j+C+1,k−1)∑
p=i+1

βSE(j, k − 1) · αS(p − 1, k − 1) · t(SE → (Interior) → S)

+
i∑

j=max(1,i−W )

min(n,j+W )∑
k=i+1

i∑
q=max(j+4,k−C−1)

βSE(j, k − 1) · αS(j, q) · t(SE → (Interior) → S)

⎞
⎠

p(i, E) = 1
Z

(αO(i − 1) · βO(i) · t(O → O))

p(i,H) = 1
Z

i−1∑
j=max(1,i−W )

k=min(n,i+W )∑
k=i+1

βSE(j, k − 1) · t(SE → (Hairpin))
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p(i, I) = 1
Z

⎛
⎝ i∑

j=max(1,i−W )

min(n,j+W )∑
k=i+1

min(j+C+1,k−1)∑
p=i+1

k∑
q=max(p+4,k−C−p+j−1)

βSE(j, k − 1) · αS(p − 1, q) · t(SE → (Interior) → S)

+
i∑

j=max(1,i−W )

min(n,j+W )∑
k=i+1

min(j+C+1,i−1)∑
p=j+1

i∑
q=max(p+4,k−C−p+j−1)

βSE(j, k − 1) · αS(p − 1, q) · t(SE → (Interior) → S)

⎞
⎠

p(i,M) = 1
Z

{ ∑min(i+W ,n)

k=i βM(i − 1, k) · αM(i, k) · t(M → M)∑i
k=max(0,i−W ) βM2(i, k) · αM2(k, i− 1) · t(M2 → M2)

p(i, S) = 1
Z

min(n,i+W )∑
j=max(0,i−W )

{
βS(i − 1, j) · αSE(i, j − 1) · t(S → SE)

βS(i − 1, j) · αS(i, j − 1) · t(S → S)

Here, O is the outer state, S is the stem state, SE is the
stem-end state, M is the multi state and M2 is the multi2
state in the Rfold model.

Implementation
We implemented the algorithms in C++ as a program
named CapR. CapR exhaustively computes the structural
profile {p(i, δ)} for a given RNA sequence with O(NW 2)
time and O(NW ) memory. We used a portion of the
source code from the Vienna RNA package [43]. We
include the source code as Additional file 2. Our source
code is also available from [44].

Data preparation and analysis
To evaluate the accuracy of the structural profiles cal-
culated by CapR, we used 188 structural RNA families
in the Rfam 10.0 seed dataset [22]. They are provided
as 188 structural alignments with experimentally vali-
dated pseudoknot-free structures. By excluding alignment
columns with a gap proportion of ≥0.5, we obtained 8,775
sequences and 1,039,537 nucleotides.
In the present study, we focused on RBP target recog-

nition. In this application, it should be ineffective to
consider transcribed sequences that are too long because
regions that are too distant are unlikely to affect the sec-
ondary structures around the RBP-bound sites, although
our algorithm itself can be applied to long RNAs. There-
fore, we investigated how much distance we should take
into account. We prepared 100 random RNA sequences
10,100 nucleotides long and truncated them so that the
lengths of the flanking sequences of the central 100 bases
became l = 250, 500, . . ., 2,500. Then, we calculated the
structural profiles of the central 100 bases for each l, and
calculated the Pearson correlation coefficient between
the structural profiles of the original sequence and those
of the truncated sequences. Additional file 1: Figure S8

shows that the Pearson correlation coefficients were more
than 0.99 for l ≥ 2, 000. Therefore, we considered 2,000
nucleotides upstream and downstream of the RBP-bound
sites in this study.
To investigate the structural characteristics of RNAs

around the RBP-binding sites, we downloaded CLIP-seq
datasets from the doRina database [23] (human [45],
mouse [46] and nematode [47]). We excluded from the
analysis CLIP-seq datasets that met one of the following
three criteria: (1) well-defined sequential motifs not pre-
sented in the original paper of the dataset, (2) datasets
for mutant RBPs and (3) the average number of RBP-
bound sites (that is the sequential motif-matched sites
within the CLIP-seq peak regions defined in doRina) is
less than two. The third criterion was adopted because
many RBP-bound sites include false positives. As a
result, we selected ten RBPs: GLD-1 (nematode), QKI
(human), Pum2 (human), SRSF1 (human), Nova (mouse),
Lin28A (mouse), FXR1 (human), FXR2 (human), FMR1_7
(human) and FMR1_1 (human) [7,24-28]. When the peak
regions spanned just one or two bases, we sought sequen-
tial motif-matched sites within ±10 nucleotides around
the peak regions. If no motif-matched sites were found,
such peak regions were excluded from the analysis. Then,
we extracted ±2, 000 nucleotide sequences around the
RBP-bound sites to create the positive datasets. If there
existed multiple RBP-bound sites in the same peak region,
we averaged the structural profiles around those sites and
used them as a single observation. For each gene in RefSeq
[48], the transcribed sequence was defined by the genomic
region between the most upstream 5′ position and the
most downstream 3′ position of its mRNA isoforms. To
generate the shuffled and partially shuffled datasets, we
used the uShuffle software to preserve the di-nucleotide
frequencies of the original sequences [49]. The data sizes
and other basic statistics of the CLIP-seq datasets are
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summarized in Additional file 1: Tables S1 and S2. In the
present study, because the distributions of the structural
profiles did not follow a normal distribution, we used the
non-parametric Wilcoxon–Mann–Whitney test.
We also examined how the choice of the maximal span

W influences the results. We compared the highest P
scores of the exterior andmultibranch loops with different
W because these two loops are sensitive to W. We calcu-
lated the ratios of the W sensitivity (δ) of the highest P
scores among all positions for each loop δ calculated at
W = 400 and 30:

W sensitivity(δ) = Highest P score for δ at W = 400
Highest P score for δ atW = 30

Additional file 1: Figure S9 is a box plot of theW sensi-
tivity of the exterior loop, multibranch loop and unstruc-
tured contexts for all the RBP datasets. The highest P
scores of the exterior and multibranch loops were sensi-
tive to W, whereas the highest P score of unstructured
context was insensitive toW.

Notes added in proof
After themanuscript was accepted, wewere informed that
the similar algorithm to CapR was internally used in the
previous researches [50-52].

Additional files

Additional file 1: Supplementary materials. This file includes additional
figures and tables not shown in the manuscript.

Additional file 2: The source code of CapR. This file includes the source
code of CapR.
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