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ABSTRACT

Deep targeted sequencing technologies are still not
widely used in clinical practice due to the complexity
of the methods and their cost. The Molecular Inver-
sion Probes (MIP) technology is cost effective and
scalable in the number of targets, however, suffers
from low overall performance especially in GC rich
regions. In order to improve the MIP performance,
we sequenced a large cohort of healthy individuals
(n = 4417), with a panel of 616 MIPs, at high depth in
duplicates. To improve the previous state-of-the-art
statistical model for low variant allele frequency, we
selected 4635 potentially positive variants and vali-
dated them using amplicon sequencing. Using ma-
chine learning prediction tools, we significantly im-
proved precision of 10–56.25% (P < 0.0004) to detect
variants with VAF > 0.005. We further developed bio-
chemically modified MIP protocol and improved its
turn-around-time to ∼4 h. Our new biochemistry sig-
nificantly improved uniformity, GC-Rich regions cov-
erage, and enabled 95% on target reads in a large MIP
panel of 8349 genomic targets. Overall, we demon-
strate an enhancement of the MIP targeted sequenc-
ing approach in both detection of low frequency vari-
ants and in other key parameters, paving its way to

become an ultrafast cost-effective research and clin-
ical diagnostic tool.

INTRODUCTION

The development of next-generation sequencing (NGS) ap-
proaches has revolutionized molecular biology research
as they can generate large volumes of sequencing data
per run, however it has yet to be widely implemented
into clinical practice. While complete omics approaches
(whole genome/transcriptome/epigenome) provide oppor-
tunity for novel discoveries, they are still not cost-effective
and therefore are not routinely used as diagnostic tools. To
democratize NGS to a large number of samples and appli-
cations in a cost- and time-effective manner, several targeted
enrichment approaches have been developed. Furthermore,
deep sequencing aimed at identifying low variant allele fre-
quency (VAF) mutations is usually based on targeted se-
quencing approaches.

With the growing demand for high performance and cost-
effective targeted sequencing technologies it is generally re-
quired to choose between scalability (both for number of
samples and number of targets) and cost. Currently, there
are no targeted sequencing approaches that are both scal-
able, cost effective, simple and fast. Hybrid capture has
high-performance but is still costly and time consuming
(1). On the other hand, amplicon sequencing is simple and
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cost effective but is not scalable for large number of tar-
gets. In a previous study (2), we analyzed several hundreds
of DNA samples for low allele frequency mutations in age-
related clonal hematopoiesis (ARCH) related positions us-
ing a probe capture approach. Since probe capture is effec-
tive but costly, we sought to scale up this type of analysis to
a larger cohort at a cost-effective approach.

To that end, we have implemented the Molecular Inver-
sion Probe (MIP) (3,4) technology which enables targeting
multiple genomic regions and generating a sequencing li-
brary in economical, one pot reaction. Although MIP tech-
nology can potentially be fully automated and scalable, its
main downsides are its low performance (i.e. uniformity
(1,4), reduced coverage at GC-rich (5) regions). Another
drawback of the MIP technology is the lack of an accurate
noise model, an essential tool for low VAF analysis.

The library preparation step of any targeted sequencing
approach has a unique issue of background error signatures
which correlate with the specific chemistry and various steps
of the protocol (6). Therefore, one needs to comprehensively
understand the intrinsic background noise of the technol-
ogy and to generate a noise model to determine if suspected
variants are real (7). The state-of-the-art in MIP low VAF
analysis is the algorithm published by Acuna-Hidalgo et
al. (8). In their extensive study, ∼2000 samples were ana-
lyzed across ∼230 MIP targets. While this study introduces
a new statistical approach to call low VAF variants based
on a Poisson noise model it has several caveats such as the
lack of extensive validation and the use of technical dupli-
cates which were separated at the final step of the MIP pro-
tocol while true technical duplicates were not used. These
drawbacks leave background noise model of the MIP pro-
tocol without a cross platform validation, and uncertainty
regarding its accuracy.

In this study, we address the MIP drawbacks by (A) ana-
lyzing and modeling the MIP protocol noise in depth. This
was accomplished by processing 4417 samples in duplicate
using the MIP protocol, validating our findings with am-
plicon sequencing, and using machine learning algorithms
for MIP low VAF calling; and (B) modifying the current
MIP biochemistry to improve poor performance and noise
properties, and testing the novel improved MIP chemistry
(iMIP) on a large panel of 8349 MIPs.

MATERIALS AND METHODS

Biological resources

DNA samples were received from the Princess Margaret
cancer center, University Health Network (UHN), Canada)
(under UHN IRB protocol 01-0573); the WizeAging project
(Weizmann Institute, Israel) (under WIS IRB protocol 283-
1); the Cancer prevention clinic (Sorasky Medical Cen-
ter, Israel), Denver. All the relevant ethical regulations
were followed. Written informed consent was obtained
from all participants in accordance with the Declaration
of Helsinki and protocols approved by the relevant ethics
committees. Sample donors are considered healthy with-
out known ARCH defining mutations in their clinical
records. Per reaction a total DNA of 50–500 ng/ul was
used.

MIP targeted sequencing probe design

Molecular inversion probes (MIP) capture probes were de-
signed using MIPgen (3) to capture ARCH related tar-
gets (Supplementary Table S1) (9,10) or a genotyping
panel (Supplementary Table S2). Backbone, and primer se-
quences were adopted from previous studies (4). MIPs were
ordered either as single strand MIPs (prepared as in Hiatt et
al. (4)) or as an oligo mix (LCsciences, prepared as in Shen
et al. (11))

Multiplex MIP capture protocol

One �l DNA template was added to a hybridization mix
together with a MIP pool (final concentration of 0.05 pM
per probe) in 1x Ampligase buffer (Epicentre). Mix was in-
cubated in a thermal cycler at 98◦C for 3 min, followed
by 85◦C for 30 min, 60◦C for 60 min and 56◦C for one or
two overnight incubation. Product was mixed with (final
concentration in brackets): dNTPs (Larova, 15 pM), Be-
taine (375 mM, Sigma-Aldrich,), NAD+ (1 mM, New Eng-
land Biolabs), additional Ampligase buffer (0.5×), Ampli-
gase (total of 1.25 U, Epicentre) and Phusion HF (0.16 U,
New England Biolabs). Mixture was incubated at 56◦C for
60 min followed by 72◦C for 20 min. Enzymatic digestion
of linear probes was performed by adding Exonuclease I
(4 U, New England Biolabs) and Exonuclease III (25 U,
New England Biolabs). Mixture was incubated at 37◦C for 2
h, followed by 80◦C for 20 min. Final product was amplified
using iProof HF Master Mix (Biorad). Samples were pooled
and concentrated using AMPure XP beads (Beckman Coul-
ter) at 1.3× volumetric concentration, size-selected (190–
370 bp) using Blue Pippin (Sage scientific), and sequenced
in either NextSeq or Novaseq6000 (Illumina) 2 × 151 bp
paired-end run using custom primers as described in the
past (4). In total, we sequenced 4417 healthy individual
DNA samples and processed and sequenced every DNA
sample twice as true technical duplicate using the above
MIP protocol.

Improved MIP (iMIP) capture protocol

One microliter DNA template was added to a hybridiza-
tion mix together with a MIP pool (final concentration of
0.04 pM per probe) in 0.85× Ampligase buffer. Mix was in-
cubated in a thermal cycler at 98◦C for 3 min, followed by
85◦C for 30 min, 60◦C for 60 min and 56◦C for 60 min. Prod-
uct was mixed with (final concentration in brackets): dNTPs
(14 pM), Betaine (375 mM), NAD+ (1 mM), additional
Ampligase buffer (0.5×), Ampligase (total of 1.25U) and
Q5 High-Fidelity DNA Polymerase (0.4 U, New England
Biolabs). All the product of the hybridization was incubated
at 56◦C for 5 min followed by 72◦C for 5 min. Enzymatic
digestion of linear probes was performed by adding Exonu-
clease I (8U) and Exonuclease III (50 U). Mixture was in-
cubated at 37◦C for 10 min, followed by 80◦C for 20 min.
Final product was amplified using NEBNext Ultra II Q5
Master Mix (New England Biolabs). Samples were pooled
and concentrated using AMPure XP beads at 0.75× volu-
metric concentration and sequenced as abovementioned de-
scribed.
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Amplicon sequencing for suspected variants detected in MIP
protocol

Selected MIP probes were ordered as amplicon primers
to enable target amplification using two-step amplicon se-
quencing. After collecting all potential variants (see below),
the amplifying MIPs were sorted by the number of muta-
tions in the cohort they will capture (highest first). MIPs
were then converted to corresponding amplicons: to this
end, the ligation arm was converted by ‘reverse comple-
ment’. 5′ tail addition and index primers were as previously
described (12). All selected amplicon primers were applied
to all DNA samples in the experiment, generating a ma-
jority of sequencing data with no expected mutations at
any sampled genomic region. This further allowed for per
position true/false positive statistical validation. Selected
primers were mixed in pools of ≤6 primer pairs/mix at a
concentration of 2.5 uM per primer. First PCR reaction was
performed by mixing NEBNext Ultra II Q5 Master Mix,
1 ul DNA template, and primer mix (0.5 uM). PCR pro-
gram: 98◦C activation for 30 s, followed by five steps of:
denaturation at 98◦C, annealing at 60◦C and extension at
65◦C, than 25 steps of: denaturation at 98◦C, annealing and
extension at 65◦C. Final extension was at 65◦C for 5 min.
Reaction was diluted 1:1000 and second PCR (barcoding
PCR) was at the same composition and protocol as the first
PCR besides the reduction of the two steps from 25 to 12
cycles. Reactions were pooled at equal volumes and puri-
fied by AMPure XP beads at 0.7× volumetric concentra-
tion, size-selected (265–400 bp) using Blue Pippin and se-
quenced in Novaseq6000 2 × 151 bp paired-end run.

Data preprocessing and variant calling

Paired-end 2 × 151 bp sequencing data were converted to
fastq format. Reads were merged using BBmerge v38.62
(13) with default parameters, followed by trimming of the
ligation and extension arm using Cutadapt v2.10 (14).
Unique Molecular Identifiers (UMI) were trimmed and
assigned to each read header. Processed reads were aligned
using BWA-MEM (15) to a custom reference genome,
comprised of the MIP ARCH panel sequences ±150 bp
extracted from broad HG19 [https://gatk.broadinstitute.
org/hc/en-us/articles/360035890711-GRCh37-hg19-b37-
humanG1Kv37-Human-Reference-Discrepancies#b37].
Aligned files were sorted, converted to BAM (SAMTools
V1.9 (16), followed by Indel realignment using AddOrRe-
placeReadGroups (Picard tools) and later IndelRealigner
(GATK v.3.7 (17)). Variant calling was done using mpileup
for the single nucleotide variant (SNVs), and Varscan2
v2.3.9 (18) and Platypus v0.8.1 (19) for indels. Variants
were annotated using ANNOVAR (20).

Statistical analysis of SNVs for MIPs and amplicon

The depth for reference calls and all possible variants of
all positions was retrieved from the mpileup files. Only po-
sitions with depth >100 were included. To estimate back-
ground error rate at each position first we calculated the
total read depth across all samples (DEPTH SUM) and
the alternate supporting reads (ALT READS SUM) (Sup-
plementary Tables S3A, S3B). Next, the number of alter-

nate reads in a sample (n) and the total depth for the
sample in that position (N) were analyzed followed by
the calculate of m = ALT RE ADS SU M − n and M =
DEPTH SU M − N. For MIPs this was done separately
on each technical duplicate. To test whether a specific VAF
is significantly different from the background error rate we
approximated the distribution of the variant using Poisson
distribution and used Poisson exact test on each variant es-
timation (stats R package), and corrected for multiple hy-
pothesis testing with Benjamini–Hochberg (BH) (21) test
per P-value to get a BH score (Supplementary Table S4).

Calculating expected number of duplicate and duplication ra-
tio

To utilize the information from the large number of sam-
ples we sequenced with the MIP panel (N = 4417), and that
fact they were all had technical duplicates we added another
layer of data dealing with the duplicate’s reproducibility.
Accordingly, mplieup files of the technical duplicates were
merged to define consensus positions that have depth >100
in both duplicates. Each variant was defined as singleton if
identified in one of the technical duplicates or as a dupli-
cate if found in both. Next mplieup files of all sample IDs
were merged and the number of singleton (single n) and du-
plicates (dup n) in the entire dataset was calculated. The
same counting was also performed only on variants with
VAF ≥0.006 to define single cutoff and dup n cutoff. The
expected number duplicates for each variant was calculated
exp dups = single n cutof f 2

total sample ids and the same for the duplicate

ratio (dup ratio) dup ratio = dup n cutof f
exp dups (Supplementary

Table S5).

Amplicon sequencing validation

In order to understand the MIP noise model we compared
MIP sequencing to amplicon sequencing. The targets for
amplicon sequencing were chosen based on putative true
variants identified by the Poisson exact test. We focused on
variants known to play a role in ARCH (Supplementary Ta-
ble S2) and selected variants with BH1 and BH2 <0.002 to
be validated by amplicon sequencing (Supplementary Ta-
ble S6). To build the noise model of the amplicon sequenc-
ing approach we extended this experiment by targeting all
samples in the experiment with all participating primers (see
methods). We performed this validation in two iterations:
The first iteration was composed of 84 DNA templates, and
48 amplicons covering 7930 bp. The second iteration was
composed of 125 DNA templates, and 48 amplicons cover-
ing 7114 bp (Supplementary Table S6).

Calculating background error rates

For the calculation of background error rate, the mplieup
files were filtered for variants with VAF <0.05, depth >100.
Background errors were calculated as the number of alter-
nate reads over all sequenced bases in the same position
across the entire panel. We evaluated error rates for MIP
amplicon and iMIP.

https://gatk.broadinstitute.org/hc/en-us/articles/360035890711-GRCh37-hg19-b37-humanG1Kv37-Human-Reference-Discrepancies#b37
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Refining low VAF detection in MIP sequencing

As the background noise of MIP was significantly higher
than amplicon we used amplicon calling as true positives.
We defined true variants in the amplicon sequencing based
on the Poisson exact test (P = 0, depth > 100, VAF > 0.005),
which identified N = 42 true variants. We than called SNVs
in the MIP data by calculating Poisson exact test P val-
ues for both duplicates. We transformed the data to fit ma-
chine learning prediction algorithms (Supplementary Table
S7). Next we applied various machine learning algorithms
and chose to continue with SVM and the vanilladot Kernel
(caret library R 4.0.4) to calculate sensitivity, specific and
precision of the SVM predictions (Supplementary Figure
S1).

Comparing MIP and iMIP performance

To be able compare the MIP and iMIP protocols we selected
samples that had similar depth distributions in the original
FATSQ files based on Kolomogorov–Smirnov p value (Sup-
plementary Figure S2), MIP N = 535 and iMIP N = 905
samples. To evaluate the number of MIPs that were covered
sufficiently across samples we compared the amount of tar-
gets which received above 100 reads in at least one sample,
these MIPs were defined as working MIPs. Uniformity was
calculated by the % MIPs with depth > (0.2∗mean depth)

panel si ze . On-target

rate was measured by the % Mapped reads
total reads .

Defining GC rich targets

The MIP target sequence was retrieved, and the GC con-
tent was evaluated using gc5Base table from UCSC table
browser. We defined GC rich regions as regions with GC
content >55%. From all working MIPs we identified GC
rich MIPs and grouped by genes.

Genotyping panel

To test the ability of iMIP to capture large number of tar-
geted sequences we have used MIPgen to design a large
panel of 8349 probes which capture SNPs. Such panel can
be used for demultiplexing human samples from pools of
samples. Once we discovered that a small fraction of our
MIPs captured large proportion of reads, and that many
MIPs did not perform optimally we have chosen from the
original panel (Supplementary Table S2) a set of 4409 MIPs
and sequenced with it 104 samples with minimum depth of
10e6 reads (Supplementary Table S2).

RESULTS

In the current study we aimed to improve the performance
of the MIP based targeted sequencing approach both in
calling low VAF variants and its uniformity and coverage.
Using the MIP protocol we sequenced 4417 samples in du-
plicates using the ARCH panel. This panel is composed of
707 MIP probes targeting 70 134 genomic bases, of which,
616 probes were used for the analysis (working MIPs see
methods).

Improving MIP noise model

The current noise model used for low VAF calling after
MIP targeted sequencing is generally based on a Poisson
exact test and correction for multiple hypothesis (8). Fur-
thermore, previous methods for error correction were ap-
plied for UMI deduplication to minimize noise; however,
we could not use UMI collapsing as the majority of read
families in the current study have a size of <5 reads per
family/group (which is the standard cutoff for consensus
sequence) (22). The reason for the low number of families
with >5 reads per family was the low total number of reads
we allocated each sample in the current study. We aimed
at detecting low VAF variants in a cost effective manner
thus we intentionally had lower coverage than needed for
the use of UMIs. Altogether, we concluded that new meth-
ods for error correction under the MIP targeted sequencing
protocol without necessarily taking UMIs into account are
needed.

To this, we compared the background error rate of ampli-
con and MIP sequencing. Amplicon sequencing yielded sig-
nificantly reduced error rate in all possible single nucleotide
variants (SNV) alternations (Figure 1A). We noticed a bi-
modal noise distribution in C > A in the MIP protocol in all
MIP experiments (Supplementary Table S3A, S3B, Supple-
mentary Figure S3), ruling out the chance for a batch effect.
This could be explained by DNA damage introduced during
the library preparation process as was suggested in the past
(23). The high background error rate produced by the MIP
protocol suggests that the current state of the art statisti-
cal noise reduction tools for MIP might produce substantial
false positive rates. Furthermore, the lower background er-
ror rate of the amplicon protocol suggests that the statistical
noise detection could be improved by training a model on
variants with higher probability of being true as they were
validated by amplicon sequencing. Accordingly, we defined
true variants using strict statistical cutoff on the amplicon
sequencing data and identified 42 true variants (Supplemen-
tary Table S6).

To evaluate the performance of the current state of the
art statistical noise reduction algorithm, we applied it on
our MIP data and compared it to the true variants ex-
tracted from the amplicon sequencing (Supplementary Ta-
ble S7). The outcome of this calculation yielded a specificity
( TN

TN+F P ) of was 99.74%, sensitivity ( T P
T P+F N ) of 80.95%,

and precision ( T P
T P+F P ) of 10% (Figure 1B). To improve the

precision of the current method we used machine learn-
ing algorithms which took into account only the parame-
ters used in the past (VAF, Depth and Poisson exact test P
values of the duplicates). Although this approach improved
precision (50%) sensitivity was significantly lower (16.67%)
(P = 0.004). Next we tested the hypothesis that adding infor-
mation on the number of samples sequenced, duplicate ratio
and other parameters extracted from the large dataset we
created might improve our prediction model (Supplemen-
tary Table S7). We eventually used an SVM model which
yielded the following results: specificity of 99.98%, sensitiv-
ity of 81.81%, and significantly higher precision of 56.25%
(P = 1.4E−5) (Figure 1B). Altogether, the model we devel-
oped significantly reduced the number of false positive vari-
ants (Figure 1B).
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Figure 1. Increased background error rate in the MIP protocol results in high false positive rate which can be improved by machine learning algorithms.
(A) Distribution of per base background error rate (log 10) of each possible alteration comparing the molecular inversion probe (MIP) protocol (red)
and Amplicon sequencing protocol (yellow). Mann–Whitney–Wilcoxon test two-sided with Bonferroni correction ns: 0.05 < P ≤ 1, *: 0.01 < P ≤ 0.05,
**: 0.001 < P ≤ 0.01, ***: 0.0001 < P ≤ 0.001, ****: P ≤ 0.0001. (B) Variants from the MIP protocol were validated by amplicon sequencing and true
positives were defined based on the results of the amplicon sequencing. Performance (sensitivity precision and specificity) was calculated for the state of
the art Poisson distribution error suppression method (blue) and for a machine learning variant caller (MIP) trained on our entire MIP dataset (red). The
precision of the machine learning variant caller (MIP) to detect variants with variant allele frequency (VAF) >0.005 was significantly better, Fischer exact
test P < 0.0001.

Refining the biochemistry of the MIP protocol to improve per-
formance and to reduce noise

While we were able to reduce the false positive rate of the
MIP protocol (Figure 1), further improvements of known
caveats of this method are still needed, namely poor per-
formance properties such as on-target rate and uniformity
(see methods). To this end, we tested several enzymes in
each of the MIP protocol steps to recalibrate the protocol.
Furthermore, with the possibility of potential use of this
technology for large-scale screening studies for early cancer
detection in clinical laboratories, we fine-tuned the proto-
col’s timing to under 4 h (end to end). We then analyzed
new 1569 samples using the same MIP ARCH panel men-
tioned above using the improved MIP protocol (termed:
iMIP, see methods). Our results demonstrated significantly
lower background error rate in the iMIP protocol versus
the previous MIP protocol for all possible alterations, ex-
cept for T > C (Figure 2A). Furthermore, the iMIP proto-
col had a significant lower background error rate compared
to amplicon sequencing in T > G and C > A transversions,
while in other alterations amplicon sequencing was still su-
perior (Figure 2A). Of note the iMIP protocol had less small
families (<5) and more large families (>5) (Supplementary
Figure S4A). Same background calculation was performed
on indels using the variant calling algorithms Varscan and
Platypus (Supplementary Figure S5).

To study the effect of our iMIP protocol on the panel
performance we compared the median number of MIPs
that work (see methods) for both the MIP and iMIP pro-
tocols and demonstrated a significant increase in the me-

dian MIPs that work in the iMIP protocol (609 versus 558
respectively P < 0.00001) (Figure 2B). The iMIP protocol
further demonstrated a significant improvement in the on-
target rate (Figure 2C) and in the panel uniformity (Figure
2D). Another downside of the MIP protocol we noticed was
the relatively low correlation of VAFs between the technical
duplicates in the MIP protocol (R2 = 0.68). The introduc-
tion of the iMIP protocol significantly improved the corre-
lation between duplicates (R2 = 0.71, P < 0.00001) (Sup-
plementary Figure S4B).

Next, we aimed to improve the uniformity and on target
rate specifically in the GC-rich regions, as it was reported in
the past that MIP protocols perform poorly in such regions.
In line with that our data demonstrates significantly lower
uniformity and median depth in GC rich regions (Supple-
mentary Figure S6B). As expected, many of the MIPs that
got poor coverage in the MIP protocol and better cover-
age in the iMIP protocol exhibited high GC rich content
(Supplementary Figure S6A). Furthermore we had barely
any coverage in important GC rich regions such as the gene
CEBPA and others. To resolve these issues, we specifically
modified the MIP protocol and created the iMIP. Indeed
when we compared the coverage across GC rich regions it
was significantly higher in the iMIP protocol for all regions
beside MIPs in the gene SETBP1 (Figure 3A). Overall uni-
formity was also significantly higher in the iMIP protocol
(Figure 3B). Specifically in the GC rich region of CEBPA
which is known to be a challenging region across various
NGS technologies (24) we significantly improved the cover-
age (Figure 3C).
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Figure 2. A novel improved MIP (iMIP) protocol has reduced background error rate and improved sequencing quality attributes. (A) Background error
rate was calculated for iMIP (green) MIP (red) and amplicon (yellow). Comparisons of error background rates are presented in supplementary table S3B.
(B) Number of MIP targets that worked across the selected samples between MIP and iMIP, Mann−Whitney−Wilcoxon test two-sided with Bonferroni
correction P val < 10∧-217(****). (C) On target rate across the selected samples, Mann−Whitney−Wilcoxon test two-sided with Bonferroni correction
P val < 10∧-131(****). (D) Uniformity of MIP and iMIP across the selected samples, Mann–Whitney–Wilcoxon test two-sided with Bonferroni correction
P val < 10∧-11(****).

Performance of the iMIP protocol on a large panel of 8349
targets

In order to further extend our understanding of the iMIP
performance for larger MIP panels we have tested the same
protocol with a genotyping panel we designed (Supplemen-
tary Table S2) which contains 8349 MIPs. Our initial results
demonstrated that the majority of the samples with more
than one million reads had on average 95% reads on target
(Supplementary Figure S7A). However, when we compared
the uniformity of the genotyping panel to that of the ARCH
panel we faced a significantly lower uniformity (Figure 4C,

first two boxplots). In order to better understand this low
uniformity we analyzed the MIP properties of the mapped
data and observed that a significant low number of MIPs
took over a large proportion of the mapped reads (Supple-
mentary Figure S7B). By back tracing the origin of these
MIPs we noticed that some of these MIPs’ ligation or ex-
tension arms have higher number of copies in the reference
genome (Figure 4A). Notably, there are two problematic
groups of MIPs with high copy number: the first one is when
both ligation and extension arms have between 1 and 100
copies (Figure 4A, green), and the second one when both
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Figure 3. The iMIP protocol has better coverage and uniformity across GC-rich regions. (A) MIP (n = 535 samples) vs iMIP (n = 905 samples) comparison
of GC-rich genes coverage (GC-rich targets have higher than 55% GC content). Targets which are part of each gene were included, the data is normalized
by: sum (targets depth)/ number of targets/original fastq reads *100. Other than SETBP1 all p values were significant (****: P ≤ 0.001). Mann–Whitney–
Wilcoxon test two-sided with Bonferroni correction. Note: the values are in log scale, and for visualization, zero values were omitted. (B) Uniformity
between MIP and iMIP across GC-rich targets P val < 10∧-15(****) Mann–Whitney–Wilcoxon test two-sided with Bonferroni correction. (C) Improved
coverage of the iMIP protocol across CEBPA (known to be difficult to capture), depth was normalized in the same way as (A). Note: the values are in log
scale, and for visualization, zero values were omitted.

arms have above 100 copies (Figure 4A, light red). These
two groups comprise of a low fraction in the panel (Fig-
ure 4A, left bar plot), but capture a significant fraction of
the reads (Figure 4A, right bar plot and Figure 4B). This
data points on the importance of the arm copy number pa-
rameter on the MIP panel performance. As the recommen-
dations regarding arm copy number filtering are not clear,
we analyzed the uniformity across the different copy num-
ber groups and found that the best uniformity was achieved
when choosing MIPs with copy number of one in at least
one of the arms. To validate this hypothesis and to improve

the performance of our genotyping panel, we have gener-
ated a reduced genotyping panel, that contained only MIPs
with copy number of one in at least one of the arms. MIPs
that demonstrated low coverage were also omitted from the
reduced genotyping panel. We sequenced 104 samples with
the reduced genotyping panel and reached a median uni-
formity of 80.3% (Figure 4C) and median 50× coverage of
89.6% (Figure 4D). Our results, demonstrate the ability of
the iMIP protocol to target thousands of genomic targets
and extended our knowledge as for how to design better
panels.
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Figure 4. The iMIP protocol can successfully capture a genotyping panel of 8349 targets. (A) MIPs were divided into groups: [1]:[1]––ligation and extension
arms have one copy in the genome, [1]:[1>] – one of the arms (either ligation or extension) has one copy in the genome, [>1 and <100]: [>1 and <100]––both
ligation and extension arms have between 1 and 100 copies, [>100]:[>100]––both arms have above 100 copies. Left bar––percentage of MIPs in each of the
groups, out of the total panel. Right bar––percentage of the read across all data. (B) Median depth compared between the target groups based on arms copy
number. (C) Uniformity of the different panels. The uniformity of the genotyping panel was significantly lower than the ARCH panel Mann–Whitney–
Wilcoxon test. However, the improved genotyping panel was significantly higher than the original genotyping panel. (D) Performance of the improved
genotyping panel (without MIPs with copy number). Boxplots were calculated including 104 samples and the values that are presented are %targets with
depth of at least one read, 10 reads, 50 reads and 100 reads.
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Figure 5. Main modifications of iMIP protocol from previous MIP pro-
tocols: (1) shorter hybridization incubation of 2.5 h (instead of overnight).
(2) gap filing using Q5 High-Fidelity (HF) DNA Polymerase which takes
∼10 min (instead of 2.5 h). (3) Enzymatic digestion of linear probes is per-
formed by adding Exonuclease I and Exonuclease III followed by 30 min
incubation (instead of 2 h). (4) Amplification of final product using Ultra
II Q5 Master Mix.

DISCUSSION

Here, we have devised a two directional (i.e. statistical and
biochemical) approach for the improvement of the MIP
technology, a previously low performance but highly scal-
able and economical technology. To achieve this goal we
have studied the noise pattern of the technology in large
dataset and created a benchmark amplicon based sequenc-
ing strategy to validate our candidate variants. This further
improved the state-of-the-art algorithm for MIP noise re-
duction and generated a high precision low VAF machine
learning calling model. We were also able to reduce noise by
changing the protocol timing and enzymes (Figure 5 sum-
marizes the main changes from previous MIP protocols).
The improved iMIP protocol aided in the reduction of over-
all SNV noise of all possible alternations and eliminated the
bimodal noise of C > A alternations (Figure 1). This may
be explained by DNA damage due to longer exposure to ox-
idative stress during the library prep procedure in the MIP
protocol (overnight hybridization, longer gap filling) previ-
ously observed for the MIP and other library prep protocols
(4,8,11,25,26). Therefore, we suggest that shorter protocols
could result in lower background error rate however this still
needs formal evidence. The short 4-h protocol we devised

should be attractive for both clinical laboratories and large
scale screening efforts.

Calling low VAF using the MIP protocol could be fur-
ther improved by utilizing unique molecular identifiers
(UMI)/molecular tags (25). Although our MIP structure is
composed of UMIs (seven nucleotides), we chose not to use
it. This is mainly because UMI utilization for low VAF re-
quires higher depth per target that allows large number of
families with size >5 (22). In the current study we chose
to allocate each sample ∼2 million reads and accordingly
the vast majority of the families in our study had a size <5
(Supplementary Table S8). Nevertheless, it was also shown
in the past that using a correct statistical model in hybrid
capture protocols, enables correct VAF calling without the
need for UMI correction (2), and we have provided similar
evidence here for the MIP protocol. Our model is therefore
suitable for detection of variants with VAF as low as 0.5%
with sensitivity of 80% and significantly higher precision,
but can be further improved. If lower VAFs or higher sen-
sitivity are needed we suggest that deeper sequencing will
be used with the addition of UMI collapsing. However, in
many instances, this is not needed and our current proto-
col can answer the need for a cost effective low VAF pro-
tocol. Our model and protocol can be generalized for every
MIP panel and can be combined with UMI error correc-
tion, however for much deeper sequencing (which might be
needed for minimal residual disease detection) the number
nucleotides in the UMI should be increased correlatively to
depth and VAF thresholds. While, deep targeted sequenc-
ing has its own needs in the early diagnosis of cancer and
other applications, the vast majority of targeted sequencing
applications do not require low VAF detection and still suf-
fer from high costs, long and complicated protocols. In the
current study we present a four hour single tube fully au-
tomated protocol which is now ready for clinical use as we
significantly improved its performance.

The MIP protocol notoriously suffered from low: on-
target%, uniformity and GC content coverage which were
all significantly improved in the current study (Figures 2
and 3). However, other caveats of the MIP protocol while
improved could be further modified. The relatively low cor-
relation between the duplicates which was significantly im-
proved by the iMIP protocol remains an obstacle specifi-
cally for applications requiring accurate VAF such as, dis-
ease burden or somatic copy number variation detection.
Based on our analysis of germline heterozygous mutations
we identified that the average of the duplicates yielded better
results. Future protocols could further optimized this prob-
lem possibly by reducing the number amplification cycles
and calibrating the amount of DNA input to probe ratio.
Clearly deeper sequencing and UMI correction will also im-
prove duplicate correlations, however as mentioned above
deep sequencing is not needed for many NGS applications.
Another obstacle to the wide use of the MIP protocol is
the availability of few MIP design tools which fit previous
protocols (chemistry). Our data from the genotyping panel
(Figure 4) suggests that refinement of MIPgen copy number
thresholds and MIPgen predictions regarding MIP perfor-
mance could improve the overall performance of the panel.
Furthermore the fact that we introduced a new MIP proto-
col supports the need for a refined design tool that will take
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into account parameters that our current dataset harbors
(e.g. effect of specific motifs like GC content and others in
the MIP arms and in the target itself).

In recent years, molecular inversion probes were used to
target and sequence a variety of genomic and transcrip-
tomic targets, e.g. the exome (11,27), short tandem repeats
(28), disease related targets (29–32), methylation patterns
(33) and RNA expression (34). We foresee the improve-
ments laid in this work as a stepping stone towards advanc-
ing MIP library prep not just to the clinic, mainly due to
the ease of use short turnaround time, but also to other
targeted sequencing applications due to improved perfor-
mance specifically in GC rich of small and medium size pan-
els.
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