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The microbial quality of irrigation water is an important issue as the use of

contaminated waters has been linked to several foodborne outbreaks. To expedite

microbial water quality determinations, many researchers estimate concentrations of the

microbial contamination indicator Escherichia coli (E. coli) from the concentrations of

physiochemical water quality parameters. However, these relationships are often non-

linear and exhibit changes above or below certain threshold values. Machine learning

(ML) algorithms have been shown to make accurate predictions in datasets with complex

relationships. The purpose of this work was to evaluate several ML models for the

prediction of E. coli in agricultural pond waters. Two ponds in Maryland were monitored

from 2016 to 2018 during the irrigation season. E. coli concentrations along with 12

other water quality parameters were measured in water samples. The resulting datasets

were used to predict E. coli using stochastic gradient boosting (SGB) machines, random

forest (RF), support vector machines (SVM), and k-nearest neighbor (kNN) algorithms.

The RF model provided the lowest RMSE value for predicted E. coli concentrations

in both ponds in individual years and over consecutive years in almost all cases. For

individual years, the RMSE of the predicted E. coli concentrations (log10 CFU 100 ml−1)

ranged from 0.244 to 0.346 and 0.304 to 0.418 for Pond 1 and 2, respectively. For the

3-year datasets, these values were 0.334 and 0.381 for Pond 1 and 2, respectively.

In most cases there was no significant difference (P > 0.05) between the RMSE

of RF and other ML models when these RMSE were treated as statistics derived

from 10-fold cross-validation performed with five repeats. Important E. coli predictors

were turbidity, dissolved organic matter content, specific conductance, chlorophyll

concentration, and temperature. Model predictive performance did not significantly differ

when 5 predictors were used vs. 8 or 12, indicating that more tedious and costly

measurements provide no substantial improvement in the predictive accuracy of the

evaluated algorithms.
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INTRODUCTION

Food safety is a fundamental public health concern which is
threatened when waters with poor microbial quality are used
for the irrigation of fresh produce. In the U.S. and around
the world, regulatory or advisory thresholds on the microbial
quality of irrigation waters are based on the concentrations
of Escherichia coli (E. coli) measured in the water source (US
Food and Drug Administration., 2015; Allende et al., 2018; Wen
et al., 2020). Irrigation with water of substandard microbial
quality has been implicated with foodborne outbreaks associated
with the consumption of contaminated produce (Nygård et al.,
2008; Kozak et al., 2013; Gelting et al., 2015). Additionally,
it is known that pathogenic microorganisms transferred with
irrigation water can internalize into crop tissues which extends
their persistence and reduces the efficacy of post-harvest washing
(Solomon et al., 2002; Martinez et al., 2015). Ensuring that water
used for irrigation meets the recommended criteria is vital for
protecting public health and reducing incidences of foodborne
outbreaks.

Concentrations of fecal indicator organisms, primarily E.
coli, are commonly used to characterize microbial water
quality. Researchers have investigated the relationships between
fecal microorganisms and water quality parameters such as
dissolved oxygen, pH, turbidity, and nutrient levels with a goal
of improving timeliness and predictability of microorganism
concentrations in a water source (Francy et al., 2013; McEgan
et al., 2013; Stocker et al., 2019). Such dependencies have
varied considerably across studies. This may at least partially be
explained by the complexity and non-linearity of relationships
of fecal microorganisms with multiple water quality parameters,
which in turn exhibit complex relationships.

Machine learning (ML) algorithms have been extensively
shown to outperform traditional multivariate analyses in
numerous aquatic ecology studies where the two analyses
have been compared (Quetglas et al., 2011). The advantage of
machine-learning methods is in their ability to mimic linear
relationships between dependent and independent variables.
Machine learning models are also able to assess associations and
quantify predictability in the absence of the knowledge needed
for developing process-based models (Thomas et al., 2018).
Within the field of microbial water quality, several researchers
have used ML algorithms to develop models which could be used
to make rapid water quality determinations in rivers, streams,
Great Lakes beaches, groundwater, drinking water wells, and
water distribution systems (Brooks et al., 2016; Mohammed et al.,
2018, 2021; Panidhapu et al., 2020; Tousi et al., 2021;Weller et al.,
2021; White et al., 2021).

A large number of ML algorithms have been proposed and
implemented in a variety of different research disciplines (Kuhn
and Johnson, 2013). Common research goals are (a) to obtain an
accurate predictive relationship between the predictors and target
variables, and (b) to determine and rank the most influential
predictors. By achieving these goals, researchers may be able to
eliminate unimportant predictors from measurement programs
which can potentially save a great deal of time and resources.
The application of ML regressions in the field of microbial water

quality is relatively new (Park et al., 2015; García-Alba et al., 2019;
Stocker et al., 2019; Abimbola et al., 2020; Ballesté et al., 2020; Li
et al., 2020; Belias et al., 2021; Wang et al., 2021). For agricultural
waters, research into predicting E. coli concentrations using ML
was done for streams (Weller et al., 2021), but so far no studies
have utilized ML regressions to predict E. coli concentrations in
agricultural irrigation ponds which serve as an important source
of irrigation water across the United States and abroad.

The objectives of this work were (i) evaluate and compare
the capabilities of several popular ML algorithms for predicting
concentrations of E. coli from water quality parameters in
irrigation ponds, and (ii) to determine the most influential
predictors for the estimation of E. coli concentrations using a
multiyear dataset.

METHODS

Field Sites and Data Collection
Two working irrigation ponds in Maryland were sampled during
the 2016–2018 growing seasons. Sampling typically occurred
on a biweekly schedule between May and August. Specific
details of the sampling procedures can be found in Pachepsky
et al. (2018) and Stocker et al. (2021). Briefly, each pond was
sampled in a grid-like pattern the maps of which are shown in
Supplementary Figure 1. Pond P1 is located in central Maryland
and provided irrigation water to the surrounding fruit fields.
The northern part of the pond is surrounded by a forested area
whereas the other two sides are covered by grasses or bushes. The
fields around P1 received chemical fertilizers prior to planting
each year in late March or early April.

Pond P2 is an excavated pond located on the University of
Maryland’s Wye Research and Education Center (WREC) which
is located on Maryland’s Eastern Shore. The pond receives water
from a culvert at the northern end (location 12 on the map).
The pond is surrounded by dense brush vegetation along the
perimeter as well as by several trees planted further up from
the banks. To the northern end of the pond is a small riparian
area that surrounds an ephemeral creek while the southernmost
portion has a wetland area that leads into the Wye River.

Along with each water sample that was collected, a YSI
sonde was used to determine characteristics of the water quality
in that sampling location. In 2016, a YSI MPS 556 (Yellow
Springs Instruments, Yellow Springs Ohio) unit was used to
measure dissolved oxygen (DO), pH (pH), specific conductance
(SPC), and temperature (C) which were measured in-situ. At
the laboratory, a Lamotte turbidimeter was used to measured
turbidity (NTU) of the samples. In 2017, a YSI EXO 2 was used
to measure all of the previously described water quality variables
as well as the concentrations of chlorophyll (CHL), phycocyanin
(PC), and fluorescent dissolved organic matter (fDOM). In 2018,
the same YSI EXO 2 sonde was used but additional laboratory
measurements were performed. These included ammonium
(NH+

4 ), orthophosphate (PO3−
4 ), total nitrogen (TN), and total

carbon (TC). Ammonium was measured using an ion-selective
probe (CleanGrow, United Kingdom) which was calibrated prior
to analysis which occurred on the same day as sample collected.
Orthophosphate was run on a SEAL AQ300 discrete nutrient
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analyzer (SEAL Analytical, Mequon, Wisconsin). Total carbon
and TN were analyzed on a Vario TOC cube (Elementar Hanau,
Germany) using high temperature combustion and tandem TNb

and TC detectors.
E. coli enumeration was performed based on EPA method

1603 (US Environmental Protection Agency., 2005) which
utilizes membrane filtration. Briefly, 100ml of pond water was
vacuum filtered through 0.45µm membrane filters. Filters were
then placed onto modified mTEC agar (BD Difco, Sparks, MD)
and incubated for 2 h at 37◦C and then 22 h at 44.5◦C. After
incubation, colonies that were purple in color were counted as
E. coli. Each sample was duplicate plated and the resulting counts
were then averaged.

Machine Learning Algorithms and
Implementation
Several ML algorithms as well as a multiple linear regression
(MLR) were compared in this work. The stochastic gradient
boosting algorithm (SBG) builds the prediction model from
an ensemble of weak models which in this case are decision
trees (Friedman, 2002). Models are built in a step-wise fashion
where at each step a weak model is fitted to a subsample of
the training data drawn at random without replacement. The
term “gradient boosting” comes from the fact the model is trying
to minimize a loss function by tweaking parameters until a
minimum value is reached. The R package “gbm” (Greenwell
et al., 2020) was used develop SGB models. Parameters for the
SGB algorithm are the number of trees (n.trees), the number
of splits in the trees (interaction.depth), the learning rate
(shrinkage), and minimum number of observations in terminal
nodes of trees (n.minobsinnode).

The k-nearest neighbors (kNN) algorithm implements a
non-parametric approach which computes distances from test
datasets to the neighboring training datasets and uses these
distances to determine the predicted value for the test dataset.
The distances are computed from predictor values for training
and test datasets. The number of neighbors (k) used for the
prediction is the single parameter for this algorithm. A Euclidean
distance measure was used to determine nearest neighbors.
The “kknn” package (Schliep et al., 2016) was used to develop
kNN models.

The support vector machines (SVM) algorithm finds the
global minimum in the predictor (Cristianini and Shawe-Taylor,
2000). Support vector machines automatically select their model
size and prevent overfitting by using special form of the
regression cost function that balances accuracy and flexibility
(Vapnik et al., 1995). Support vector machines neglects small
errors which makes it robust and computationally treatable. It
employs mapping to use linear regression while the relationship
between original (not mapped) predictor and output variables is
non-linear. The “kernlab” package (Karatzoglou et al., 2019) was
used to run the SVM algorithmwith a radial basis function kernel
which has two control parameters. The γ parameter defines how
far the influence of a single training example reaches and the
parameter C controls the overfitting prevention.

The random forest (RF) algorithm creates predictions by
generating many decision trees and combining their predictions
in a weighted average giving the final prediction. The RF
algorithm also has a built-in mechanism for preventing
overfitting by random selection of inputs for the individual
trees. As implemented in the ranger package (Wright and
Ziegler, 2017), the algorithm includes three control parameters.
The mtry parameter controls overfitting by determining the
number of variables to randomly select at each split in the
trees. The min.node.size parameter sets the minimum number
of observations in a terminal node. The number of trees was kept
at 500 to reduce computational intensity and because out-of-bag
error did not appreciably change after this number of trees.

One of the outcomes of running RF algorithms is determining
the most influential features that effect the model output. A
random-forest based recursive feature elimination (RF-RFE)
algorithm was applied to each dataset to determine the most
influential predictors. The result of this procedure is to (i) find the
subset of predictors with the minimum possible generalization
error and (ii) to select the smallest possible subset of predictors
which provide the optimal accuracy in model performance
(Granitto et al., 2006). Within the algorithm, at each iteration
feature importance is calculated based on the overall effect
on the residual error and then the least important predictors
are removed. The recursion is needed to address the problem
that for some measures of relative importance, the results
can change substantially over different subsets of the entire
predictor list.

All ML algorithms as well as a MLR model were applied
within the “caret” (classification and regression training) R
package (Kuhn, 2008). This package contains functions that
streamline training for complex ML regression and classification
problems. The package facilitates the optimization and execution
of ML algorithms and uses other R packages as functions for
creating models. For each of the above-listed ML algorithms, we
used the “caret” package to perform repeated cross-validation
when fitting the ML models to the datasets. A default 10-fold
cross-validation was performed with five repeats and then the
results were averaged. The “caret” package was also applied to
perform the recursive feature elimination. Algorithm tuning was
performed during cross-validation and tuning was performed to
minimize the average rootmean squared error RMSE. The “caret”
package contains a grid search function for control parameter
tuning which was utilized in this study. The optimal control
parameters as well as most influential variables were identified
during cross-validation.

Comparison of Algorithm Performance
Metrics
The average root mean square error RMSE, coefficient of

determination R2, and mean absolute error MAE were the
metrics used to evaluate algorithm performance in this study.
Averaging of RMSE, R2 and MAE was done across 50 values
of those statistics obtained for all cross-validation folds and
repeats. The probability of the averages being the same for a
pair of algorithms was determined from the corrected Student
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statistics tc:

tc, RMSE =
RMSE1 − RMSE2
√

hσ 2
RMSE1−RMSE2

; tc, MAE =
MAE1 −MAE2
√

hσ 2
MAE1−MAE2

; (1)

tc, R2 =
R21 − R22

√

hσ 2
R21−R22

;

where subscripts “1” and “2” refer to the first and the second
compared algorithms, σ 2

RMSE1−RMSE2
, σ 2

MAE1−MAE2
, and σ 2

R21−R22
are variances of differences between the values of RMSE, MAE,
and R2, respectively, obtained for the same fold and repeat, h is
the variance correction term proposed by Bouckaert and Frank
(2004) to account for the fact that that values of the metrics in the
50 individual random samples are not independent as they are
obtained by the random subsampling of the same dataset. The
value of h is determined as

h =
1

k · r
+

ntesting

ntraining
(2)

where k is the number of folds and r is the number of repeats,
ntraining instances are used for training, and the remaining ntesting
instances for testing in each of runs. The tc statistics in (1)
have the Student t distribution with k·r – 1 degrees of freedom.
The value of the ratio ntesting/ntraining was 0.1 in this work
as recommended by Bouckaert and Frank (2004). Having the
value and knowing the distribution of tc, one can estimate the
probability of the differences between the average metrics from
two models being equal to zero. Bouckaert and Frank (2004)
referred to this test statistic as the “corrected repeated k-fold
cv test.”

Normalized root-mean-square-error (NRMSE) and mean
absolute error (NMAE) were also computed by dividing the
RMSE and the MAE, respectively, by the range of E. coli
concentrations (e.g., maximum–minimum concentration) and
then multiplying by 100 for each year and predictor set. NRMSE
andNMAE show the percentage of algorithm error relative to the
spread of data.

Data Preprocessing and Analysis
Escherichia coli count data was log-transformed prior to
statistical analysis. All observations of 0 CFU 100 ml−1 were
assigned a value of 0.5 to facilitate the log-transformation (US
Environmental Protection Agency., 2005). Rows with missing
values were removed prior to analysis. Data was not normalized
or standardized before analysis. Preliminary findings showed
that these operations did not substantially affect algorithms
performance and in many cases resulted in poorer predictions.

To examine model performance and variable importance
using different combinations of predictors, we created three
different predictor sets. These included set A which is DO, pH,
SPC, NTU, and C, set AB which is set A plus fDOM, PC, and
CHL, and set ABC which is set AB plus PO3−

4 , NH+
4 , TN, and

TC. Models with the Set A were developed for the individual

years 2016 to 2018 and the combined 3-year dataset. Models with
Set AB predictors were developed for 2017 and 2018, and models
with the set ABC predictor were built only for 2018 where all 12
of the parameters were measured.

A separate study was performed to evaluate the models
developed with the combined P1 and P2 datasets as opposed
to models developed with separate P1 and P2 datasets. Only
the predictor set A was evaluated in this exercise because these
predictors were present in all years of observations and across
ponds. The combined dataset was modeled with and without the
introduction of a categorical variable “site” that labeled the data
from different ponds.

RESULTS

Summary of Monitoring Data
The P1 2016A, 2017A, and 2018A datasets contained 50, 126,
and 138 samples, respectively, after row removal due to missing
values. The P1 2017AB and 2018 AB were 126 and 138 samples,
respectively, while the 2018ABC dataset was 92 samples after
row removal. For P2, the sample set sizes were 97, 148, and
202 samples for 2016A, 2017A, and 2018A, respectively and the
2017AB and 2018AB had the same dimensions as the A scenario
set. The P2 2018ABC dataset had 202 samples.

Escherichia coli and other water quality variable
concentration averages and standard errors are shown in
Supplementary Table 1. The two ponds contained similar
concentration ranges of E. coli in general although the P1
2017 dataset year contained consistently higher concentrations.
The 2016 datasets for each pond contained higher amounts of
missing values of E. coli concentrations compared to the 2017
and 2018 datasets which had relatively few (<5%).

Values of most of the water quality parameters were similar
between ponds with a few exceptions. Pond 2 in 2017 and 2018
had elevated DO concentrations compared to other instances.
CHL and PC were also several times higher in P2 than in
P1 in 2017 and 2018. The 2016 NTU concentrations at P2
were considerably higher than in other cases. Orthophosphate
concentrations were about 16.5 times greater at P2 than in P1
in 2018. However, P1 had an average NH+

4 concentration which
was about three times greater than in P2. Average SPC values
varied between 142.59 and 166.95 across the two ponds. Average
fDOM values were higher in P2 in 2017 and 2018 than P1 for
each corresponding year.

Evaluation of Machine Learning Algorithm
Performance
The RMSE values and standard errors of RMSE are presented
in Table 1. As expected, the MLR performed substantially worse
than the ML algorithms for both ponds and for all years and
predictor sets. The differences between the performance of the
ML algorithms were less substantial. Overall, the differences
among average SVM, RF, and SGB RMSE for the same ponds
and years were <10%. The kNN demonstrated relatively larger
spread of differences between its RMSE and RMSE of other
ML algorithms and the range of those differences was from 1.5
to 24.9%.
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TABLE 1 | Average root-mean-squared errors (RMSE) of logarithms of E. coli concentrations predicted with four machine learning algorithms and multiple linear

regression.

ML Algorithm Predictor set A Predictor set AB Predictor set ABC

2016 2017 2018 2016–2018 2017 2018 2017–2018 2018

Pond P1

SGB 0.247 ± 0.011 0.250 ± 0.012 0.354 ± 0.015 0.343 ± 0.009 0.257 ± 0.012 0.348 ± 0.012 0.325 ± 0.008 0.336 ± 0.011

kNN 0.279 ± 0.016 0.276 ± 0.012 0.395 ± 0.015 0.366 ± 0.010 0.283 ± 0.016 0.385 ± 0.016 0.356 ± 0.011 0.361 ± 0.016

MLR 0.452 ± 0.033 0.287 ± 0.013 0.556 ± 0.016 0.504 ± 0.009 0.288 ± 0.014 0.518 ± 0.014 0.461 ± 0.008 0.447 ± 0.012

RF 0.255 ± 0.015 0.250 ± 0.012 0.346 ± 0.015 0.334 ± 0.010 0.244 ± 0.013 0.338 ± 0.013 0.322 ± 0.010 0.334 ± 0.014

SVM 0.269 ± 0.013 0.255 ± 0.012 0.384 ± 0.013 0.356 ± 0.009 0.260 ± 0.012 0.382 ± 0.014 0.344 ± 0.009 0.371 ± 0.014

Pond P2

SGB 0.332 ± 0.011 0.422 ± 0.013 0.381 ± 0.007 0.402 ± 0.007 0.428 ± 0.015 0.375 ± 0.008 0.403 ± 0.007 0.314 ± 0.009

kNN 0.370 ± 0.015 0.416 ± 0.015 0.405 ± 0.008 0.423 ± 0.008 0.424 ± 0.012 0.401 ± 0.009 0.408 ± 0.009 0.396 ± 0.009

MLR 0.421 ± 0.016 0.463 ± 0.012 0.434 ± 0.008 0.506 ± 0.008 0.467 ± 0.012 0.418 ± 0.009 0.506 ± 0.006 0.391 ± 0.010

RF 0.306 ± 0.012 0.416 ± 0.014 0.344 ± 0.009 0.381 ± 0.007 0.418 ± 0.014 0.343 ± 0.008 0.385 ± 0.007 0.304 ± 0.008

SVM 0.288 ± 0.012 0.424 ± 0.014 0.365 ± 0.008 0.404 ± 0.007 0.431 ± 0.013 0.378 ± 0.011 0.406 ± 0.009 0.340 ± 0.010

The ± separates the average from the standard error of the mean. The smallest RMSE are shown in bold. Machine learning algorithms: SGB, stochastic gradient boosting machines;
kNN, k-nearest neighbor; MLR, multiple linear regression; RF, random forest; SVM, support vector machines. Predictor sets: A—temperature (C), DO, pH, turbidity, and SPC; AB—all
from A and PC, CHL, and fDOM; ABC—all from AB and NH+

4 , PO
3−
4 , TN, and TC.

Random Forest as the Best-Performing Algorithm
The RF algorithm provided the smallest RMSE value in 88% of
cases. Only in 2016, the SGB and SVM algorithms, on average,
provided lower RMSE values for P1 and P2, respectively. The SGB
algorithm provided the second smallest RMSE in 75% of cases.
Probabilities of RMSE being equal for RF and other algorithms
are shown in Figure 1. The probability ranges differed between
the ponds and among algorithms. Whereas the probabilities of
equal RMSE for SGB and RF were high for Pond 1, Pond 2
had a greater spread of probabilities that were generally lower.
Similarly, the range of probabilities of equality of RMSE for RF
and kNN was much wider for Pond 2 compared with Pond 1.
Probabilities of equal RMSE for RF and SVM were relatively
high in both ponds. Ranges of those probabilities were similar
in both ponds, unlike with other algorithms. The two significant
differences in model performance occurred between the RF and
kNN algorithms with the 2018A (P < 0.043) and the 2018 ABC
(P < 0.001) P2 datasets.

Interannual Differences in Algorithm Performance
Probabilities of the absence of differences in RMSE
for pairs of years varied by year, algorithm, and pond
(Supplementary Table 2). Comparisons between 2016 and
2017 performance were not significant in the P1 dataset. For
P2, the SVM, RF, and SGB algorithms performed significantly
better on the 2017 than the 2016 set. The 2017 predictor A set
showed significantly better performance than the 2018A set in
P1 but was not found to significantly differ for any model in
P2. Between the 2016 and 2018 predictor A sets, the SGB, kNN,
and SVM algorithms performed significantly better for the 2016
dataset than for the 2018 dataset whereas the performance, while
better for RF and MLR in 2016, did not significantly differ. The
MLRmodel was the only model at P2 which showed significantly
better performance in 2016 when compared to 2018.

FIGURE 1 | Probabilities for the mean RMSE value to be the same in the RF

and other ML applications based on the corrected t-statistic. Symbols in red

show statistical significance.

Multiannual Algorithm Performance
WhenML algorithms were applied to the three-year dataset from
P1 with the predictor set A, the RMSE appeared to lie between
the maximum andminimum RMSE obtained for individual years
for the same pond and predictor set. For P2 and predictor set
A, the RMSE of the three-year dataset were slightly higher than
the largest of the individual year RMSE. A similar pattern was
observed with the predictor set AB and the 2-year dataset. The
RMSE for P1 was between the RMSEs of individual years, whereas
with P2 data, the RMSE of individual years were smaller than the
RMSE of the 2-year dataset.

Effect of the Predictor Set Expansion
Expanding the predictor set size from A to AB in the 2017
resulted in a slight increase of RMSE in most cases with the
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one exception being for the RF model in P1. Transition from
A to AB and then to ABC predictor sets generally led to the
decrease of RMSE (Figure 2). However, in some cases there was
effectively no difference (i.e., RF in P1 between AB and ABC
and kNN between all sets in P2). In P1, there was a gradual
decrease in RMSE with increased number of predictors whereas
for P2 the largest RMSE decreases were between AB and ABC
with kNN being the exception. In all cases the 12-predictor
ABC set showed the best performance for all ML algorithms at
both ponds.

Other Metrics of Algorithm Performance
The differences between algorithm performance measured with
mean absolute error (MAE) and the determination coefficient
(R2) were similar to the differences found with RMSE values
(Supplementary Tables 3, 4). However, in a few instances the
model with the best performance changed when analyzing
different metrics. For example, the SGB model provided the best
performance in the 2018 ABC predictor set in P1 and the kNN
provided the best result for the 2016–2018 predictor set A for
P2 when using MAE as a metric. These two were predicted most
accurately by the RF model when RMSE is used. Similarly, the
SGB model in P1 2017–2018 AB predictor set in P1 provided
the highest R2-value and the kNN model was best in the 2017A
predictor set in P2 whereas both were predicted best by the RF
model when using RMSE.

The RF algorithm provided either the best (12 cases)
or the second best (4 cases) value of the average MAE.
The SGB and SVM algorithms were the closest to the RF
(Supplementary Table 3). Similar to the results comparing
RMSE, the 2016 and 2017A and AB sets were predicted
with the lowest errors according to average MAE and errors
were generally lower with P1 than P2. The only significant
differences in ML model performances using the MAE metric
was between the RF and kNN in the P2 2018 ABC dataset

FIGURE 2 | Dependence of the root-mean-squared error (RMSE) on the

predictor set size. Predictor sets have 5, 8, and 12 predictors for A, AB, and

ABC, respectively. Displayed results are from the 2018 datasets.

(P = 0.004) (Supplementary Figure 2). Based on R2-values,
the RF model was preferred in 12 of 16 cases with it being
second in two cases and tied with the SGB model in two
cases (Supplementary Table 4). Interestingly, R2-values for the
2017A and AB sets were the lowest across models despite
this year having the smallest average RMSE and MAE values.
Similar to results with RMSE and MAE, kNN was the only
ML model to perform significantly worse (P = 0.003) than
the RF model which occurred for the 2017–2018 AB dataset
(Supplementary Figure 3).

Normalized RMSE and MAE were calculated for all years
and predictor sets for both ponds (Supplementary Tables 5, 6).
The preferred algorithm did not change from those presented
in Table 1 and Supplementary Table 2 for values of RMSE and
MAE, since for a given dataset, RMSE and MAE values from
all algorithm were divided by the same value. The percentages
of the errors as shown by examination of NRMSE values
(Supplementary Table 5) for the ML algorithms were generally
around 10 % of the data range for the P1 2016A, 2017A, 2016–
2018A, and 2017AB datasets. The P1 2018A, AB, and ABC
datasets contained higher errors which were between 10 and
20%. The MLR algorithm provided consistently higher errors
which were typically in the range of 15–20% except for the 2017
datasets which had <10% error. P2 contained greater relative
error (15–20%) than the P1 datasets with the exception being the
2018A, AB, and ABC data in which errors were in the same range
between ponds. Values of NMAE were consistently lower than
those of NRMSE and were in the range of 5.2% to (RF P1 2017A)
to 15.5% (MLR P2 2018 A).

Algorithm Performance for the Combined Pond 1 and

Pond 2 Datasets
Results of combining the P1 and P2 datasets are shown in
Supplementary Table 6. The SVM algorithm performed the best
in terms of values of RMSE, R2, and MAE in the combined 2016
dataset whereas the RF algorithm showed the best performance
in the 2017, 2018, and 2016–2018 datasets. The algorithm
performance for the combined P1 and P2 dataset was never better
than the performance of both ponds run individually for certain
years but was typically higher than one pond and lower for the
other (Table 1; Supplementary Tables 3–5). Including “site” as
a categorical input generally improved the performance of the
combined P1/P2 datasets across years (Supplementary Table 7).

Recursive Feature Elimination
In almost all scenarios the RF model was shown to provide the
best RMSE values when compared to the other models. For this
reason, a recursive feature elimination in “caret” was performed
using the RF model to determine and rank the most important
features for each pond and by year. Supplementary Figure 4

shows the reduction in RMSE values for the RF models for each
year. Examination of the graph shows that in most cases the
models do not greatly benefit from more than five predictors but
the specific predictors varied by pond and year. The predictor
importance order for each year from the RF-RFE was recorded
and each variable received a numeric value corresponding to
the overall ranking (Table 2). In this way, the variables with
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the lowest scores corresponded to being picked as consistently
most important.

Within the various predictor set scenarios, there were some
parameters that were consistently highly ranked as important
features. These included SPC, C, fDOM, CHL, and NTU. All
other parameters showed largely inconsistent ranking. While
SPC was consistently ranked in the top two variables for all
scenarios, temperature was as well for variable sets A and AB
but was ranked poorly in the ABC datasets. The PC-value
was consistently ranked low in the datasets that contained this
parameter. Similarly, NH+

4 and PO3−
4 , the only ionic nutrients

measured in the study were also ranked low in the ABC set.
Conversely, TN and TC were ranked fourth and fifth important
in both ponds in the 2018 datasets. Interestingly, the 2018
ABC parameter sets had identical rankings of the five top
important features and overall similar rankings of the remaining
seven parameters.

DISCUSSION

While model performance generally did not significantly differ,
the RF model was found to provide consistently better
performance than any of the other models evaluated. Several
publications focusing on ML model evaluation specifically
for microbial water quality purposes have reached similar
conclusions (Avila et al., 2018; Chen et al., 2020; Weller et al.,
2021). The SGB model was found to provide the second-best
performance across all three metrics from all datasets. In several
empirical ML comparison studies, it has been stated that SGB
models usually outperform RF models (Maclin and Opitz, 1997;
Caruana and Niculescu-Mizil, 2006; Hastie et al., 2009) but
other studies report the opposite (Bauer and Kohavi, 1999;
Manchanda et al., 2007; Khoshgoftaar et al., 2010). Therefore,
the choice of “the best” model may be dataset-dependent
which to some degree was evident in the results of this work
(Table 1; Supplementary Tables 3, 4). Also, the performance of
both models is dependent on how they are tuned. SGB are
considered harder to tune than RF models, contain greater
sensitivity of tuning parameters with regard to the output, and
have a greater number of tuning parameters (Freeman et al.,

2016). Both RF and SGB algorithms are tree-based but the SGB
algorithm incorporates a boosting procedure whereby model
fitting is additive and each new tree is fit to the residuals
of the previous tree with the goal of minimizing the most
egregious errors according to a specific loss function such as
MSE. Because SGBs are additive, they are more susceptible to
over- or underfitting which the RF model is robust to because
the individual trees are independent and are averaged to create
the forest. Lastly, when bagging (RF) and boosting (SGB) type
algorithms have been compared, bagging has been described
to provide better results when datasets are noisy or there are
class imbalances (Maclin and Opitz, 1997; Khoshgoftaar et al.,
2010).

The performance of the SVM and kNN algorithms was
generally poorer than the RF and SGB algorithms (Table 1) but in
most cases the performance did not significantly differ (Figure 1).
One possibility is that both SVM and kNN algorithms have
been reported to not handle missing values, near-zero variance
predictors, or noisy data as well as RF or SGB algorithms (Kuhn
and Johnson, 2013). The SVM algorithm typically provided lower
RMSE than the kNN algorithm and this may be because SVM
is robust to outliers especially when non-linear kernels are used.
The RBF kernel was used in this study because it provided
substantially better results than the linear or polynomial kernels
(data not shown) which was also reported in the work by Weller
et al. (2021) who used ML algorithms for the prediction of
E. coli in NY streams. Several other water quality studies have
also reported better performance of SVM than kNN when the
two have been compared (Modaresi and Araghinejad, 2014;
Danades et al., 2016; Babbar and Babbar, 2017; Prakash et al.,
2018; Chen et al., 2020). Finally, the kNN has been reported
to not perform well with high dimensional or highly scattered
datasets which is why centering and scaling is recommended.

However, in our work, this pre-processing procedure did not
affect results but may explain why SVM is preferred in other
water quality datasets.

Different performance metrics in general agreed with each
other, but in some cases contradicted. For example, while all
algorithms showed the best RMSE on the 2017 P1 dataset
(Table 1), this year was ranked the worst predicted by the

TABLE 2 | The top five important variable as determined by the recursive feature selection algorithm in caret with Random Forests.

Pond 1 Pond 2

Variable set A Variable set AB Variable set ABC Variable set A Variable set AB Variable set ABC

Variable Average rank Variable Average rank Variable Rank Variable Average rank Variable Average rank Variable Rank

SPC 1.3 SPC 2.0 fDOM 1 C 2.0 SPC 1.5 fDOM 1

C 1.7 C 2.5 SPC 2 SPC 2.7 C 2.0 SPC 2

DO 3.7 fDOM 3.5 CHL 3 pH 3.3 pH 2.5 CHL 3

pH 4.0 CHL 4.5 TN 4 NTU 3.3 NTU 5.0 TN 4

NTU 4.3 NTU 5.5 TC 5 DO 3.7 fDOM 5.5 TC 5

Variable set A was measured in 2016, 2017, and 2018. Variable set AB was measured in 2017 and 2018 and variable set ABC was measured in 2018 only. A = C, pH, NTU, SPC, AB
= A + CHL, PC, fDOM. ABC = AB + NH+

4 , PO
3−
4 , TN, and TC.
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R2 metric (Supplementary Table 4). This is caused by the
distribution of observed and predicted data along a 1:1 line.
This example highlights the importance on the choice of
performance metric reported in algorithm evaluation studies and
the advantage of using multiple performance metrics.

We compared only five different algorithms in this study
which were chosen due their popularity, but many more ML
algorithms and their modifications exist and can be tested for
regression-type application (Kuhn, 2008; Kuhn and Johnson,
2013; Weller et al., 2021). We chose not to run artificial neural
networks (ANN) due to constraints of the dataset dimensions
but other researchers have found success in applying ANN
algorithms in the field of microbial water quality (Motamarri
and Boccelli, 2012; Buyrukoglu et al., 2021). Other promising
algorithms for water quality determinations include those
founded in Bayesian statistical methods such as Naïve Bayes or
Bayesian Belief Networks (Avila et al., 2018; Panidhapu et al.,
2020) and the use of ensemble or model stacking methods
(Buyrukoglu et al., 2021).

Several predictor variables emerged as consistently important
for both ponds and across years of observations. These included
fDOM, SPC, C, and CHL, and NTU. Positive relationships
between dissolved organic matter (fDOM) and concentrations
of planktonic fecal bacteria in water have been reported (Rincon
and Pulgarin, 2004; Bouteleux et al., 2005). The relationship is
likely governed by the presence of suspended organic substances
which may promote the growth and survival of E. coli in the
present study by providing nutrients, an attachment surface,
and decreasing direct cellular photo-inactivation (Rincon and
Pulgarin, 2004; Garcia-Armisen and Servais, 2009; Maraccini
et al., 2016; KatarŽyte et al., 2018).

In both ponds and in every year NTU was positively
correlated with E. coli concentrations (data not shown). Positive
associations of fecal bacteria and NTU have been previously
presented (Francy et al., 2013; Partyka et al., 2018; Weller
et al., 2020) and can also be related to the level of suspended
particulates which have been shown to enhance E. coli survival
in water (KatarŽyte et al., 2018). Additionally, elevated NTU
levels may indicate recent disruption of bottom sediments either
by bioturbation or runoff-related mixing which results in the
resuspension of fecal bacteria contained in sediments (Cho et al.,
2010; Stocker et al., 2016).

The presence of CHL in the lists of most important predictors
apparently reflects mutualistic relationships between algae and
E. coli have been reported and attributed to solar shielding as
well algae providing a source of labile organic nutrients which
promote bacterial persistence (Englebert et al., 2008; Vogeleer
et al., 2014). On average in both ponds, when chlorophyll-a
(CHL-a) levels were higher, E. coli concentrations were lower
(Supplementary Table 1). There may exist a threshold level at
which there is a mutualistic relationship between E. coli and algae
and above this level there exists competition (Ansa et al., 2011).

The concentrations of SPC were determined as most
important in the largest number of cases in the study. The
concentrations of SPC in water are proportional to the ion
concentrations present. Ionic nutrient concentrations in water
have often shown positive relationships with the concentrations

of E. coli present (Lim and Flint, 1989; Ozkanca, 1993; Shelton
et al., 2014). Recent research has also demonstrated that E.
coli survival rates in freshwater increase with conductivity
by way of reducing osmotic stress and improving membrane
stability but can be detrimental above certain levels (DeVilbiss
et al., 2021). Runoff reaching waterways may either have a
dilutional effect and lower water conductance or increase it
(Baker et al., 2019). Rapid changes in SPC may be used as an
indicator of when influent such as runoff or precipitation has
reached water sources and thus may provide good indication of
when E. coli concentrations can be expected to change within
a waterbody.

Temperature effects on E. coli persistence in the environment
are perhaps the most well-documented of any other variables in
the literature but may also be the most inconsistent. Numerous
review and meta-analysis articles indicate E. coli persistence is
negatively influenced by higher temperatures (Blaustein et al.,
2013; Stocker et al., 2014; Cho et al., 2016). However, others have
reported positive relationships (Truchado et al., 2018) while some
have reported inconsistent direction of the relationship when
multiple sites were included in the same study (Francy et al.,
2013; McEgan et al., 2013). These diverse dependencies reveal the
complexity of the relationships between E. coli and the predictors
which govern the aquatic habitat and affect survival. Ultimately,
ML algorithms are expected to handle the complex interactions
and non-linear relationships better than traditional regression
models in aquatic studies (Quetglas et al., 2011; Weller et al.,
2021).

Through additional scenario testing (Table 2;
Supplementary Tables 3, 4) it was discovered that model
performances did not substantially change when the 2017
and 2018 datasets were held at a lower number of predictors.
This indicates while parameters introduced in later years of
the study were found to be at times more important, the core
5 predictors utilized in 2016A, 2017A, and 2018A predictor
sets (C, SPC, NTU, DO, and pH) were found to be largely
suitable for predicting E. coli concentrations in agricultural
pond waters. This finding is of special interest as each additional
predictor introduces additional burden on water quality
characterization program. Additionally, results of this study
indicate that E. coli concentrations in irrigation ponds may
be “now casted” by using relatively cheap deployable on-line
sensor suites that are used for continuous monitoring. It must be
acknowledged that this study utilized measurements of a total of
12 predictors. Many additional predictors exist (e.g., ORP, total
suspended solids, or various nutrient concentrations such as
nitrate or ammonia) which may further improve the predictive
performance of the ML algorithms or lead to the creation of
similar simple and effective sets of variables as those identified in
this study.

We realize that the effect of redundancy of predictors
was not fully elucidated in this work. There exist multiple
suggestions on redundancy removal as a preprocessing step
of regressions using correlations between predictors, variance
inflation estimation, or principal component analysis as a basis
for the removal of covarying predictors. Multiple methods are
suggested in the literature to reduce the effects of the input
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reduction on variable importance determinations (Bøvelstad
et al., 2007). These methods tend to increase the reliability of
the regression results (more data per coefficient), but at the
same time, they may change the perception of the relative
importance of input variables (Ransom et al., 2019). Applying
these methods to several ML algorithms and assessing results
presents an interesting research avenue. In this work, we limited
the study by analyzing correlations between inputs. As expected,
the only strong correlations were found between DO and
pH (data not shown). The most likely mechanism for the
observed co-linearity is photosynthetic activity in the ponds
which consumes dissolved CO2 (raising pH) and releases DO
(raising DO). We cannot exclude the effect of this correlation
on the occurrence and position of DO and pH in lists of
important inputs.

The algorithm performance for the combined P1 and
P2 dataset was never better than the performance of both
ponds run individually for certain years but was typically
higher than one pond and lower for the other (Table 1;
Supplementary Tables 3–5). Explanations for this may be site-
specific responses of E. coli concentrations to differences in
predictor levels in each pond which may in some cases be
similar and in others dissimilar. For example, P2 had elevated
levels of the photosynthetic pigments PC and CHL compared
to P1. Similarly, DO and pH levels in P2 were typically higher
in P2 than in P1 (Supplementary Table 1). It is therefore
possible that there were different extents to the effects of
these predictor levels on E. coli concentrations which were
unique for each pond. If monitoring datasets are available for
multiple water bodies, one can pool these datasets together
and compare the performance between site-specific models
and those developed using pooled datasets across locations.
Alternatively, one may use “site” as categorical variable input
which may preserve site-specific interactions between E. coli and
predictors within a larger model. Indeed, in the present study,
adding “site” (e.g., Pond 1 or Pond 2) generally improved the
performance of all algorithms on the P1/P2 combined datasets
(Supplementary Tables 5, 6).

The results of this work were gathered by studying only two
irrigation ponds both in the state of Maryland and as such the
scope of inference is limited. However, in the literature there is a
lack of information regarding E. coli and water quality dynamics
in irrigation sources let alone those involvingML algorithms. The
current study suggests a framework for using ML algorithms for
irrigation water quality determinations.

CONCLUSIONS

Overall, all ML algorithms performed well in predicting E. coli
in the datasets. The RF algorithm predicted better in more cases
than the other models when assessed in terms of average values
of root-mean-squared-error, coefficient of determination, and
mean absolute error (MAE). However, when those performance
metrics were treated as statistics, there was no significant
difference between the ML algorithm performance in most cases.

The MLR model consistently provided the worst results which
demonstrated the non-linearity of the relationships between E.
coli and its predictors. The recursive feature elimination exercise
revealed similarities in important features across years and sites.
Namely, SPC, NTU, C, CHL, and fDOM were found to be the
most influential variables for the prediction of E. coli in the
studied ponds. However, it was also shown that the algorithm
performances were not substantially improved when predictor
sets were expanded to 8 and 12 variables from the core 5 variable
list (pH, DO, SPC, C, NTU). The performance of the RFmodel as
well as its relatively simple set up and deployment indicate it may
be a valuable tool for water quality managers and researchers to
utilize when predicting the microbial quality of irrigation waters.
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