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Emergence of mTOR mutation as an acquired resistance
mechanism to AKT inhibition, and subsequent response to
mTORC1/2 inhibition
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Acquired resistance to molecular targeted therapy is a significant challenge of the precision medicine era. The ability to understand
these mechanisms of resistance may improve patient selection and allow for the development of rationally designed next-line or
combination treatment strategies and improved patient outcomes. AKT is a critical effector of the phosphoinositide 3-kinase
signaling cascade, one of the most commonly activated pathways in human cancer. Deregulation of signaling pathways, such as
RAF/MEK/ERK are previously described mechanisms of resistance to AKT/PI3K inhibitors. Mutations in the mTOR gene, however, are
exceedingly rare. We present a case of acquired mTOR resistance, following targeted AKT inhibition, and subsequent response to
mTOR1/2 inhibitor in a patient with metastatic endometrial cancer, the first documented response to ATP-competitive mTOR
inhibition in this setting. This case supports mTOR mutation as a mechanism of resistance, and underscores the importance of
tumor molecular profiling, exemplifying precision medicine in action.
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INTRODUCTION
The serine/threonine kinase, AKT, is a critical effector of the
phosphoinositide 3-kinase (PI3K) signaling cascade and is one of
the most commonly activated pathways in human cancer1.
Dysregulation of AKT-dependent pathways is associated with
the development and maintenance of various solid tumors, such
as those of the endometrium, cervix, lung, prostate, skin, and
breast2–4. Thus, AKT remains an intensely pursued therapeutic
target in the era of precision medicine. Indeed, there are a number
of small-molecule inhibitors targeting various components of the
PI3K/AKT pathway currently at various stages of clinical develop-
ment, in multiple solid tumors, including prostate, gastric, and
breast cancer5–7.
There are several AKT inhibitors in clinical development, which

predominantly fall into two separate classes: ATP-competitive
inhibitors of AKT, which bind to the active site of AKT, blocking
ATP binding (e.g., ipatasertib and capivasertib) and allosteric
inhibitors of the AKT PH-domain which prevent localization of AKT
to the plasma membrane, thereby blocking AKT phosphorylation
and activation (e.g., ARQ 751 (ArQule) and MK-2206). Capivasertib
(AZD5363) is an oral, potent, selective ATP-competitive pan-AKT
kinase inhibitor, which has demonstrated clinical activity in
patients with heavily pretreated AKT1 E17K mutant solid tumors,
with confirmed partial responses reported in ER- endometrial,
breast, cervical, and lung cancer8. Furthermore, capivasertib
demonstrated a 28.6% ORR in the National Cancer Institute
MATCH subprotocol (EAY131-Y) in patients with AKT1 E17K
mutant tumors9. Capivasertib plus fulvestrant has also shown
antitumor activity in heavily pretreated patients with PTEN-
mutated ER+metastatic breast cancer (MBC), including those
with prior progression on fulvestrant9.

Ipatasertib (GDC-0068), another ATP-competitive pan-AKT
kinase inhibitor, has also shown clinical activity in combination
with fulvestrant in patients with AKT1 E17K mutant MBC10,11, and
has been explored in this population. Although in a Phase III trial,
ipatasertib in combination with paclitaxel has not enhanced PFS
compared to paclitaxel in MBC, in the Phase III IPATential150
trial12, ipatasertib improved radiographic progression-free survival
in metastatic castration-resistant prostate cancer (mCRPC) and
patients whose tumors had PTEN loss13. Previously, we have
shown that ARQ 751 demonstrated a manageable safety profile,
and four patients achieved the best response of stable disease,
including one with MBC treated for 42+ weeks; the dose
escalation is currently ongoing14.
Acquired resistance is a major challenge for molecularly

targeted therapies, and understanding these mechanisms of
resistance may improve patient selection and allow the develop-
ment of rationally designed next-line or combination treatment
strategies. Here, we present a case of acquired mTOR resistance,
following targeted AKT inhibition, and subsequent response to
mTOR1/2 inhibitor in a patient with metastatic endometrial
carcinoma. To our knowledge, this is the first documented case
of mTOR mutation as an acquired mechanism of resistance in the
setting of AKT inhibition, and subsequent documented response
to mTOR-based targeted therapy.

RESULTS
Case
A 60-year-old female patient, with a prior history of breast cancer,
presented with abnormal vaginal bleeding, and biopsy-confirmed
grade II endometrial adenocarcinoma with squamous metaplasia.
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Following her diagnosis, she initially underwent total laparoscopic
hysterectomy with pelvic/aortic lymph node dissection, and
pathology confirmed IB grade II endometrial adenocarcinoma
with squamous metaplasia, and lymphovascular space invasion.
Following this, the patient received adjuvant cisplatin and
radiotherapy, with pelvic external beam radiotherapy and vaginal
brachytherapy (Fig. 1).
One year later, she developed persistent back pain, and imaging

revealed a single T12 lesion with epidural impingement, and
subsequent tumor biopsy confirmed metastatic adenocarcinoma
consistent with endometrial cancer. Systemic restaging studies
revealed a small but suspicious left-sided para-aortic lymph node
at the levels of L2-L3. The patient underwent stereotactic
radiosurgery and thermal ablation for cord compression, and
she received carboplatin and liposomal doxorubicin for three
cycles, followed by focal radiotherapy to persistent para-aortic
lymphadenopathy.
Computed tomography (CT) restaging imaging 7 months later

revealed disease progression in the lungs, and the patient
commenced cisplatin and gemcitabine chemotherapy. However,
post cycle 3, imaging revealed T12 metastasis showing a new
region of FDG-avidity, compatible with progression and stable
pulmonary nodules. MRI spine showed suspected progression of
epidural soft tissue metastasis at T12 resulting in mild-to-
moderate spinal canal stenosis but no definite cord signal
abnormality. She received definitive treatment for her cancer in
the spine, with thermal ablation of the T12 region, followed by
vertebrectomy and reconstruction with cement stabilization T9-L3,
and zolendronic acid therapy was commenced.
Following the further progression of cancer on positron

emission tomography (PET) CT, with the increase in size and
number of pulmonary metastases and new mesenteric disease,
the patient was referred to for consideration of a phase I trial
Department of Investigational Cancer Therapeutics at the
University of Texas MD Anderson Cancer Center. Next-
generation sequencing (NGS)– analysis for the detection of
somatic mutations in the coding sequence of 50 genes15 (Ion
Ampliseq 50-Gene Assay; Thermo Fisher) of retroperitoneal lymph
node revealed an AKT1 E17K activating mutation and no other co-
occurring alterations of functional significance (Supplementary
Table 1). The patient was enrolled on a phase I study of an
allosteric pan-AKT inhibitor ARQ751 (NCT02761694). The patient
received 25mg daily orally initially and tolerated treatment
without significant toxicity. As the protocol allowed intra-patient
dose-escalation, the dose was escalated to 50mg daily and
subsequently increased to 75 mg daily. Treatment was relatively
well-tolerated, requiring no dose reductions or interruptions of
treatment. She experienced stability of disease (4% reduction by
RECIST criteria version 1.1)16 lasting 27 months.

Following 27 months of AKT inhibition, RECISTv1.1 progressive
disease was confirmed on restaging PET-CT imaging, showing an
increase in the size of multifocal pulmonary metastases and
increase in left axillary nodal metastatic disease. The patient
underwent a CT-guided lung biopsy which confirmed adenocarci-
noma consistent with the endometrial primary. NGS analysis
(Oncomine®, Thermo Fisher) for the detection of somatic
mutations in the coding sequence of 143 cancer-related genes17

was conducted, on this occasion on the DNA extracted from the
patients’ metastatic pulmonary lesion, which confirmed the
persistence of AKT1 E17K mutation, and an mTOR mutation,
mTOR A1459D, annotated to be an activating mTOR mutation.
Sequencing on the lung metastasis demonstrated a CTNNB1 G34R
mutation which was also noted on the 50 gene panel of the initial
sample. There were no other co-occurring alterations identified.
Although the original 50 gene hotspot panel did not sequence
mTOR, it was hypothesized that the mTOR mutation may be an
acquired resistance mutation, thus, the original pre-treatment
sample was re-sequenced on the Oncomine platform, confirming
that the AKT1 E17K mutation, and but not the mTOR A1459D
mutation was detected (Supplementary Table 1).
The patient was subsequently enrolled on a phase I study of the

mTORC1/2 inhibitor sapanisertib (TAK-228) given 4mg daily with
metformin 500mg twice daily (NCT03017833). The patient
achieved a confirmed partial response (PR) by RECIST criteria
version 1.116 post-6 cycles of therapy (maximum reduction 30%
from baseline) (Fig. 2). The patient remains on trial at 14 months
with good tolerability.

DISCUSSION
AKT/PI3K/mTOR signaling is commonly disrupted in human
cancers, with AKT being a central component of the pathway,
influencing multiple processes which are directly involved in
tumorigenesis. AKT is a family of serine/threonine kinases
consisting of three isoforms (AKT1, AKT2, and AKT3), regulated
upstream by the activation of PI3K, following growth factor
stimulation. Several downstream substrates of activated AKT play
a major role in the regulation of cell size, cell cycle progression,
glucose metabolism, genome stability, transcription, protein
synthesis, and inhibition of pro-apoptotic proteins18–20. Targeting
this pathway has, therefore, been a highly attractive anti-cancer
strategy and significant efforts have been made to target this
kinase for many years.
Acquired resistance to molecular targeted therapy represents a

significant challenge for the effective treatment of cancer.
Deregulation of signaling pathways, including alterations in Raf/
Mek/ERK are previously described determinants of tumor resis-
tance to AKT/PI3K inhibitors21,22. We report, to the best of our
knowledge, the first clinical case of acquired resistance following

Fig. 1 Treatment timeline. Timeline summarizing treatment course of the patient, including all systemic treatments that the patient received.
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targeted therapy with AKT inhibition due to the development of
an activating mTOR mutation, and following subsequent detection
of this lesion, the first clinical case of documented response to
mTOR inhibition in this setting.
The AKT mutation described in our patient, E17K, is found in the

PH domain of AKT1 where a glutamic acid is substituted with a
lysine residue at amino acid 17 (E17K), results in enhanced activity
of the kinase, leading to constitutive membrane localization of the
kinase and increased phosphorylation on T308 and S473 in a PI3K-
independent manner23,24. Upregulation of AKT3 has been
suggested as a potential mechanism of resistance to allosteric
AKT inhibitor MK2206, using preclinical breast cancer models25.
Target engagement can, however, be significantly influenced by
drug-specific and drug-class-specific differences in isoform and
conformation selectivity, and also by the effects of mutation on
the accessibility to drug binding sites. For instance, activating AKT
mutations such as AKT1-E17K, can destabilize the PH-in con-
formation and therefore confer resistance to allosteric AKT
inhibitors but sensitivity to ATP-competitive inhibitors26.

Therefore, the mechanisms of resistance to different AKT inhibitors
may be different.
mTOR is a serine-threonine kinase that forms two physically and

functionally distinct protein signaling complexes, mTORC1 and
mTORC2, which are distinct in their regulation, susceptibility to
different classes of inhibitors, and downstream substrates27.
Multiple independent studies in cellular and mouse models have
demonstrated that sustained, or incompletely inhibited,
mTORC1 signaling can contribute to TKI resistance in EGFR-
mutant NSCLC and BRAF-mutant melanoma28. Moreover, pre-
clinical data are implicating mTORC signaling in resistance to PI3K
inhibitors: PIK3CA-mutant breast cancer models resistant to PI3K
inhibitors have been shown to exhibit sustained
mTORC1 signaling29, and treatment with a rapalog was sufficient
to sensitize resistant cells to PI3Kα inhibitor alpelisib29. Indeed,
activation of mTORC1 has been shown to be a key event in
resistance to PI3K inhibitors in a number of tumors types, perhaps
because of its role downstream of PI3K28. In addition to this, the
concomitant inhibition of PI3K and mTORC1 has been proven to

Fig. 2 Serial axial CT and fused PET/CT images from contrast enhanced PET/CT examinations at baseline, 4.5 months and 8.5 months
illustrate disease response. Serial axial CT (A–C) and fused PET/CT (D–F) images of the abdomen in soft tissue window show response in the
mesenteric implant with decreased size (white arrows in A–F) and significantly decreased FDG uptake with a maximum SUV of 10.5 at
baseline, 3.6 at 4.5 months follow up and 4.8 at 8.5 months follow up. Serial axial CT (G-I), and fused PET/CT (J-L) images in lung windows
showed a response in the lung metastases. The largest metastasis in the lingua remained grossly stable in size (white arrows in G-I) but
showed decreased uptake with a maximum SUV of 20.1 at baseline, 8.8 at 4.5 months follow up and 8.6 at 8.5 months follow up. Multiple
other smaller lung metastases (black arrows in G-L) also showed decreased size and decreased uptake.
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sensitize resistant cell lines in breast and head and neck cancer,
suggesting that mTORC1 may play a role in limiting the sensitivity
to PI3K30.
Mutations in the mTOR gene are rare, and on the interrogation

of the Institute for Personalized Cancer Therapy (IPCT) database in
MD Anderson Cancer Center, we noted a frequency of 1.35% of
20,150 patients screened (platforms included CMS400, STGAv1,
STGA DNA2018, and LBPv1) (Fig. 3). The mTOR A1459D alteration
found in our patient is located within the FAT domain of MTOR
(amino acids 1382-1982, UniProt) and TPR repeat 4 (amino acids
1443-1473, UniProt) and has been reported as a recurrent
mutation (Fig. 3). This alteration has been reported in a patient
with hemimegalencephaly a disorder caused by mutations that
result in activation of the PI3K pathway31. Analysis of resected
brain tissue from the patient revealed hyper-phosphorylation of
mTOR’s downstream targets. Additionally, another study identified
this mutation in focal cortical dysplasia type IIb32. In this study, the
researchers also observed increased phosphorylation of the mTOR
target, 4EBP, compared with cells expressing wild-type mTOR.
Another variation of this codon, A1459P, was experimentally
shown to also confer a gain-of-function through reduced
interaction with the negative regulator, DEPTOR33. Thus, we
conclude that this alteration leads to a gain-of-function.
Some activating mTOR mutations are sensitive to rapamycin

treatment34, and while genomic studies have linked mTORC1
pathway–activating mutations with exceptional response to
treatment with rapalogs, preclinical studies have also shown that
some mTOR mutations can increase mTORC2 activities35,36.
Notably, Wagle et al. reported the emergence of an mTOR
F2108L mutation in patient with anaplastic thyroid cancer bearing
an inactivating TSC2 mutation, after 18 months of treatment on
everolimus. Similarly, we have also preclinically identified an
acquired resistance mutation in mTOR (mTOR S2035F) with
continuous in vitro rapalog treatment and demonstrated that
cancer cells with this mutation are resistant to everolimus but are
still sensitive to mTOR catalytic inhibitor TAK228 in vitro and
in vivo37. Altogether, these data suggest that mTOR mutations
may indeed be a mechanism of resistance to allosteric mTOR

inhibitors, with a potential role for catalytic inhibitors38. However,
this mechanism of resistance is likely to be rare, and in Phase II
trials sapanisertib showed only modest clinical benefit in breast
cancer patients previously treated with everolimus39.
Cells expressing another variant of this codon, mTOR A1459P,

were found to be still sensitive to mTOR inhibition with
rapamycin33. Thus, it is unclear whether mTOR_A1459D selectively
benefitted from catalytic mTOR inhibition or whether it would also
have been sensitive to rapamycin analogs. In our previous
preclinical work, we have shown that combination of allosteric
AKT inhibitor MK2206 and allosteric mTOR inhibitor rapamycin are
synergistic in vitro, with greater pathway inhibition as well as
greater induction of apoptosis, and the combination leads to a
greater enhancement of antitumor activity in vivo40. Thus, the
combination of Akt/mTOR inhibition may be another strategy
worth exploring to achieve deeper responses but may be limited
due to tolerability concerns.
Our case report has a few limitations. Our patient had her tumor

sequenced on two occasions using different metastatic disease
sites (Supplementary Table 1), and NGS data-guided therapeutic
strategy development. The first biopsy was obtained from
retroperitoneal nodes that were progressing at that time; the
second biopsy was obtained from the lung metastases, the site of
progression post-AKT inhibitor treatment. Tumor heterogeneity is
a veritable challenge and not only can the molecular profile of
cancer change over time, the molecular profile(s) of different
metastatic sites can be incongruent41. Admittedly, it is possible
that different metastatic sites may harbor heterogeneous gene
alterations, which could include the possibility of the pre-
existence of mTOR A1459D clones in the non-biopsied metastatic
site. Another limitation is that the mTOR A1459D mutation was
not evaluated functionally in our study for confirmation of the
gain of function. However, there are data published which suggest
that this is an activating mutation; in addition, another variant in
the same site, A1459P, has already been shown to be activating
experimentally. We, thus, felt that this alteration was actionable in
the context of clinical trial enrollment. This report is significant for
both reporting of mTOR as a potential resistance mechanism for

Fig. 3 Frequency of mTOR mutations. A Interrogation of IPCT database in MDACC found that of 20,150 patients sequenced, 273 cases of
mTOR mutation were identified; cbioportal was used to identify the frequency in other datasets, including Metastatic Solid Cancers (UMich,
Nature 2017) and the MSK-IMPACT Clinical Sequencing Cohort (MSKCC, Nat Med 2017)46,47. B Lollipop plot showing the distribution of mTOR
mutations, including the mTOR A1459D mutation, detected in this case46,47.
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AKT inhibition as well as the clinical response to a mTORC1/2
inhibitor post AKT inhibitor resistance.
Our patient demonstrated impressive disease stability with

allosteric AKT inhibition for 27 months, and on the progression of
disease genomic profiling revealed downstream activating mTOR
mutation A1459D, as well as the persistence of AKT1 E17K. Of
note, the allosteric inhibitor AKT inhibitor ARQ751, used in this
patient inhibits AKT E17K in preclinical models42. Treatment with
dual mTOR inhibitor sapanisertib (TAK228) in combination with
metformin achieved a PR on imaging: potentially even a superior
response (PR rather than SD), due to more potent ATP-competitive
inhibition, and the downstream inhibition of the two oncogenic
lesions. In this trial, metformin was used in combination with
sapanisertib as metformin activating AMP-dependent kinase
(AMPK) causes phosphorylation and activation of the tumor
suppressor gene TSC2, which exerts an inhibitory effect on
mTOR43; pre-clinically, metformin-induced activation of AMPK has
been shown to inhibit cell proliferation, reduce colony formation,
and inhibit MAP kinase, AKT, and mTOR44, therefore use of
metformin in this patient may have also contributed to the
enhanced anti-tumor effect.
To our knowledge, we report the first clinical case of acquired

resistance following ATP-competitive AKT inhibition due to the
development of activating mTOR A1459D, and the first docu-
mented response to ATP-competitive mTOR inhibition in this
setting. Our case exemplifies precision medicine in action from the
ability to rapidly identify a patients’ oncogenic driver, to allow
physicians to precisely target drivers of disease in real-time.
Furthermore, our case underscores the importance of longitudinal
genomic profiling in modern cancer care, to guide management,
allowing for the rapid identification of molecular mechanisms of
resistance and identifying approaches to overcome resistance.

METHODS
Participant
The patient was treated with allosteric pan-AKT inhibitor ARQ751 following
enrollment to phase I study of ARQ751 (NCT02761694) after the collection
of the written informed consent. The patient was subsequently treated
with mTORC1/2 inhibitor sapanisertib (TAK-228) following enrollment to a
phase I study of sapanisertib (TAK-2280) with metformin 500mg twice
daily (NCT03017833) and collection of written informed consent.

Materials
Tumor samples were obtained by core biopsy performed by an
interventional radiologist. FFPE specimens derived from fresh tumor
biopsies were reviewed by an MD Anderson pathologist to ensure
adequate tumor cellularity (≥ 20%) for analysis. Tumor samples were
evaluated using hematoxylin and eosin staining for tumor cellularity. DNA
was extracted, purified, and quantified. All procedures were performed in a
CLIA-compliant environment. For genomic analysis, the pre-treatment
sample was sequenced and subsequently analysed in the MD Anderson
CLIA molecular diagnostic laboratory using the Ion Ampliseq 50-Gene
Assay for the detection of mutations in the coding sequence of 50 genes
(Thermo Fisher Scientific, MA, USA). DNA extracted from the lung
metastasis biopsy after progression on the Akt inhibitor was sequenced
along with matched normal DNA from blood, in the MD Anderson CLIA
molecular diagnostic laboratory utilizing the Oncomine® platform (Thermo
Fisher) for the detection of somatic mutations in the coding sequence of
143 cancer-related genes, as previously described45. The pre-treatment
DNA sample was sequenced using the Ion Ampliseq 50-Gene Assay and
was subsequently re-sequenced on the Oncomine platform to confirm the
presence of AKT1 E17K mutation, but not mTOR A1459D mutation. All
alterations detected were listed in Supplementary Table 1. The radiologic
response was assessed according to RECISTv1.1.

Reporting Summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY
Samples were sequenced and analysed in a CLIA-compliant MD Anderson laboratory
as described above. The raw sequencing data are not publicly available due to data
privacy regulations and restrictions for use of such data, as stated in the study
protocol and patient consent form. The alterations identified on the targeted panels
are available in Supplementary Table 1.
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