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Abstract

Atherosclerotic plaque rupture is responsible for a majority of acute vascular syndromes

and this study aims to develop a prediction tool for plaque progression and rupture. Based

on the follow-up coronary intravascular ultrasound imaging data, we performed patient-spe-

cific multi-physical modeling study on four patients to obtain the evolutional processes of the

microenvironment during plaque progression. Four main pathophysiological processes, i.e.,

lipid deposition, inflammatory response, migration and proliferation of smooth muscle cells

(SMCs), and neovascularization were coupled based on the interactions demonstrated by

experimental and clinical observations. A scoring table integrating the dynamic microenvi-

ronmental indicators with the classical risk index was proposed to differentiate their progres-

sion to stable and unstable plaques. The heterogeneity of plaque microenvironment for

each patient was demonstrated by the growth curves of the main microenvironmental fac-

tors. The possible plaque developments were predicted by incorporating the systematic

index with microenvironmental indicators. Five microenvironmental factors (LDL, ox-LDL,

MCP-1, SMC, and foam cell) showed significant differences between stable and unstable

group (p < 0.01). The inflammatory microenvironments (monocyte and macrophage) had

negative correlations with the necrotic core (NC) expansion in the stable group, while very

strong positive correlations in unstable group. The inflammatory microenvironment is

strongly correlated to the NC expansion in unstable plaques, suggesting that the inflamma-

tory factors may play an important role in the formation of a vulnerable plaque. This predic-

tion tool will improve our understanding of the mechanism of plaque progression and

provide a new strategy for early detection and prediction of high-risk plaques.
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Author summary

Besides the traditional systematic factors, the influences of the local microenvironmental

factors on atherosclerotic plaque progression have been demonstrated. Mathematical and

computational modeling is an important tool to investigate the complex interplay between

plaque progression and the microenvironment, and provides a potential way toward the

prediction of plaque vulnerability according to the comprehensive evaluation of both

morphological and/or biochemical factors in tissue level with microenvironmental factors

in cellular level. We performed patient-specific multi-physical modeling study on four

patients to obtain the evolutional processes of the microenvironment during plaque pro-

gression and predicted the possible plaque developments. A scoring table integrating the

dynamic microenvironmental indicators with the classical risk index was proposed to dif-

ferentiate their progression to stable and unstable plaques. Based on patient-specific imag-

ing data, the mathematical model will provide a novel method to predict the changes of

plaque microenvironment and improve ability to access the personal therapeutic strategy

for atherosclerotic plaque.

Introduction

Atherosclerosis is the process in which plaques, consisting of lipids, monocytes, macrophages

(MFs), vascular smooth muscle cells (SMCs) and calcium, are built up in the walls of arteries

as a chronic inflammatory response. Coronary atherosclerosis can cause myocardial infarction

and heart failure [1]. Although multiple systemic atherosclerotic risk factors have been identi-

fied, including age, family history, hypertension, hypercholesterolemia, diabetes and so on,

advances in molecular and cellular research have significantly enhanced our understanding of

the influence of the local biochemical/biophysical microenvironment on atherosclerotic pla-

que progression. It is now acknowledged that atherogenesis is a function of both systemic ath-

erosclerotic risk factors and the local microenvironmental stimuli [2,3].

Multiple microenvironmental factors contribute to plaque formation and progression,

including arterial mechanics, hemodynamics, matrix composition, lipid deposition, inflamma-

tion and neovascularization from vasa vasorum (VV) [2,4–8]. The cellular components (MFs,

SMCs, endothelial cells, etc.) and their extracellular environment exist in a state of dynamic

reciprocity, which influences all stages of plaque progression and determines the plaque fate as

to whether it would develop to a vulnerable phenotype. For example, in the early phase, hyper-

cholesterolemia conditions increase low-density lipoprotein (LDL) infiltration and retention

into the injured endothelial layer in response to disturbed blood flow pattern, leading to the

accumulation of inflammatory cells by the release of pro-inflammatory factors, such as mono-

cyte chemoattractant protein (MCP-1) [7,9,10]. Meanwhile, vascular SMCs undergo pheno-

typic dedifferentiation that from quiescent phenotype to a synthetic and activated phenotype,

in response to pro-inflammatory cytokines and oxidized LDL (ox-LDL) [11–13]. In addition,

SMCs express a number of pro-inflammatory chemokines in turn and even phenotypically

transform to macrophage-like cells [11,12]. Another important pathological process involved

in the coupled interactions among the microenvironmental components within the plaque is

intraplaque angiogenesis [2], which refers to the disorganized and abnormal neovasculariza-

tion from adventitial VV in response to the hypoxic microenvironment in the thickening inti-

mal. Intraplaque angiogenesis together with the associated intraplaque hemorrhage (IPH)

contributes to the accumulation of inflammatory cells and lipoproteins through the leaky

angiogenic microvessels, which are vital characteristics of atheroma microenvironment in
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vulnerable plaques [2,6]. To summarize, an understanding of plaque development and pro-

gression requires the elucidation of multiple factors and their interactions within the

microenvironment.

Unfortunately, there are fundamental gaps in our knowledge of the underlying mechanisms

that contribute to the influences of plaque microenvironmental factors on atherogenesis in

vivo. The main reason for this is that the microenvironment that determines the disease activ-

ity, including lipid deposition, inflammation, neovasculature and hemorrhage, cannot be

assessed by non-invasive plaque-imaging techniques (such as ultrasound, CT and MR) which

are widely used to obtain plaque morphological characteristics in clinic. Although advanced

imaging techniques, including intravascular ultrasound (IVUS), optical coherence tomogra-

phy (OCT) and positron emission tomography–computed tomography (PET/CT), now have

permitted more accurate assessment of the plaque composition and even the atherosclerotic

disease activity, the limited spatial resolution and lack of dynamic changes of microenviron-

mental factors give rise to barriers to quantitatively analyze the functional activity in athero-

sclerotic microenvironments.

Besides the developments of novel imaging techniques, mathematical modeling and

numerical simulation have been proven useful for quantitatively assessing the dynamic

changes of cellular and acellular components involved in the plaque microenvironment and

predicting plaque growth and possible rupture [14,15]. In our previous studies, we have devel-

oped a multi-physical mathematical model by coupling lipid deposition, inflammation, neo-

vascularization and intraplaque hemorrhage, to investigate the pathophysiological responses

of plaques to dynamic changes in the microenvironment [16,17]. For the first time, the promo-

tion of intraplaque angiogenesis on the accumulation of ox-LDL and macrophages in the pla-

que lesion and its quantitative contribution to the induction and progression of plaque

destabilization were demonstrated by using this multi-physical model. This study is an applica-

tion of our previously developed model for identifying the spatial-temporal dynamics and pro-

gression in coronary atheroma microenvironment based on patient-specific virtual histology

(VH)-IVUS imaging data. The microenvironmental components in this model consist of four

main parts, i.e., the plaque morphology and composition, the lipid deposition, the inflamma-

tion and the intraplaque neovascularization. To assess the personalized plaque microenviron-

ment, simulations on a single patient data set are performed and the predicted changes of

plaque composition are validated with the follow-up data from the same patient at the later

time points. This study aimed (a) to describe the dynamic quantitative changes of the main fac-

tors in plaque microenvironment; (b) to predict the plaque development according to both

systemic risk factors and microenvironmental factors; and (c) to investigate the distinct role of

lipid and inflammatory microenvironment in the formation of a vulnerable plaque.

Results

Dynamic variation of the microenvironmental factors

The distribution changes of the three main variables (ox-LDL, MFs and IPH) in four patients

(P1-P4) are displayed in Fig 1, which represent the critical contributors in the lipid, inflamma-

tion and angiogenesis microenvironment to atherogenesis. An animation of the dynamics of

all the variables involved in the simulation can be found in S1 File. At the early stage of the

simulation (T1), most ox-LDL concentrated near the inner intima, while the area of high ox-

LDL concentration gradually enlarged in the thickening intima (follow-up, T2) due to the

extravasation of lipoprotein from the neovasculature, resulting in the lipid deposition near the

outer intima in the plaque (three years after T1, the end of simulation, T3). Similar to the lipid

deposition, the exacerbating inflammation were found during plaque progression. A high
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concentration of IPH was observed in the necrotic core (NC) area throughout the plaque

development, especially, at the shoulder of NC in P2.

The heterogeneity of plaque microenvironment for each patient was observed apparently

from the growth history curves of the average values of the eight main variables, including

LDL, ox-LDL, monocyte, macrophage, MCP-1, SMC, ECM and foam cell (Fig 2). Here, we

focused on temporal variation in the lipid (denoted by concentration of LDL and ox-LDL) and

inflammatory (denoted by the density of monocytes and macrophages) microenvironments.

The reference values of the eight variables can be found in S4 File. Although there were no sig-

nificant differences among the development trends between the four patients, the variation

and the heterogeneity of plaque microenvironment between individuals were remarkable. For

example, both a mild lipid deposition and a severe inflammation were found in P3 (yellow dot-

ted line), resulting in an indistinctive apoptosis of SMCs. Nevertheless, an opposite situation

happened in P2 (green dotted line), where a high level of lipid and a low level of inflammation

yielded a notable decrease in SMCs (>50%).

Prediction of plaque development

Fig 3A displays a comparison between the simulation results of the NC areas with the VH-I-

VUS images. The NC areas at T1 and T2 in the images were delineated based on the image seg-

mentation of VH-IVUS data; while the expanded NC areas at T2 and T3 in the simulation

results were determined according to the increasing areas of apoptotic SMCs (NC area was

outlined with black/white border in the plaque). Different degrees of increase in plaque area

and NC area were found in all four patients. Thin cap fibroatheroma (TCFA) with a large NC

Fig 1. The progression of lipids, inflammation and angiogenesis microenvironment. The three typical factors, i.e.,

ox-LDL, macrophage and IPH, represent lipid, inflammation and angiogenesis levels in plaque microenvironment.

Distributions of ox-LDL, macrophage and IPH at T1, T2 and T3 are shown during the plaque development. The values

in all figures of each factor are normalized to the range of 0 to 1. A video of the dynamics of all the variables involved in

the simulation is provided in S1 File.

https://doi.org/10.1371/journal.pcbi.1008344.g001
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was observed especially in P2 and P4 at T3 stage, which suggests that these two plaques may be

more likely to become vulnerable plaques. On the contrary, the flaky distributed calcification

(white area shown in VH-IVUS) in P1 indicated a stable plaque. In addition, the quantitative

curves of the growth rate of NC and plaque burden (PB) for the four patients are provided in

Fig 3B, where the relative values of NC area were obtained by comparing to their values shown

in the VH-IVUS images at T1. There was a remarkable increase in NC area of P4 at the early

stage, while the NC areas in the other three patients increased steadily. Actually, the growth

rate of NC in P4 was as high as 1.75 during the follow-up period according to the VH-IVUS

images (between T1 and T2). According to the simulation results, the NC area in P4 would

increase by 4.55 times after three years (between T1 and T3). An apparent increase (32.6%) of

PB was found in P3, while there were little changes (<10%) of PB in the other three patients.

Taking into account of both systematic and microenvironmental factors, we proposed a

scoring scale to predict a possible plaque development (Table 1). The scores of PB and LDL

were high in P1, suggesting a severe lipid deposition in the plaque. However, the local hemody-

namics was not favorable for plaque development (one score for wall shear stress, WSS), result-

ing in a relatively benign microenvironment in P1. In addition, the flaky distributed

calcification areas were shown in the VH-IVUS image (white regions in Fig 3A). Therefore, a

stable plaque with macrocalcification was reckoned as its future growing of P1’s plaque.

Although the evaluation of the microenvironmental factors in P3 was quite severe, putting

together with the other indictors (plaque morphology and blood test) indicated it was a stable

plaque. Consequently, the rate of plaque development in P3 was relatively slow, and the NC

area was not remarkable during the plaque progression (see Fig 3B). Contrary to the predic-

tions of P1 and P3, both P2 and P4 have the highest scores (Total score = 20), which suggested

vulnerable plaques were more likely to be found in these patients. In summary, combing with

Fig 2. The growth history curves of the average values for the plaque microenvironmental factors. Eight variables represent the development of lipid

(LDL, ox-LDL) and inflammatory (monocyte, macrophage and MCP-1) microenvironments and the growth of necrotic core (SMC, ECM and foam cell).

The values on the y-axis are dimensionless. The arrows in macrophage panel point to the curves of P1 and P2, which are close to each other.

https://doi.org/10.1371/journal.pcbi.1008344.g002
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the analysis of VH-IVUS data and the simulation results, P2 and P4 were classified as unstable

group, while P1 and P3 as stable group.

Influence of microenvironmental factors on plaque progression

According to the prediction for plaque progression, P1 and P3 were categorized as the stable

group, while P2 and P4 as unstable group. Fig 4 shows the difference of the changes of micro-

environmental factors during progression between the two groups. Independent t-test demon-

strated that there were significant differences in the five microenvironmental factors (LDL, ox-

LDL, MCP-1, SMC, and foam cell, P< 0.01). However, no significant differences were found

in monocytes (P = 0.11), macrophages (P = 0.011), and ECM (P = 0.02).

Then, we investigated the principal factors that influenced the NC growth of the two groups

by using the Spearman’s correlation analysis. As shown in Table 2, in the stable group, LDL,

Fig 3. The plaque necrotic core expansion. (A) Comparison of simulation results with VH-IVUS images at T1 and T2. The NC areas are circled by

black/white lines in both VH-IVUS images and simulation results. The developments of NC are predicted at T3 based on the simulated dynamics of

the plaque microenvironment. (B) The growth history curves of NC area and PB of the patients for three years. The relative values of NC area are

compared with the VH-IVUS data at T1.

https://doi.org/10.1371/journal.pcbi.1008344.g003

Table 1. The multi-factorial scoring scale.

PB� EI� LDL� HDL� WSS† MF† SMC† ox-LDL† Total Predictions for T3

P1 3 2 3 1 1 1 2 2 15 stable plaque with macrocalcification

P2 3 3 3 3 1 1 3 3 20 vulnerable plaque

P3 1 3 1 1 3 3 1 2 15 stable plaque with low growth rate of NC

P4 2 2 3 3 3 3 2 2 20 vulnerable plaque

The predictions for plaque development at T3 are based on the total scores and the component analysis according to VH-IVUS images at T2. The symbols � and †

indicate the factor being derived from patients data or simulation results, respectively. PB = plaque burden, EI = eccentric index, LDL = low-density lipoprotein,

HDL = high-density lipoprotein, WSS = wall shear stress, MF = macrophage, SMC = smooth muscle cell, ox-LDL = oxidized LDL, NC = necrotic core.

https://doi.org/10.1371/journal.pcbi.1008344.t001
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ox-LDL, SMC, and foam cell showed strong corrections with the NC growth (r = 0.7827,

0.8810, -0.8361, 0.8566 respectively). While in the unstable group, monocyte, macrophages,

MCP-1, and ECM showed strong correlations with the NC growth (r = 0.9919, 0.8692, 0.7797,

-0.8406, respectively). It was noteworthy that the inflammatory microenvironment (monocyte

and macrophage) had a significant negative correlation with NC expansion in the stable group

(r = -0.3389 and r = -0.3076, respectively). In contrast, it had a very strong positive correlation

in the unstable group (r = 0.9919 and r = 0.8692, respectively). This result indicated that the

inflammatory factors could be beneficial in stable plaque while detrimental in unstable plaque,

due to its interactions with other microenvironmental factors.

Fig 4. Comparisons of the changes of microenvironmental factors during plaque progression between stable group (S) and

unstable group (U). The development of each factors between two groups of patients is compared by independent t-test. In each plot,

y-axis values represent the dimensionless concentration of each variable. NS = not significant.

https://doi.org/10.1371/journal.pcbi.1008344.g004

Table 2. The correlation between microenvironmental variables and NC growth rate in different groups.

Stable Group Unstable Group

variables r p-value r p-value

LDL 0.7827� <0.01 -0.1346 0.2596

ox-LDL 0.8810� <0.01 -0.3925 <0.01

Monocyte -0.3389 <0.01 0.9919� <0.01

Macrophage -0.3076 <0.01 0.8692� <0.01

MCP-1 0.6637 <0.01 0.7797� <0.01

SMC -0.8361� <0.01 0.0850 0.4779

ECM -0.4421 <0.01 -0.8406� <0.01

Foam cell 0.8566� <0.01 0.5808 <0.01

� indicates the variable shows the strong correlation with plaque progression.

https://doi.org/10.1371/journal.pcbi.1008344.t002
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Discussion

Although the formation and progression of atherosclerotic plaques is understood to be mainly

driven by the systemic factors, both in vitro and in vivo observations over the past several

decades have established that plaque development involves a complex coordination of systemic

and local microenvironmental factors that determine how plaques progress [2,18,19]. Uncov-

ering the underlying mechanisms and crosstalk of plaque microenvironment constitutes as

prerequisite for the exploration of possibilities targeting the processes within the plaque micro-

environment as novel therapeutic strategies. Recently, the results of the Canakinumab Anti-

inflammatory Thrombosis Outcome Study (CANTOS, targeting the interleukin-1β) trial show

conclusive proof that reduction of inflammation by inhibiting the IL-1β pathway activation

can significantly lower coronary artery disease morbidity and mortality [20]. However, there is

currently a paucity of data on the dynamic interactions of the plaque microenvironmental

components, due to the unavailability of imaging techniques to quantitatively investigate the

changes of plaque microenvironment in both animal experiments and clinical settings. In this

context, mathematical modeling provides a potential way to assess the dynamics of the plaque

microenvironment by describing the spatial-temporal changes of key cells and chemicals

according to physical principles and known pathophysiological interactions. To this end, we

performed the evolutional simulations of plaque microenvironmental dynamics based on

patient follow-up data and predicted the development of microenvironmental factors as well

as plaque phenotype in patient-specific atheroma on theoretical and quantitative grounds.

With the information of plaque microenvironment as initial input, including plaque mor-

phology and composition obtained by imaging technique and biochemical indicators by blood

examination, the dynamics and development of the main microenvironmental factors can be

calculated for next three years by using the developed model system. Based on these results,

the evolutional progress of a specific plaque can be predicted. The evaluation indicators of pla-

que microenvironment include lipid deposition, inflammation, IPH and apoptosis of SMCs.

The results clearly demonstrate the heterogeneity of the microenvironmental factors within

plaque and during the plaque progression. It has been suggested that plaque progression is a

modifiable step in the evolution of atherosclerotic plaque [21]. Therefore, a dynamic and

quantitative description of plaque microenvironment can provide direct information for per-

sonalized treatment to improve the long-term outcomes. In addition, a scoring scale table for

each patient is presented, which comprises the dynamic microenvironmental indicators with

the classical risk index (morphological and biochemical index). For the very first time, a quan-

titative evaluation is proposed by a comprehensive consideration of both morphological fac-

tors in tissue level and functional factors in cellular level. We believe the improved evaluation

system can help us better understand the interactions among plaque microenvironmental fac-

tors and may allow us to predict a possible development of a plaque on an individual basis.

According to the prediction for the plaque progression, the patients were divided into two

groups, i.e., stable and unstable group. We investigated the differences of the main microenvi-

ronmental factors between the two groups. The statistical analysis revealed that the lipid com-

ponents (LDL and ox-LDL) rather than the inflammatory factors (monocyte and macrophage)

exhibited significant differences between the stable plaques and the unstable ones. In addition,

the correlation test of the microenvironmental factors with NC enlargement in different

groups was performed. In the stable group, the lipid components had a strong positive correla-

tion with the NC expansion, while in the unstable group, the inflammatory factors that had a

very strong positive correlation with the NC expansion. This interesting result may be used to

explain why not all clinical trials provided a beneficial cardiovascular effect especially in the

anti-inflammatory therapy [22]. This also suggests that the patients who would better benefit
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from these therapies (such as the unstable group in this study) could be identified according to

the dynamics of their plaque microenvironment. Although the correlation analyses of these

microenvironmental factors with clinical outcomes still need to be validated by more clinical

studies, the present results emphasize the heterogeneity of plaque microenvironment between

individuals and its complex role in plaque development, and provide a potential path toward

the investigation of an improved and targeted atherosclerosis therapy.

Several imaging modalities are currently used in vivo to characterize one or more plaque

microenvironmental factors. For instance, dynamic contrast-enhanced MRI (DCE-MRI) is

proposed to study the intraplaque microvasculature quantitatively and to test the relationship

between adventitial perfusion and IPH, while 18F-FDG PET-CT, a noninvasive functional

imaging technique, is widely used to evaluate plaque inflammation by macrophage-targeted

agents [23,24]. Compared with the conventional structural imaging techniques identifying the

site and severity of luminal stenosis, these functional assessments may provide more informa-

tive values in studying the dynamic microenvironment and consequently to evaluate plaque

vulnerability. However, it is unrealistic to carry out multi-modality imaging for every patient

due to the technological and socio-economic issues. In this context, this proof-of-concept

study aims to present a novel personalized evaluation for coronary atherosclerotic plaque

microenvironment by incorporating a generalized mathematical modeling system with

patient-specific clinical data. The power of mathematical modeling lies in its ability to reveal

the underlying dynamic mechanism and the physical principles that might have been over-

looked in previous traditional studies. At its best, mathematical modeling provides quantitative

supplementary for the imaging data, and enables us to make predictions and early identify

which plaque rupture is likely to occur, and leads to a novel and improved ability to assess pla-

que vulnerability. This will allow actions to be taken in a timely manner to reduce risk of even-

tual fatal events on an individual basis. Although we have demonstrated the simulation based

on VH-IVUS images in this study, further research should be addressed by incorporating

other available imaging data to expand the application of this mathematical model in clinical

assessment.

There are several limitations in this study. First, the predicted plaque progression should be

validated by clinical outcomes and more patients’ data should be included to demonstrate the

statistical significance of this study. Extensive large-scale patient study will be needed to vali-

date the model before it can be used as a prediction tool in clinic. Second, the current model

excluded the calcification that is associated with the apoptosis of macrophages and SMCs, and

interacts with other microenvironmental factors such as inflammation. Third, the scoring sys-

tem was determined by comparing these four patients to obtain the relative value of the sever-

ity, which may be only applicable to the patients in this study. In addition, two-dimensional

simulations predict only the local progression of plaque development, making it difficult to

evaluate vascular lesions. Three-dimensional modeling with more patient-specific studies and

addition of other potential factors will make the system more robust and support in prediction

of plaque development. Finally, the balance between pro-atherogenic factors and anti-athero-

genic factors in plaque microenvironment was not investigated. Considering the dynamic bal-

ance among multiple microenvironmental factors was a major study in itself and its influence

on plaque development should be addressed in future work.

In conclusion, an image-based patient-specific multi-physical model is developed which

can simulate the spatial-temporal evolution of plaque progression as well as the dynamic varia-

tions of plaque microenvironment. This enables us to make predictions and early identify the

high-risk rupture-prone plaques, leads to a novel, improved ability to assess plaque vulnerabil-

ity, and allows actions to be taken in a timely manner to reduce risk of eventual fatal events on

an individual basis. It is found that the inflammatory microenvironment has a negative
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correlation with NC expansion in stable plaques while it has a very strong positive correlation

in unstable plaques, suggesting that inflammation may be beneficial or detrimental during pla-

que progression, depending on the interactions with other microenvironmental factors.

Methods

Ethics statement

Patient follow-up IVUS data of coronary plaques were acquired from four patients at Cardio-

vascular Research Foundation (New York, NY). The Institutional Review Board (IRB) at Car-

diovascular Research Foundation approved the protocol. All patients provided written

informed consent.

Study design

The proposed simulation system is described in Fig 5, in which the whole process consists of

two steps: validation and prediction. Since the initial inflammation and neovascularization in

the plaque microenvironment cannot be assessed by IVUS imaging, we first identified the ini-

tial microenvironmental factors at baseline (T1) images, by comparing the simulation results

calculated from different levels of macrophages concentration and microvascular density with

follow-up images at T2. The quantitative results of comparison were provided in S2 File. Once

the plaque microenvironment for each patient at T1 was determined, the simulation was per-

formed to assess the dynamic changes of the main cellular and acellular components involved

in the plaque progression. The prediction was then conducted to obtain the plaque develop-

ment at the end of simulation, T3 (three years after T1).

The major assumptions in this model were listed below:

1. Three different levels of microvessels density and inflammation inside the plaque were set

to be initial conditions to carry out three simulations respectively. Intraplaque neovasculari-

zation had positive correlation with inflammation in the plaque. The status of intraplaque

angiogenesis and inflammation can be validated by comparing the growth rate of NC at T2

stage with IVUS data.

2. The VH-IVUS slice with the maximum PB at T1 was set to be the simulation region and

provide the corresponding plaque composition as the initial conditions. The transport and

interactions of all variables were restricted within the 2D slice. There was no mass transport

at the outer boundary (i.e., external elastic membrane).

3. The interaction relationship among the variables involved in the model system would not

change during the plaque progression.

4. Based on the CFD calculation of fluid-structure interaction (FSI) models at T1 and T2, the

change of WSS was 11.11%, 8.00%, 1.09% and 18.06% for P1, P2, P3 and P4, respectively.

Its effect on LDL deposition was very small and negligible. Therefore, the WSS was assumed

to be remaining to the value at T1 stage.

5. The different phenotype of macrophages, such as M1 and M2, and their distinct influence

on the inflammatory response of plaque, were not under consideration in the current

model.

6. The NC area in simulation was defined as the results of SMC apoptosis in the thickening

intima.
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Fig 5. Schematic diagram for simulation algorithms.

https://doi.org/10.1371/journal.pcbi.1008344.g005
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Data acquisition

Follow-up IVUS with virtual histology imaging data of coronary plaques were obtained at Car-

diovascular Research Foundation (New York, NY), from 4 patients (3Males, 1Female) who

had percutaneous coronary intervention (PCI). The IVUS follow-up was at about 6 months or

one year. A synthetic-aperture-array, 20-MHz, 3.2-French catheter (Eagle Eye, In-Vision

Gold, Volcano) with motorized catheter pullback (0.5 mm per second) was used to acquire

IVUS data.

Level of serum creatinine, fasting lipids, glucose, glycated hemoglobin, and high-sensitivity

C-reactive protein were measured at baseline. Fusion of IVUS data and X-ray angiography to

reconstruct 3D arterial geometry were performed after the segmentation and co-registration

of the one-by-one paired slices at baseline (T1) and follow-up (T2) images. IVUS-based 3D

FSI models with cyclic bending were constructed for each coronary to assess the flow WSS

conditions (S3 File). For each patient, the paired slices with the maximum plaque burden/area

were selected in this study. The detailed demographical information of patients was listed in

Table 3.

Image-based patient-specific multi-physical modeling

Based on our recently developed model [16,17], we modeled plaque microenvironment as a

continuum medium that the cellular/acellular factors diffuse within the thickening intima as

well as interact with each other. In particular, we considered four main pathophysiological

processes during plaque development, i.e., lipid deposition, inflammatory response, migration

and proliferation of SMCs, and neovascularization. These four pathophysiological phenomena

were coupled based on the following experimental and clinical observations: (a) ox-LDL acti-

vates the expression of proinflammatory cytokine such as MCP-1 to facilitate the recruitment

Table 3. Patient demographical information.

Patient ID P1 P2 P3 P4

Gender Male Female Male Male

Age 52 42 71 49

Vessel RCA RCA LCX unknown

Systolic BP 113 110 171 134

Diastolic BP 73 66 95 76

Weight (kg) 95.26 86.64 109 100

Height(cm) 178 175 178 172

BMI 30.06 28.21 34.40 33.80

Diagnosis history None None Unknown Unstable Angina

Total Cholesterol (mg/dL) 210 203 132 188

HDL (mg/dL) 38 19 31 19

LDL (mg/dL) 138.4 157.8 70.4 144.4

Triglycerides (mg/dL) 168 131 153 123

Insulin(mcU/mL) 19.4 55 11 9

HbA1c 5.9 5.8 6.6 4.8

Smoke Yes Yes No Yes

WSS (dyn/cm2) 140.07 129.9 85.8 77.11

Time interval (month) 7 13 12 5

All data are obtained at the T1 stage. Vessel is the taken vessel in the model for each patient, and the time interval is the interval from T1 to T2. RCA = right coronary

artery, LCX = left circumflex coronary artery.

https://doi.org/10.1371/journal.pcbi.1008344.t003
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of more monocytes into the lesion; (b) the neovasculature provides a potential way for LDL

and monocytes into the intima by extravasation from the leaky vessel wall; (c) the accumula-

tion of lipoprotein and inflammatory cells (monocytes and macrophages) promotes SMCs

migration and proliferation, resulting in a hypoxic microenvironment to induce further angio-

genesis in the thickening intima. We modeled the cellular and acellular components involved

in the above four processes. Namely, the cellular components consist of endothelial cells (ECs),

macrophages, monocytes, foam cells and SMCs, while the acellular counterparts include LDL,

ox-LDL, MCP-1, VEGF, MMP, ECM and extravascular plasma concentration. The interac-

tions between all variables in this model are illustrated in Fig 6. The dynamics of these twelve

variations were described by coupled reaction-diffusion equations as follow:

@Ci

@t
¼ DCi

r2Ci

zfflfflfflffl}|fflfflfflffl{
Diffusion

þ lPCj

z}|{
Production

� lCCj

z}|{
Consumption

� lACi

zffl}|ffl{
Apoptosis

� rðlTcCirCjÞ
zfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflffl{

Chemotaxis

� rðlThCirCjÞ
zfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflffl{

Haptotaxis

� ldeCiCj

zfflfflffl}|fflfflffl{
Degradation

ð1Þ

where Ci denoted one plaque microenvironmental factor, and the first terms on the right-hand

side of the equation described the diffusion of Ci with diffusion coefficient DCi
. The reaction

terms of Cj were modeled based on the proved pathophysiological knowledge during the pla-

que progression, including the production, consumption, chemotaxis, haptotaxis, and differ-

entiation by other microenvironmental factor Ci, as well as the apoptosis by itself. The detailed

explanations of reaction terms involved in the model system are listed in Table 4. The numer-

ous parameters involved in the equations of the present model were estimated from available

experimental data and mathematical models wherever possible. For example, DL the diffusion

Fig 6. The interactions between variables in the model. Seven pathophysiological progresses (circle) among cellular (yellow box) and acellular (green box) factors are

included in the model, and every arrow represents a reaction term modelled in the reaction-diffusion equations.

https://doi.org/10.1371/journal.pcbi.1008344.g006
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coefficient of LDL was given by an in vitro experiment that calculated the average radioactivity

with time, in the arteries incubated in Tyrode’s solution with radioactive tracer, and fitted the

curve in which DL as a parameter that can be given by the least-squares methods [25]. The cou-

pled equations of all microenvironmental factors in this model are listed in S4 File. The nondi-

mensionalization of the equations and the detailed parameter setting can be found in S5 and

S6 Files and our previous work [16,17]. After nondimensionalization of all equations, the

results of variants representing the plaque microenvironment are dimensionless and can be

comparable among patients. To avoid the pre-defined interventions as much as possible, we

assumed that the interaction coefficients between the microenvironmental factors remain

unchanged during plaque progression. Coupled diffusion-reaction equations were solved by

Euler finite difference method simultaneously (the numerical schemes to discretize the equa-

tions can be found in S7 File).

The mathematical model was based on patient-specific VH-IVUS image (Fig 7), which was

a 2D simulation domain of 4mm�4mm and divided uniformly into 200�200 grids, i.e., the

Table 4. The detailed explanations of reaction terms involved in the model system.

Variables Reaction Terms Explanation

LDL: L −λLL Lipid oxidation [9]

λPlextra
Plextra LDL from leaky microvessels [2]

ox-LDL: Lox λLox�LL ox-LDL formed by oxidation of LDL [19]

� λLox �MaLoxMa Macrophage phagocytosis of ox-LDL [19]

MCP-1: P λP�E
Lox

KPþLox
E Production of MCP-1 produced by ECs [17]

λP�SS Production of MCP-1 by SMCs [26]

−dpP Decay of MCP-1 [2,26]

Macrophage: Ma −r(λMa�PMarP) Chemotaxis of macrophages in response to MCP-1 [9]

λMa�MoMo Macrophages differentiated from monocytes [9]

−dMaMa Apoptosis of macrophages [9]

Monocyte: Mo rðλMo�Lox
MorLoxÞ Chemotaxis of monocytes in response to ox-LDL [9]

λPlextra
Plextra Monocytes from leaky microvessels [2]

−dMoMo Decay of monocytes [19]

ECs: E � r
λE�Cv
KEþCv

ErCv

� �
Chemotaxis of ECs in response to VEGF [2]

rðλE�CECM
ErCECMÞ Haptotaxis of ECs in response to the ECM [2]

VEGF: Cv � λCv �E
E VEGF uptake by ECs [2]

λCv �S
S VEGF early production by SMCs [2]

λCv �MaMa VEGF late production by Macrophages [2]

� dCv
Cv Decay of VEGF [2]

Plasma: Plextra −ψr(UiPlextra) Convection of plasma [2]

γQt Fluid flux of plasma [2]

SMCs: S −r(λS�PSrP) Chemotaxis of SMCs in response to MCP-1 [26]

−r(λS�MaSrMa) Chemotaxis of SMCs in response to PDGF secreted from macrophages [26]

rðλS�CECM
SrCECMÞ Haptotaxis of SMCs in response to ECM [26]

−dSS�Lox Apoptosis of SMCs induced by ox-LDL [27,28]

ECM: CECM � λCM �CECM
CECMCM ECM degraded by MMPs [2]

λS�CECM
S ECM produced by SMCs [26]

MMP: CM λCM �E
E MMPs produced by ECs [2]

λCM �S
S MMPs produced by SMCs [19]

� dCM
CM Decay of MMPs [2,19]

https://doi.org/10.1371/journal.pcbi.1008344.t004
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space length for each grid was 20μm. Considering the limited resolution of IVUS and the co-

registration of images at two-time points, the slice with the maximum plaque burden (PB) at

T1 was chosen as initial condition to reflect the geometry of the patient’s plaque. Here, we

used the definition of plaque burden as: plaque burden = plaque area/(plaque area+lumen
area). Furthermore, the eccentricity index (EI) was considered as a morphology factor affected

the risk of plaque, which was given by: EI = 1−WTMin/WTMax, where WTMin, WTmax were the

minimum and maximum wall thickness in the plaque.

We primarily considered the morphological information provided by the VH-IVUS images

and set up three regions accordingly: media, thickening intima, and lumen as shown in Fig 7.

The outer boundary was set to be the external elastic membrane (EEM), while the inner one

was the endothelium. The colored region in VH-IVUS images was defined as the thickened

intima. The Dirichlet boundary condition was applied at the outer boundary where no sub-

stance exchange and cells migration happened. Also we assumed that the geometry of outer

boundary had no changes during the simulation. The patient data at T1, including the plaque

geometry, the plasma LDL, and the local WSS, were set as initial conditions of the simulation.

The accumulation of LDL and monocytes into the plaque lesion lay on two distinct ways, one

was from the abnormal angiogenic microvessels and the other was the transluminal transport

from the injured endothelium. In this model, the former mechanism was assumed to be related

with the extravascular plasma concentration, i.e., the intraplaque hemorrhage. The latter

mechanism was controlled by the plasma LDL or monocyte level (CLDL/CMo) and local WSS

level, i.e., the influx of LDL and monocytes from the lumen into the intima. The solute flux per

unit into endothelium of LDL and monocytes are denoted by JLDL and JMo, which were satis-

fied:

JLDL ¼ Lcr
CLDL

1þ WSS
WSS0

; ð2Þ

JMo ¼ Mocr
CMo

1þ WSS
WSS0

; ð3Þ

Fig 7. Patient-specific model generated from VH-IVUS image. A schematic for the geometry derived from patient-specific VH-IVUS data. (A) Three-

dimensional vessel model reconstructed from IVUS series, and correlated between T1 and T2 slice by slice, which was performed in our previous work [29].

The dotted box shows the plaque area. (B) The slice with maximum plaque burden (PB) at T1. (C) The simulation region extracted from VH-IVUS image,

where the region separated into three part: media (grey), thickening intima (green) and lumen (black), and the arrows pointed to the inner boundary

(endothelium layer) and outer boundary (external elastic membrane) respectively.

https://doi.org/10.1371/journal.pcbi.1008344.g007
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where WSS and CLDL were obtained from Table 3; WSS0 = 100 dyn�cm−2 [29–31] and the con-

ductive rate Lcr for LDL, Mocr for monocytes, equaled to 2×10−5m�s−1, 4×10−5m�s−1, respec-

tively [32]. CMo represented the concentration of monocyte in plasma, and was set to be 4×105

cells�cm−3, 8×105 cells�cm−3 and 16×105 cells�cm−3, corresponding to mild, moderate and severe

inflammatory levels respectively.

The SMCs were assumed to migrate from the media into the intima. Hence, an initial con-

centration of SMCs of 6×10−3g�cm−3 in media and 3×10−3g�cm−3 in intima was defined. The

initial concentration of LDL and ox-LDL were set to be 1.0×10−3mg�mm−2 and 1×10−-

7mg�mm−2, and distributed in the intima evenly. MMP, MCP-1 and ECM were initialized to be

3×10−8g�cm−3, 3×10−10g�cm−3 and 4×10−2g�cm−3, respectively. The average concentration of

VEGF was 4×10−10 g�cm−3, and a concentration gradient from media towards intima was set to

stimulate neovascularization [16,17].

Microenvironment analysis

We chose the changes of NC area and plaque burden (area) as the evaluation indicators of pla-

que development. In the simulation results, the plaque area indicated the area between the

lumen and the outer boundary. The NC area was calculated by the apoptotic SMCs, i.e., the

area where SMCs decreased more than 50% compared with their initial value. Since the initial

NC area varies for each patient, we used the growth rate of NC to characterize plaque develop-

ment, i.e. growth rate = N(t)/N0, where N(t) was the NC area in simulation result at the time

point t, and N0 was the initial NC area at T1.

Since the dynamic distribution of the main factors in the microenvironment can be

obtained from the simulation, a scoring scale was proposed to quantify the severity of the ath-

erosclerosis, which comprised the morphological index (plaque burden and eccentric index, at

T1), the lipid panel test (LDL and HDL, at T1), the local hemodynamic factor (WSS, at T1),

and the representative intraplaque microenvironmental factors (macrophages, SMCs, and ox-

LDL, at T3). There were three grades on the scale. A larger number indicated a more severe

influence on plaque progression (1 score = mild; 2 score = moderate; 3 score = severe). Due to

the individual variation of the influence of risk factors on the plaque development, no thresh-

old of grading for each factor was predefined. The relative scales were determined by compar-

ing the respective values of these four patients to obtain the relative value of the severity.

Therefore, the present scoring system was only applicable to the patients in this study. The

severity of microenvironmental factors was defined by the concentration of each variable at

T3, while the influence of other risk factors was estimated according to the current consensus.

For example, a higher LDL and a lower HDL concentration were demonstrated as blood indi-

cators of a higher probability that a plaque may develop [8]. And a higher plaque burden and/

or eccentric index, as the morphological factors, indicated that the plaque is more dangerous

[33–35]. In terms of hemodynamics, it was found that low and/or oscillatory shear stress con-

tributes to atherogenesis.

Supporting information

S1 File. Dynamic processes of microenvironmental factors. Files in.MPEG format presented

the changes of eight factors are included in an archived ZIP file. Each file demonstrates the

change in concentration and distribution of one factor, where time span is from T1 (baseline)

to T3 (three years later). All values in the animate are normalized to range from zero to one.

(ZIP)
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