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Abstract: (1) Background: Lactoferrin has been recognized as a potent inhibitor of human herpetic
viruses, such as herpes simplex type 1 (HSV-1) and 2 (HSV-2). In this work, we tested if silver
and gold nanoparticles modified with lactoferrin (LF-Ag/AuNPs) can become novel microbicides
with additional adjuvant properties to treat genital herpes infection. (2) Methods: The antiviral and
cytotoxic activities of LF-Ag/AuNPs were tested in human skin HaCaT and vaginal VK-2-E6/E7
keratinocytes. Viral titers and immune responses after treatment with LF-Ag/AuNPs were tested
in murine vaginal HSV-2 infection. (3) Results: LF-Ag/AuNPs inhibited attachment and entry of
HSV-2 in human keratinocytes much better than lactoferrin. Furthermore, pretreatment with LF-
AgNPs led to protection from infection. Infected mice treated intravaginally with LF-Ag/AuNPs
showed lower virus titers in the vaginal tissues and spinal cords in comparison to treatment with
lactoferrin. Following treatment, vaginal tissues showed a significant increase in CD8+/granzyme
B + T cells, NK cells and dendritic cells in comparison to NaCl-treated group. LF-Ag/AuNPs-treated
animals also showed significantly better expression of IFN-γ, CXCL9, CXCL10, and IL-1β in the
vaginal tissues. (4) Conclusions: Our findings show that LF-Ag/AuNPs could become effective novel
antiviral microbicides with immune-stimulant properties to be applied upon the mucosal tissues.

Keywords: herpes simplex virus type 2; lactoferrin; genital herpes; nanoparticles; microbicide

1. Introduction

Herpes simplex virus type 2 (HSV-2) is the primary cause of genital herpes and one
of the most common sexually transmitted infections. After establishing latency in the
sacral ganglia, HSV-2 reactivates, leading to intermittent shedding of virus in the genital
tract [1]. Global prevalence of HSV-2 is high: as the majority of HSV-2 cases are subclinical
and asymptomatic, viral shedding results in high rates of viral transmission. In 2012,
an estimated 417 million people aged 15–49 (11%) were living with HSV-2 infection, of
whom ~50% were women [2]. Epidemiological and clinical studies showed that genital
herpes is positively linked to the risk of acquiring and transmitting HIV [3]. Antiviral
drugs, which target viral DNA polymerase, can partially control the signs and symptoms
of genital herpes when used to treat first clinical and recurrent episodes or when used as
daily suppressive therapy. However, these drugs neither eradicate latent virus nor affect
the risk, frequency, or severity of recurrences after the drug is discontinued [1].
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Several natural antimicrobial proteins and peptides have demonstrated the ability to
inhibit viral infection and block viral entry into the host cell or influence later stages of viral
growth [4]. Lactoferrin (LF) is a glycoprotein present in external secretions, having multiple
functions, including antiviral activity and stimulation of immune response [5,6]. LF has
shown antiviral activity against several viruses, including rotavirus, respiratory syncytial
virus, hepatitis C virus (HCV), herpes virus, and HIV [4,7–9]. LF exerts its anti-HSV effect
by inhibiting viral attachment and entry into the host cell [4,10,11]. Antiviral activity of LF
has been showed against both HSV-1 and HSV-2, although the exact antiviral mechanism is
slightly different, due to the difference between the two viruses in the initial binding with
target cells [1,4,6].

Silver nanoparticles (AgNPs) have been demonstrated to exert an antiviral activity
against several viruses [12]. There are two ways the AgNP interacts with the pathogenic
virus: (1) the AgNP will bind to the outer coat of the virus thus inhibit the attachment of
virus towards cell receptors and (2) the AgNP will bind to the DNA or the RNA of the virus
thus inhibiting the replication or propagation of the virus inside the host cells [12,13].

We have previously described anti-HSV-2 activity of tannic acid modified AgNPs
(TA-AgNPs) by using both in vitro and in vivo models [14]. The mechanisms of antiviral
action of TA-AgNPs included blocking of virus attachment, entry, cell-to-cell spread as
well as induction of anti-viral cytokine and chemokine production [1]. Moreover, anti-
viral effect was size-dependent, with smaller nanoparticles showing stronger activation of
inflammatory reaction [14].

Recently, LF has been attached onto the surface of biosynthesized AgNPs showing
higher antibacterial activity against selected bacterial strains as than their single compo-
nents [15]. In this study, we tested whether combined activities of lactoferrin and silver or
gold nanoparticles of different sizes can lead to development of a novel microbicide using
both in vitro and in vivo model of HSV-2 infection.

2. Materials and Methods
2.1. Synthesis of Nanoparticles

The nanoparticles colloids were synthesized in water according to chemical reduc-
tion method. The following reagents for the nanoparticles and nanoconjugates prepa-
ration were used: tetrachloroauric acid (HAuCl4, Sigma-Aldrich, ≥49%), tannic acid
(C76H52O46, Sigma-Aldrich), sodium citrate (C6H5Na3O7·2H2O) purity 99.0%, Sigma-
Aldrich), silver nitrate (AgNO3, purity 99.999%, Sigma-Aldrich, St. Louis, MO, USA),
sodium borohydride (NaBH4, purity ≥ 96%, Sigma-Aldrich), lactoferrin (CAS no. 936541-
36-5. Sigma Aldrich ≥ 85%). For all preparations, deionized water obtained from Deionizer
Millipore Simplicity UV system (specific resistivity of water was 18.2 MΩ·cm) was used.
10 nm AgNPs were prepared by reduction of silver nitrate with sodium borohydride in the
presence of sodium citrate and tannic acid. The molar ratio of silver nitrate: sodium citrate:
tannic acid: sodium borohydride reagents was equal to 1:7:2:4. For the synthesis process,
silver nitrate (1.574 g, 1%) and deionized water (92.914 g) were mixed in the flask for 5 min,
then a mixture of sodium citrate (4.181 g, 4%) and tannic acid (0.630 g, 5%) was added.
After ~2s, sodium borohydride (0.701 g, 2%) was added and the solution was mixed for
additional 15 min. The final concentration of metal NPs was equal 100 ppm.

10 nm AuNPs were prepared by reduction of tetrachloroauric acid with a mixture
of sodium citrate and tannic acid with the molar ratio of the reagents equal 1:3:2. Briefly,
tetrachloroauric acid (12.691 g, 0.136%) and deionized water (81.655 g) were warmed to the
boiling point under reflux and then a mixture of reducing and stabilizing agents was added
(mixture of sodium citrate 3.929 g, 1% and tannic acid 1.725 g, 1%). The mixture was boiled
for additional 15 min and then cooled down to room temperature. The final concentration
of metal NPs was equal 100 ppm. 30 nm AgNPs were prepared by reduction of silver nitrate
with a mixture of sodium citrate and tannic acid (the molar ratio of reagents was equal
1:7:2). The synthesis procedure was as follows: silver nitrate (1.574 g, 1%) and deionized
water (93.615 g) were mixed and boiled under reflux. Next, a warm mixture of sodium
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citrate (4.181 g, 4%) and tannic acid (0.630 g, 5%) was added to the boiling solution and
heated for an additional 15 min, and then the colloid was cooled down to room temperature.
The final concentration of metal NPs was equal 100 ppm. Nanoconjugates were prepared
by incubation of nanoparticles with lactoferrin (1% aqueous solution, human recombinant,
iron-saturated, Sigma-Aldrich) at room temperature for 24 h. Briefly, 2.475 g of each colloid
was incubated with 27.76 mg of 1% aqueous solution of lactoferrin to obtain the final
lactoferrin concentration equal 110 µg/mL for each sample. Attempts to prepare 30 nm
AuNPs conjugated with lactoferrin failed due to instability of the obtained colloid. For
all conjugates a reference sample was prepared as an aqueous solution of lactoferrin in
concentration corresponding to concentration present in colloids. The nanoparticles after
modification with lactoferrin (LF) were denoted as LF-Ag/AuNPs, while unmodified as
Ag/AuNPs.

Nanoparticles before and after lactoferrin functionalization were characterized using
the following techniques: high-resolution scanning electron microscopy (HR-SEM equipped
with STEM II detector; NovaNanoSEM 450, FEI, Hillsboro, Oregon, USA; images acquired
at bright field (BF), dark field (DF), high-angle annular dark-field (HAADF) detector mods;
samples for measurements prepared by drop-casting of colloid on carbon coated copper
grids), DLS and Zeta (Lifesizer 500, Particle Analyzer, Anton Paar, Graz, Austria), UV–Vis
(spectrophotometer UV-5600, Biosens, METASH, Shanghai, China).

2.2. Virus and Anti-Viral Tests

HSV-2 (strain 333) was grown and titrated in Vero cells (ATCC® CCL-81, Rockville,
MD, USA) and kept at −80 ◦C until use. Virus was diluted in MEM (Thermo Fisher
Scientific, Waltham, MA, USA) and maintained on ice until administered to mice or mixed
with nanoparticles maximum one hour later. To analyze how LF-NPs can influence viral
attachment, cells were pre-chilled at 4 ◦C for 15 min, then co-treated with NPs and HSV-2
for 1 h. After this time, virus and NPs were removed and cell monolayers were washed
with ice-cold PBS, and further incubated at 37 ◦C. At 24 h post infection, virus titers were
determined by plaque assays or qPCR (see below), as described previously [14]. The viral
penetration assay started by pre-chilling cells at 4 ◦C for 15 min and then cells were infected
for 2 h at 4 ◦C to allow virus binding but not entry. The inoculum was removed, and cells
were washed with ice-cold PBS before adding LF-NPs for 2 h at 37 ◦C. The LF-NPs were
afterwards removed, and cells were washed twice with cold PBS. After another 18 h at
37 ◦C, virus titers were determined by qPCR. For examining post viral entry effects of
LF-NPs use, cells were infected at 37 ◦C, then the virus was removed, cells washed, and
LF-NPs were added 6 h post infection (p.i.). At 24 h post infection, the infected cultures
were analyzed by qPCR. Pre-treatment was performed by incubating cells with LF-NPs (at
37 ◦C) for 6 h then cells were washed, infected and further titered by qPCR.

2.3. Cell Lines and Infection

Human VK2-E6/E7 vaginal epithelial cells were obtained from ATCC (CRL-2616) and
propagated in EpiLife™ medium supplemented with EpiLife™ Defined Growth Supple-
ment (EDGS) (Thermo Fisher Scientific) and 10 U/mL penicillin and 100 µg/mL strep-
tomycin (GIBCO by Thermo Fisher Scientific). Human HaCaT keratinocytes were from
CLS Cell Lines Service GmbH (Eppelheim, Germany) and propagated in Dulbecco’s modi-
fied EMEM (DMEM) supplemented with 10% fetal calf serum, 10 U/mL penicillin, and
100 µg/mL streptomycin (GIBCO). Both cell lines were maintained in standard conditions
(37 ◦C, 5% CO2) and handled according to ATCC and CLS recommendations.

2.4. Cell Viability Assay

Cell viability was measured using the MTT assay ((-(4, 5-Dimethyl-2-thiazolyl)-2,
5-diphenyl-2H-tetrazolium bromide, Sigma-Aldrich). Cultures of Vero, HaCaT and VK-2-
E6/E7 A were incubated for 24 h at 37 ◦C in a 96-well plate with lactoferrin modified NPs
and lactoferrin in a range of NPs concentrations (1–50 µg/mL) in a final volume of 100 µL.
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The control cells were untreated. Thereafter, 20 µL MTT at a concentration of 5 mg/mL in
PBS was added to each well, and the cells were incubated for 4 h at 37 ◦C. Subsequently,
100 µL of 10% Triton X-100, 0.1 M HCl in isopropanol solution was added, and the cells
were incubated for 30 min at room temperature. After the incubation, the optical density
(OD) was measured at a wavelength of 570 nm using Omega Microplate Spectrophotometer
(BioTek Instruments, Inc., Winooski, VT, USA). The cellular viability was calculated as
the percentage of viable cells relative to the control. All experiments were performed
in triplicate. The 50% cytotoxic concentration (CC50) was defined as the compound’s
concentration (µg/mL) required for the reduction of cell viability by 50%, which were
calculated by regression analysis, plotting cytotoxicity percentage to NPs concentration.
MNTC (maximum non-toxic concentrations) was calculated as NPs concentration with
≤20% of non-viable cells and these concentrations were used for in vitro studies.

2.5. Virus Titration

Total DNA and RNA from vaginal tissues and spinal cords were isolated at day 7
post HSV-2 infection using RNA/DNA Extracol kit (Eurx, Gdansk, Poland). DNA from
infected cell cultures was isolated with Universal RNA/DNA extraction kit (Eurx). HSV-
2 was detected by qPCR with primers and probe for the viral envelope glycoprotein
(gB), as described by Namvar et al. [16] in Rotor-Gene Q (Qiagen, Hilden, Germany)
with GoTaq® Probe qPCR Master Mix (Promega, Madison, WI, USA). Forward primer:
‘TGCAGTTTACGTATAACCACATACAGC’, reverse primer: ‘AGCTTGCGGGCCTCGTT’
and probe: 5′ FAM-CGCCCCAGCATGTCGTTCACGT’. Standard curve analysis was based
on Ct values and serial of 10-fold dilutions of the plasmid standard containing the gB
gene with an initial concentration of 2.62 × 106 HSV-2 genome copy numbers per reaction.
A standard curve was included in each PCR run. Data are expressed as the HSV-2 copy
number per ng of the total DNA in the tissue.

2.6. Ethical Statement

The study was performed in accordance with the recommendations of the Polish Act
of 21 January 2005 on animal experiments (OJ no 33, item 289) and Directive 2010/63/EU of
the European Parliament and the Council of 22 September 2010 on the protection of animals
used for scientific purposes. The protocol was approved by the Local Committee on the
Ethics of Animal Experiments in Warsaw, Poland (permit Number: WAW2/69/2021).

2.7. Genital HSV-2 Infection and Virus Challenge

Female C57BL/6 mice, 6 to 8 weeks old, were injected s.c. with 2.0 mg/mouse of
medroxyprogesterone (Depo-Provera; Pfizer, Puurs, Belgium) in 200 µL of PBS. Five days
later the mice were anesthetized and inoculated intravaginally with 20 µL of virus solution,
containing 103 PFU of HSV-2 strain 333 in MEM medium [14,17]. Vaginal washings were
performed at 24, 48 and 72 h after infection with 100 µL of 0.9% NaCl solution containing
10 µg/mL LF-Ag/AuNPs or 0.9% NaCl solution. Illness was scored according to the scale:
no signs = 0; slight inflammation of anogenital area = 1; gross inflammation = 2; gross inflam-
mation and hair loss = 3; and gross inflammation, ulceration and neurological signs = 4.
Animal scores were averaged in each group to obtain a single representative value. At
day 7 post infection, mice were sacrificed by cervical dislocation and the spinal cords and
vaginas were collected for further tests.

2.8. Flow Cytometry Phenotypic Analysis

Cell suspensions from vaginal tissues were prepared as follows: tissues were cut
into small pieces and treated with Liberase TL (Roche, Indianapolis, IN, USA) in MEM
medium at 37 ◦C for 40 min. Tissues were next pressed through a 70 µm cell strainer
and washed in PBS/1%FBS. Cell suspensions were pretreated with the Fc receptors block-
rat anti-CD16/32 antibody (2.4G2) (BD Biosciences, Franklin Lakes, NJ, USA) according
to the manufacturer’s protocol. The following antibodies were used: anti-CD3-FITC
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(145-2C11, ThermoFisher Scientific), anti-CD4-PE (clone RM4-5, BD Biosciences), anti-CD8-
PerCP (clone 53-6.7., BD Biosciences), anti-NK1.1-APC (clone PK136, BD Biosciences),
anti-CD11b-FITC or PE (clone M1/70) (BD Biosciences), anti-CD69-APC antibody (H1.2F3,
eBioscience), anti-CD11c-APC (HL3, eBioscience), rat anti-F4/80-FITC (BM8, eBioscience)
and rat anti-I-A-PE (M5/114.15.2, eBioscience) antibodies, and rat anti-Gr-1-PE (RB6-8C5,
BD Biosciences). Following the immunolabeling for the extracellular markers, cells were
fixed with Perm/Wash buffer (BD Bioscience) and were incubated with anti-IFN-γ APC
(eBioscience, clone-XMG1.2). The stained cell suspensions were analyzed in FACS Calibur
for the percentage of positively stained cells and analyzed using FlowJo software (Tree Star,
Ashland, OR, USA).

2.9. qPCR for Cytokines and Chemokines

Approximately 0.5 µg of total RNA isolated from vaginal tissues and spinal cords, as
described above, was converted to cDNA using MLV Reverse transcriptase (Invitrogen,
Thermofisher Scientific). qPCR reactions for cytokines and chemokines were carried out
using GoTaq® Probe qPCR Master Mix (Promega) and TaqMan® probes for the detection of
IL-1β (Mm00434228_m1), IFN-γ (Mm01168134_m1), TNF-α (Mm00443258_m1), CXCL9
(Mm00434946_m1), CXCL10 (Mm00445235_m1), and GADPH (Mm99999915_g1) in Rotor-
Gene Q (Qiagen). Cytokines and chemokines were normalized to the mean threshold
cycle (CT) of GADPH housekeeping gene. The 2−∆∆Ct method was used in calculating the
relative ratio to control uninfected tissue.

2.10. Statistical Methods

For statistical analysis, GraphPad Prism version 7 (GraphPad software) was used.
Data were analyzed using an unpaired Student’s t-test (normal distribution) or the Mann–
Whitney U test and the results are reported as mean ± standard error of the mean (SEM)
unless indicated otherwise. The p < 0.05 was considered statistically significant.

3. Results
3.1. Characterization of Nanoparticles

Microscopic and spectroscopic measurements were performed to characterize size,
shape, size distribution and colloidal stability of nanoparticles as well as to determine and
confirm the stability of nanoconjugates after lactoferrin functionalization (Figure 1). UV–Vis
spectroscopy was used for confirmation of NPs synthesis by observation of the characteristic
localized surface plasmon resonance (LSPR) peak in UV–Vis spectra. For all colloids, the re-
quired peak was observed in the region characteristic for specific nanoparticles: for AgNPs
10 nm at λmax = 417 nm, for AuNPs 10 nm at λmax = 528, for AgNPs 30 nm at λmax = 404 nm.
The hydrodynamic size of nanoparticles and its colloidal stability were tested with DLS and
Zeta potential measurements. The DLS results confirmed stability of nanoparticles with the
hydrodynamic particle size equal: dH1 = 11 ± 3 nm; dH2 = 12 ± 4 nm; dH3 = 37 ± 12 nm
and Zeta potential equal: ζ1 = −48.0 mV, ζ2 = −54.0 mV and ζ3 = −53.3 mV; for colloids
AgNPs 10 nm (Figure 1A), AuNPs 10 nm (Figure 1B) and AgNPs 30 nm (Figure 1C),
respectively. HR-SEM measurement revealed the spherical shape of all nanoparticles
with the mean size of metallic core equal: d1STEM = 4.5 ± 1.2 nm, d2STEM = 5 ± 1 nm,
d3STEM = 28 ± 7 nm for colloids, which for consistency are called AgNPs 10 nm, AuNPs
10 nm and AgNPs 30 nm, respectively. The size distribution of the NPs was analyzed by
measurement of at least 300 nanoparticles for each sample and the histogram for the size
distribution of particles was prepared.
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Figure 1. HR-SEM image, DLS size distribution histogram, and overall results of nanoparticles and
nanoconjugates characterization results of NPs (A–C) and LF-NPs conjugates (D–F) (dSTEM—the
mean size of metallic core; dH—hydrodynamic particles size; ζ—Zeta potential; λmax absorption
band maximum).

The colloidal stability of nanoparticles after functionalization with lactoferrin (LF-NPs)
was monitored with UV–Vis, HR-STEM, DLS, and Zeta potential measurements. UV–Vis
spectroscopy revealed the presence of a peak in the region characteristic for spherical silver
nanoparticles at λmax = 407 nm and λmax = 405 nm for LF-AgNPs 10 nm and LF-AgNPs
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30 nm conjugates, respectively. For LF-AuNPs 10 nm, the λmax was observed in the region
typical for spherical gold nanoparticles at 525 nm. Those values only slightly differ from
the values of λmax obtained for the aqueous colloids, which is related with the change in the
environment of NPs due to functionalization with lactoferrin. DLS measurements revealed
an increase in the hydrodynamic diameter of nanoparticles after functionalization from
dH1 = 11 ± 3 nm to dH1-LF = 23 ± 9 nm; from dH2 = 12 ± 4 nm to dH2-LF = 177 ± 85 nm
and 977 ± 533 nm; from dH3 = 37 ± 12 nm to dH-LF3 = 45 ± 18 nm for LF-AgNPs 10 nm
(Figure 1D), LF-AuNPs 10 nm (Figure 1E) and LF-AgNPs 30 nm (Figure 1F) conjugates,
respectively. The dH peaks observed for LF-AuNPs 10 nm conjugates at values above
100 nm (at 177 nm and 977 nm) are related to the presence of nanoparticle conglomerates
in the colloid.

It is possible that the conglomerates of nanoparticles are present in the colloid, moving
as a “cloud” of single nanoparticles, and during the measurement of the hydrodynamic
particle diameter they give a signal that is detected as a large object. However, the HR-SEM
images (Figure 1D–F) clearly show that all nanoparticles after lactoferrin functionalization
retain stability and no agglomeration processes are observed, also in the case of sample LF-
AuNPs 10 nm (Figure 1E HR-SEM images). Thus, those results confirm our notion that the
DLS signal obtained for the LF-AuNPs 10 nm comes from the conglomerates of individual
particles formed in the solution (HR-SEM images confirm no metallic connections between
individual nanoparticles in conglomerates).

The mean size of metallic core after functionalization remains unchanged for all
conjugates. The Zeta potential for conjugates is equal: ζ1-LF = −35.6 mV, ζ1-LF = −25.6 mV,
and ζ1-LF = −25.4 mV, for LF-AgNPs 10 nm, LF-AuNPs 10 nm, and LF-AgNPs 30 nm,
respectively. In summary, the UV–Vis, DLS, Zeta potential, and HR-SEM results of the
nanoparticles and nanoconjugates confirm the colloidal stability of nanoparticles before
and after lactoferrin functionalization.

3.2. Antiviral Effects of Lactoferrin Conjugates with Nanoparticles In Vitro

To ensure that tested Ag/AuNPs concentrations were non-toxic, cytotoxicity of nanopar-
ticles in Vero, VK-2 and HaCaT cell lines was assessed using MTT assay (Table 1). The results
of the MTT assay showed that all tested LF-modified NPs were slightly more toxic to VK2-
E6/E7 than to Vero and HaCaT cells (Table 1) and their toxicity did not differ from unmodified
Ag/AuNPs. The 50% cytotoxic concentrations (CC50) for 10 nm AgNPs were approx. 2 times
lower than those for 10 nm AuNPLactoferrin-Modified Ag/AuNPs Reduce HSV-2 Infection In
Vivos and 30 nm AgNPs (Table 1). However, the MNTC (maximum non-toxic concentrations)
showed values lower than CC50 (Table 1). Therefore, for in vitro infectious assays we chose
concentration of 7.5 µg/mL for LF-modified or unmodified 10 nm AuNPs and 30 nm AgNPs,
and 5 µg/mL for LF-modified or unmodified 10 nm AgNPs.

Table 1. Cytotoxicity of lactoferrin-modified 10 nm AuNPs, 10 nm AgNPs, and 30 nm AgNPs or
corresponding lactoferrin solution in Vero, VK-2, and HaCaT cells 1.

Ag/AuNPs
Vero Cells

CC50
2

µg/mL ± SEM

Vero Cells
MNTC 3

µg/mL ± SEM

HaCaT Cells
CC50

µg/mL ± SEM

HaCaT Cells
MNTC

µg/mL ± SEM

VK-2/E6/E7 Cells
CC50

µg/mL ± SEM

VK-2/E6/E7 Cells
MNTC

µg/mL ± SEM

LF-AuNPS, 10 nm 39.2 ± 4.7 8.02 ± 1 37.6 ± 4.1 7.78 ± 0.88 28.2 ± 4.2 6.99 ± 1.1
LF-AgNPs, 10 nm 15.01 ± 5.2 6.56 ± 0.45 16.1 ± 2.9 7.2 ± 0.6 11.9 ± 1.4 5.1 ± 0.5
LF-AgNPs, 30 nm 33.3 ± 6.1 9.1 ± 0.78 33.2 ± 7.01 8.1 ± 0.94 27.2 ± 4.3 8.99 ± 0.55

AuNPS, 10 nm 36.8 ± 7.1 9.8 ± 2.5 35.8 ± 7.9 7.21 ± 0.67 26 ± 9.1 7.22 ± 1.2
AgNPs, 10 nm 11.22 ± 3.4 10 ± 3 13.8 ± 1 8.1 ± 0.77 12.3 ± 0.9 7.77 ± 1.4
AgNPs, 30 nm 31.1 ± 2.1 9.39 ± 2.9 30.8 ± 2.2 8.88 ± 0.81 24.2 ± 1.4 8.5 ± 1.9
LF solution 4 34.7 ± 7.2 11.45 ± 3.01 39.1 ± 5.4 12.34 ± 2.1 38.5 ± 2.1 16.2 ± 0.9

1 The values shown are means from three independent experiments with each treatment performed in
triplicate ± SEM. 2 Cytotoxic effects were evaluated by MTT assay to determine the concentration of 50% cellular
cytotoxicity (CC50) of the tested compound and calculated by regression analysis, plotting cytotoxicity percent-
age to NPs concentration. 3 MNTC (maximum non-toxic concentrations) was calculated as NPs concentration
with ≤ 20% of non-viable cells. 4 Lactoferrin solution in concentration corresponding to concentration present
in colloids.
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The antiviral properties of LF-modified Ag/AuNPs in Vero cell culture were tested by
standard plaque forming assay (PFU/mL). Incubation of HSV-2 with different LF-modified
Ag/AuNPs for 60 min prior to infection showed a size-dependent virus inactivation by
AgNPs sized 10 and 30 nm (p ≤ 0.001) (Figure 2) and much less efficient virus inhibition by
LF modified AuNPs sized 10 nm (p = 0.042) (Figure 2). Of all tested AgNPs sizes, 30 nm
showed the highest antiviral activity in comparison to HSV-2 infected cultures (48± 5.2 and
255.4 ± 24.42 PFU/mL, respectively) (Figure 2). The same antiviral tests in Vero cells were
performed using unmodified Ag/AuNPs (Figure 2) and showed no significant inhibition
of HSV-2 infection. Furthermore, LF solution with concentration corresponding to the
concentration of LF used to modify showed significant inhibition of HSV-2 infection, albeit
not as efficient as LF-AgNPs (p = 0.039) (Figure 2).
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metal-related. HSV-2 titers (PFU/mL) in Vero cells infected with HSV-2 pre-incubated for 1 h with
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with p ≤ 0.05, ** p ≤ 0.001 in comparison to infected control (Student t test). Lower panel shows
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3.3. Lactoferrin-Modified Ag/AuNPs Show Differentiated Antiviral Mechanisms Depending on the
Keratinocyte Origin

To understand the antiviral mechanism(s) involved, we tested the effect of lactoferrin
modified Ag/AuNPs against HSV-2 attachment to the host cell surface and subsequent
membrane fusion in two types of human keratinocytes—skin-derived HaCaT cells and
vaginal VK-2-E7/E7 cells. The details of the procedure are described in Figure 3. All
lactoferrin-modified Ag/AuNPs prevented attachment of HSV-2 to VK-2-E6/E7 cells, albeit
LF-modified 30 nm AgNPs showed the same efficiency as lactoferrin itself (Figure 3A).
The most effective were 10 nm LF-modified Au/AgNPs (p ≤ 0.001) (Figure 3A). To test if
LF-modified Ag/AuNPs can impair the penetration phase, HSV-2 was allowed to bind to
the cell surface at 4 ◦C and then to penetrate keratinocytes by a temperature shift to 37 ◦C
in the presence or absence of the tested Ag/AuNPs or lactoferrin (Figure 3A). All tested LF-
modified Ag/AuNPs impaired virus entry into VK-2 cells with ~90% efficiency, although
no size/metal-related differences were observed (p ≤ 0.001) (Figure 3A). Lactoferrin also
blocked viral penetration in a significant manner (p = 0.009) (Figure 3A).
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Figure 3. Lactoferrin-modified Ag/AuNPs block HSV-2 attachment and penetration in vaginal
VK-2-E6/E7 keratinocytes. (A,B) Schematic representation of test procedures, I inhibition of virus
attachment and penetration in VK-2-E6/E7 cell cultures with the use of 10 nm LF-Ag/AuNPs,
30 nm LF-AgNPs or lactoferrin. At 24 h p.i. cells were subjected to HSV-2 copies titration by qPCR.
(C,D) efficiency of pre- or post-treatment with 10 nm LF-Ag/AuNPs, 30 nm LF-AgNPs or lactoferrin
was tested 6 h pre- or post-infection. At 24 h p.i. cells were subjected to HSV-2 copies titration by
qPCR. In all experiments, lactoferrin in concentrations corresponding to the amount used to modify
NPs served as positive control. The data are expressed as means from three independent experiments
± SEM. * represents significant differences with p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001 in comparison to
untreated infected control (Student t test).

To investigate the possibility of blocking cellular receptors with LF-modified Ag/AuNPs,
we preincubated VK-2 cells prior to infection with NPs or lactoferrin for 6 h. Preincubation of
the cells with LF-modified 30 nm AgNPs led to significant inhibition of HSV-2 infection by 75%
in comparison to untreated or LF-treated infected control (p≤ 0.001) (Figure 3B). Furthermore,
10 nm LF-modified Ag/AuNPs decreased infection, however, the effect was smaller (p≤ 0.05)
(Figure 3B). Post-treatment of VK-2-E7/E7 cells with LF-Ag/AuNPs at 6 h post infection (p.i.)
showed that only 30 nm LF-AgNPs can significantly decrease virus titers (p≤ 0.05) (Figure 3B).

As HSV-2 also causes blisters within the anogenital area, we tested the effect of
lactoferrin modified Ag/AuNPs against HSV-2 infection of skin HaCaT keratinocytes
(Figure 4). All experiments were performed in the same manner as in Figure 3. In contrast
to VK-2-E7/E7 cells, lactoferrin did not inhibit HSV-2 attachment or inhibition (Figure 4A)
or had any antiviral effect when used in pretreatment or post-treatment (Figure 4B). All
lactoferrin-modified Ag/AuNPs significantly prevented both attachment and penetration
of HSV-2 to HaCaT cells (p ≤ 0.05) (Figure 4A). LF-modified 10 and 30 nm AgNPs showed
significant inhibitory effect upon HSV-2 infection when used for pretreatment (p ≤ 0.05)
(Figure 4A). No antiviral effect was observed when NPs were used to treat infected HaCaT
cells at 6 h p.i. (Figure 4B).
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in vaginal lavages and spinal cords in comparison to untreated HSV-2 infected control 
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Figure 4. Lactoferrin-modified Ag/AuNPs block HSV-2 attachment and penetration in skin HaCaT
keratinocytes. (A) Inhibition of virus attachment and penetration in HaCaT cell cultures with the use
of 10 nm LF-Ag/AuNPs, 30 nm LF-AgNPs or lactoferrin. At 24 h p.i. cells were subjected to HSV-2
copies titration by qPCR. (B) efficiency of pre- or posttreatment with 10 nm LF-Ag/AuNPs, 30 nm
LF-AgNPs or lactoferrin was tested 6 h pre- or post-infection. At 24 h p.i. cells were subjected to
HSV-2 copies titration by qPCR. In all experiments, lactoferrin in concentration corresponding to the
amount used to modify NPs served as positive control. The data are expressed as means from three
independent experiments ± SEM. * represents significant differences with p ≤ 0.05, ** p ≤ 0.01 in
comparison to untreated infected control (Student t test).

3.4. Lactoferrin-Modified Ag/AuNPs Reduce HSV-2 Infection In Vivo

To confirm our in vitro findings, we employed the well-established murine model of
HSV-2 genital infection [17,18]. We used LF-Ag/AuNPs as an antiviral agent in animals
with on-going intravaginal primary HSV-2 infection. To study the effects of post-infection
treatment, animals were infected with untreated HSV-2 and then the vaginal tissues were
irrigated three times with 10 µg/mL of Lactoferrin, 10 nm LF-AuNPs, 10 nm LF-AgNPs,
and 30 nm LF-AgNPs (Figure 5). We measured HSV-2 titers with qPCR in the vaginal
tissues and spinal cords at 7 d p.i. and in the vaginal lavages collected at 72 h p.i. (Figure 5).
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Figure 5. Treatment with lactoferrin-modified Ag/AuNPs reduce HSV-2 infection in vivo.
C57BL/6 mice infected with HSV-2 were treated three times every 24h with 10 nm LF-Ag/AuNPs,
30 nm LF-AgNPs or lactoferrin (1 µg/mouse). (A) Vaginal lavages collected at 72 h p.i. (B) Vaginal
tissues and (C) spinal cords isolated at 7 d p.i. were subjected to measurement of HSV-2 gB titers
(copies/ng DNA) by qPCR (N = 10). The bars represent means ± SEM. * represents significant
differences with ** p ≤ 0.01 and *** p ≤ 0.001 in comparison to untreated HSV-2 tissues. # represents
significant differences with p ≤ 0.05, ## p ≤ 0.01 in comparison to lactoferrin treated HSV-2 infected
tissues (Mann–Whitney U test).

Post-infection treatment with lactoferrin resulted in a significant decrease of the viral
titers in vaginal lavages and vaginal tissues (p ≤ 0.01) (Figure 5A,B) but not in the spinal
cords (Figure 5C). The virus titers were significantly reduced for treatment with all NPs
in vaginal lavages and spinal cords in comparison to untreated HSV-2 infected control
and lactoferrin treatment (p ≤ 0.05) (Figure 5A,C). All lactoferrin conjugates significantly
reduced viral titers in all tested sample types (p ≤ 0.05) (Figure 5A–C). Both sizes of silver
nanoparticles modified with LF showed the most efficient reduction of HSV-2 titers in the
vaginal tissues and vaginal lavages (p ≤ 0.001) (Figure 5B).

3.5. Lactoferrin-Modified Ag/AuNPs Help to Activate Early Antiviral Response

Here, we checked if lactoferrin-modified Ag/AuNPs can contribute to activation of
early antiviral immune response. Cell suspensions prepared from vaginal tissues were
subjected to immunophenotyping for CD4+ T cells, CD8+ T cells, NK cells, CD8+CD69+
T cells, and dendritic cells (Figure 6). Treatment with lactoferrin-modified 10 nm AuNPs
and 30 nm AgNPs and lactoferrin early after infection led to significant increase in the
total counts of CD8 T+ cells (p ≤ 0.05) (Figure 6A), followed by significantly increased total
counts of CD8+/CD69+ T cells by lactoferrin-modified 10 nm AuNPs and 30 nm AgNPs
(p ≤ 0.05) (Figure 6A). Interestingly, vaginal tissues treated with all NPs showed significant
increase of cytotoxic CD8+/granzyme B+ T cells (p ≤ 0.05) (Figure 6A). No differences in
CD4+ T cells counts were detected (data not shown). Furthermore, both lactoferrin and
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lactoferrin modified Ag/AuNPs significantly increased the total numbers of NK cells in the
vaginal tissues at 7 d p.i. (p ≤ 0.05) (Figure 6B). The uninfected vaginal tissues treated with
LF-Ag/AuNPs showed no increases in the counts of all types of T cells and NK cells (data
not shown). Interestingly, both lactoferrin and LF-Au/AgNPs induced significant increase
in the counts of dendritic cells in the uninfected vaginal tissues (p≤ 0.05) (Figure 6C), while
only LF-modified nanoparticles significantly increased numbers of dendritic cells in the
HSV-2-infected vaginal tissues (p ≤ 0.01) (Figure 6C).
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Figure 6. Lactoferrin-modified Ag/AuNPs activate early antiviral response in HSV-2 vaginal infection.
Total counts of (A) CD8+ T cells, CD8+CD69+ T cells, CD8+/granzymeB+ T cells, (B) NK cells, and
(C) dendritic cells in the vaginal tissue treated with NaCl or 10 nm LF-Ag/AuNPs, 30 nm LF-AgNPs
or lactoferrin at 24, 48 and 72 h p.i. and isolated for further assays at 7 day p.i. Results are expressed as
mean +/− SEM for N = 7. * represents significant differences with p ≤ 0.05, ** p ≤ 0.01 in comparison
to untreated HSV-2 tissues (Student t test).

Furthermore, we measured levels of cytokines and chemokines important in raising
anti-HSV-2 antiviral response (IFN-γ, CXCL9, CXCL10) and inflammatory response (IL-1β,
TNF-α) (Figure 7) in the vaginal tissues at 7 d p.i. Upon treatment with LF-modified
Ag/AuNPs in HSV-2 infection, the vaginal tissue upregulated expression of IL-β mRNA
with the highest upregulation observed for 10 nm LF-AgNPs (p ≤ 0.05) (Figure 7A). Small
LF-AgNPs also significantly upregulated expression of TNF-α mRNA in the vaginal tissues
(p = 0.01), as well as 30 nm LF-AgNPs, albeit to a lesser degree (p = 0.049) (Figure 7B). Both
lactoferrin and lactoferrin modified Ag/AuNPs significantly upregulated expression of
IFN-γ, CXCL9 and CXCL10 mRNA (p ≤ 0.05) (Figure 7C–E). For CXCL9 and CXCL10, LF-
Ag/AuNPs showed better upregulation of mRNA expression in comparison to lactoferrin
(p ≤ 0.05) (Figure 7C,D). For IFN-γ, this effect was observed only for lactoferrin modified
silver nanoparticles (p ≤ 0.05) (Figure 7E).
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Figure 7. Cytokine and chemokine expression changes in the vaginal tissues at 7 day p.i. and
treatment with lactoferrin modified Ag/AuNPs. Levels of IL-1β (A), TNF-α (B), CXCL9 (C), CXCL10
(D), and IFN-γ (E) mRNA are shown as expression relative to control on the basis of the 2∆∆Ct

method. N = 7. * represents significant differences with p ≤ 0.05, ** p ≤ 0.01 in comparison to
untreated HSV-2 tissues.

4. Discussion

This study demonstrates anti-HSV-2 activity of lactoferrin functionalized silver and
gold nanoparticles in the in vitro infection of different types of human keratinocytes but
also in the treatment of in vivo HSV-2 infection in mice. The in vitro and in vivo models
of HSV-2 infection were chosen on the basis of the results previously obtained in our
group [14,17–19]. We have demonstrated that combination of antiviral compound, tannic
acid (TA), with silver nanoparticles boosts antiviral properties several times [14,17,18]. This
effect was due to a better interaction between tannic-acid modified silver nanoparticles
and the virus surface [17,18], in comparison to tannic acid itself. Furthermore, TA-AgNPs
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worked efficiently when applied both as a colloid or in an appropriate mucoadhesive gel
to treat HSV-2 infection in the mouse model [19]. However, the antiviral properties of TA-
AgNPs depended strongly on the size of nanoparticles with 20–40 nm silver nanoparticles
being the most effective without undesired toxic and proinflammatory properties when
applied in vivo [14,20].

Here, we observed the same characteristics of small AgNPs (10 nm) as being more toxic
than 30 nm AgNPs and 10 nm AuNPs. Toxicity of AgNPs is related with internalization
of NPs, which leads to production of ROS, oxidative stress and genotoxic effects. If
produced in sufficiently high amounts, ROS can induce cell death by either apoptosis
or necrosis [20,21]. The toxicity of silver nanoparticles is also directly related with the
ability of a particular cell type to internalize NPs [21]. As previously shown, HaCaT
keratinocytes internalize AgNPs very poorly, thus are less sensitive to AgNPs induced
toxicity than VK-2-E6/E7 keratinocytes [20]. Here, the differences observed between
HaCaT and VK-2 cells sensitivity to AgNPs were insignificant. On the other hand, small
(10 nm) AuNPs functionalized with lactoferrin showed very little toxicity for all tested
cell types (Table 1). These results were very advantageous as AuNPs sized < 10 nm are
more readily accumulated into cell nuclei and organelles, leading to DNA damage [22].
Our results indicate that functionalization of AuNPs sized 10 nm with lactoferrin does not
result in toxicity.

As lactoferrin inhibits different stages of HSV-2 infection, such as attachment, pen-
etration, and cell-to-cell spread of HSV-2, we decided to first perform classical plaque
reduction assay in Vero cells (Figure 2). Functionalized silver nanoparticles appeared the
most effective in comparison to 10 nm AuNPs (Figure 2). As this assay was performed first
by incubating virus with functionalized nanoparticles in RT, we suggest that the presence
of silver metal may provide better local environment for interactions between HSV-2 and
lactoferrin present on the surface of a metal nanoparticle. Antiviral effects of several cationic
peptides, such as LF is dependent on their structure. LF has a relative high net positive
charge and its N-terminal region is extremely basic [23]. Therefore, the binding of silver
lactoferrin conjugates to the virus surface may be stronger and less prone to dissociation.
More research is necessary to decipher the nature of lactoferrin–nanoparticle interaction.
Nanoparticles can bind a variety of proteins, forming so called an interfacial corona that
provides biological identity and activity to nanoparticles. Kayak et al. demonstrated that
adsorption of bovine lactoferrin (BLf) onto AgNP interface is driven by van der Waals in-
teractions and hydrogen bonds, without any significant effect on the protein conformation
and stability [24]. BLf also ameliorated the particle-mediated cytotoxicity [24].

Lactoferrin inhibits HSV infection by interfering with virus binding to the target
cells but also disturbs intracellular trafficking of HSV virions [25]. We decided to use
two different cells lines in order to compare if conjugates can work better than lactoferrin
itself in inhibiting of virus attachment and penetration to human keratinocytes. We chose
human HaCaT keratinocytes, commonly used to grow HSV and human vaginal VK-2-
E6/E7 keratinocytes representing the target cells for HSV-2. Surprisingly, lactoferrin
significantly blocked both attachment and penetration of HSV-2 to vaginal keratinocytes
rather than to skin keratinocytes (Figures 3 and 4). All lactoferrin conjugates showed very
efficient inhibition of HSV-2 attachment and penetration in vaginal keratinocytes (except for
30 nm AgNPs, showing the same inhibition of penetration as lactoferrin itself) but also very
good inhibition properties for HaCaT cells in comparison to lactoferrin (Figures 3 and 4).
These results prove that lactoferrin conjugates with noble metal nanoparticles can be better
antivirals than peptides, especially for cells insensitive to LF activity.

To further check if lactoferrin conjugates with noble metal nanoparticles can improve
inhibition of cell-to-cell spread by lactoferrin, we incubated the infected keratinocytes with
conjugates but no significant inhibition was obtained. This is in contrast with previous
results showing that lactoferrin can inhibit post-infection spread by interfering with viral
glycoprotein complex (gE–gI) [4] or with intracellular pathways [4,6]. Therefore, we can
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assume that physical form of the conjugates can impede interaction of lactoferrin with
glycoproteins involved in cell-to-cell spread or intracellular pathways.

However, we observed a very interesting effect of pre-treatment with lactoferrin
conjugates, which led to significant decrease of HSV-2 infection in VK-2 cells with all tested
conjugates and only for conjugated AgNPs in HaCaT cells. Such effect for lactoferrin
has not been shown before. Upon cell treatment, lactoferrin is mainly found on the cell
surface of cells expressing heparan. This may result from interactions with a highly specific
receptor for LF, characterized on several mammalian cell types and tissues [26], but the
surface localization of LF is believed to be less important for its antiviral activity [4]. We
can speculate that lactoferrin in conjugates may still bind to LF receptors on the cell surface
creating in this manner a kind of barrier preventing from HSV-2 infection. This is an
additional, advantageous effect of lactoferrin conjugates, which can further contribute to
protection of neighboring cells from infection.

There are numerous studies showing that lactoferrin protects against several, other
than HSV-2, viruses. These studies were performed mostly in vitro but there are a few
examples where lactoferrin has demonstrated a potent antiviral effect in vivo. For ex-
ample, lactoferrin given intraperitoneally protects mice against enterovirus and murine
cytomegalovirus [27,28]. When deposited in the conjunctival sac it could protect mice
against ocular HSV-1 infection [29]. On the other hand, lactoferricin but not lactoferrin was
a potent inhibitor of HSV-2 infection in a mouse mode of genital herpes [30].

Here, we found that treatment with lactoferrin in 24, 48, and 72h post infection re-
sulted in significant reduction of virus titers both at 3 and 7 day post infection in the
vaginal lavages and tissue, respectively (Figure 5). Lactoferrin-functionalized nanoparticles
reduced viral titers better than lactoferrin, also in the spinal cords (Figure 5), which makes
them promising microbicides. Previously, we demonstrated that tannic acid-modified
AgNPs stimulate migration of dendritic cells (DCs) into the vaginal tissue not only early
during primary infection but also later, upon re-challenge with the virus [17]. This helped to
present the virus antigens both to naïve cytotoxic T cells in the lymph nodes and to memory
T cells resulting in the activation of the specific antiviral response [18]. In this study, we
also observed significant migration of DCs to both infected and uninfected vaginal tissues
stimulated with lactoferrin-modified NPs. It is possible that functionalized nanoparticles
can retain lactoferrin present in the vaginal tissues for longer times, thus helping to stim-
ulate both innate antiviral response to HSV-2 (NK cells) and virus-specific CD8+ T cell
response (Figure 6). Furthermore, while lactoferrin and lactoferrin-modified nanoparticles
differed in the amount of activated innate antiviral response, only nanoparticle conjugates
with lactoferrin were able to significantly activate cytotoxic CD8+/granzyme B+ T cells.
As shown previously, the aggregates of modified NPs with viral antigens may be better
internalized and processed by antigen-presenting cells (APC), thus leading to better activa-
tion of immune competent cells downstream. The role of silver and gold nanoparticles as
adjuvants for infectious agents is attracting more and attention as well as possible practical
uses in vaccines [31,32].

Lactoferrin is able to induce chemokine responses in the genital tract, such as CCL5,
one of the major T cell- and NK cell-attracting chemokines [30]. Here, we found that while
lactoferrin induced upregulation of CXCL9, CXCL10, and IFN-γ in the vaginal tissues,
lactoferrin functionalized nanoparticles induced several times more expression of these
chemoattractants for NK cells as well as CD8+ T cells [33], further reflected by increased
NK and T cell numbers in the vaginal tissues (Figure 6). Taking into account a well-
known fact that small AgNPs can induce cellular toxicity, we also checked for production
of inflammatory cytokines, such as IL-1β and TNF-α. The vaginal tissued treated with
lactoferrin functionalized 10 nm AgNPs showed significant increase of these two cytokines
(Figure 7). TNF-α and IL-1 β are cytokines important for mounting a proper adaptive
antiviral response to HSV-2 [34,35]. TNF-α can also induce CCL2 expression and mobilize
monocytes/macrophages and T cells through the chemokine receptor CCR2 [35]. However,
it is also important to remember that excessive production of proinflammatory cytokines
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can amplify inflammation triggered by the virally infected cells and result in deregulation
of the antiviral response [36]. Therefore, certain caution should be taken when planning
in vivo treatment with AgNPs sized <10 nm.

5. Conclusions

In conclusion, we have demonstrated that lactoferrin functionalized gold and silver
nanoparticles have the ability to prevent HSV-2 infection by direct inhibition of virus
attachment, penetration and blocking of infection when used in pretreatment. Lactoferrin
used in the same concentrations shows significantly inferior antiviral effects, particularly
when used in vitro. Therefore, lactoferrin functionalized gold and silver nanoparticles can
consist good candidates for effective anti-HSV-2 microbicide to be used in vivo due to their
effectiveness at lower concentrations and induction of an anti-viral response.

As both HSV-1 and HSV-2 possess similar structure of surface proteins, lactoferrin
functionalized gold and silver nanoparticles can be used not only as a microbicide to treat
HSV-2 infections of the anogenital area, but also to treat oral herpes infections in the form
of a protective gel or cream to be applied topically. However, further studies are necessary
to understand mechanism of antiviral actions of the lactoferrin conjugates.

Author Contributions: Conceptualization, M.K., G.C. and J.G.; investigation, D.D., M.C., M.J., E.T.,
K.R.-S. and K.B.; data curation, M.C., M.J., E.T., K.R.-S. and K.B.; writing—original draft preparation,
M.K.; writing—review and editing, M.K. and J.G.; supervision, M.K. and J.G.; project administration,
M.K. and J.G.; funding acquisition, M.K. and J.G. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by the Polish National Science Centre grant no. 2018/31/B/NZ6/02606.

Institutional Review Board Statement: The animal study protocol was approved by the Local Com-
mittee on the Ethics of Animal Experiments in Warsaw, Poland (permit Number: WAW2/69/2021).

Informed Consent Statement: Not applicable.

Data Availability Statement: Data available from authors at request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Knipe, D.M.; Howley, P. Field’s Virology; Wolters Kluwer Health/Lippincott: Philadelphia, PA, USA; Williams & Wilkins:

Philadelphia, PA, USA, 2013.
2. James, C.; Harfouche, M.; Welton, N.J.; Turner, K.M.; Abu-Raddad, L.J.; Gottlieb, S.L.; Looker, K.J. Herpes simplex virus: Global

infection prevalence and incidence estimates, 2016. Bull. World Health Organ. 2020, 98, 315–329. [CrossRef] [PubMed]
3. Corey, L.; Wald, A.; Celum, C.L.; Quinn, T.C. The effects of herpes simplex virus-2 on HIV-1 acquisition and transmission: A

review of two overlapping epidemics. J. Acquir. Immune Defic. Syndr. 2004, 35, 435–445. [CrossRef]
4. Jenssen, H.; Sandvik, K.; Andersen, J.H.; Hancock, R.E.; Gutteberg, T.J. Inhibition of HSV cell-to-cell spread by lactoferrin and

lactoferricin. Antiviral Res. 2008, 79, 192–198. [CrossRef] [PubMed]
5. Brock, J.H. The physiology of lactoferrin. Biochem. Cell Biol. 2002, 80, 1–6. [CrossRef]
6. Jenssen, H. Anti herpes simplex virus activity of lactoferrin/lactoferricin—An example of antiviral activity of antimicrobial

protein/peptide. Cell. Mol. Life Sci 2005, 62, 3002–3013. [CrossRef] [PubMed]
7. Van Der Strate, B.W.; Beljaars, L.; Molema, G.; Harmsen, M.C.; Meijer, D.K. Antiviral activities of lactoferrin. Antiviral Res. 2001,

52, 225–239. [CrossRef]
8. El-Fakharany, E.M.; Sánchez, L.; Al-Mehdar, H.A.; Redwan, E.M. Effectiveness of human, camel, bovine and sheep lactoferrin on

the hepatitis C virus cellular infectivity: Comparison study. Virol. J. 2013, 10, 199. [CrossRef]
9. Groot, F.; Geijtenbeek, T.B.; Sanders, R.W.; Baldwin, C.E.; Sanchez-Hernandez, M.; Floris, R.; van Kooyk, Y.; de Jong, E.C.;

Berkhout, B.J. Lactoferrin prevents dendritic cell-mediated human immunodeficiency virus type 1 transmission by blocking the
DC-SIGN—gp120 interaction. J. Virol. 2005, 79, 3009–3015. [CrossRef]

10. Andersen, J.H.; Jenssen, H.; Sandvik, K.; Gutteberg, T.J. Anti-HSV activity of lactoferrin and lactoferricin is dependent on the
presence of heparan sulphate at the cell surface. J. Med. Virol. 2004, 74, 262–271. [CrossRef]

11. Välimaa, H.; Tenovuo, J.; Waris, M.; Hukkanen, V. Human lactoferrin but not lysozyme neutralizes HSV-1 and inhibits HSV-1
replication and cell-to-cell spread. Virol. J. 2009, 6, 1–7. [CrossRef]

12. Blessing, A.A. Metal-based nanoparticles for the treatment of infectious diseases. Molecules 2017, 22, 1370.

http://doi.org/10.2471/BLT.19.237149
http://www.ncbi.nlm.nih.gov/pubmed/32514197
http://doi.org/10.1097/00126334-200404150-00001
http://doi.org/10.1016/j.antiviral.2008.03.004
http://www.ncbi.nlm.nih.gov/pubmed/18456345
http://doi.org/10.1139/o01-212
http://doi.org/10.1007/s00018-005-5228-7
http://www.ncbi.nlm.nih.gov/pubmed/16261265
http://doi.org/10.1016/S0166-3542(01)00195-4
http://doi.org/10.1186/1743-422X-10-199
http://doi.org/10.1128/JVI.79.5.3009-3015.2005
http://doi.org/10.1002/jmv.20171
http://doi.org/10.1186/1743-422X-6-53


Microorganisms 2022, 10, 110 17 of 18

13. Singh, L.; Kruger, H.G.; Maguire, G.E.; Govender, T.; Parboosing, R. The role of nanotechnology in the treatment of viral infections.
Ther. Adv. Infect. Dis. 2017, 4, 105–131. [CrossRef]

14. Orlowski, P.; Tomaszewska, E.; Gniadek, M.; Baska, P.; Nowakowska, J.; Sokolowska, J.; Nowak, Z.; Donten, M.; Celichowski, G.;
Grobelny, J.; et al. A Tannic acid modified silver nanoparticles show antiviral activity in herpes simplex virus type 2 infection.
PLoS ONE 2014, 9, e104113. [CrossRef]

15. Suleman Ismail Abdalla, S.; Katas, H.; Chan, J.Y.; Ganasan, P.; Azmi, F.; Fauzi, M.B. Gelatin hydrogels loaded with lactoferrin-
functionalized bio-nanosilver as a potential antibacterial and anti-biofilm dressing for infected wounds: Synthesis, characteriza-
tion, and deciphering of cytotoxicity. Mol. Pharm. 2021, 18, 1956–1969. [CrossRef]

16. Namvar, L.; Olofsson, S.; Bergstrom, T.; Lindh, M. Detection and typing of herpes simplex virus (HSV) in mucocutaneous samples
by TaqMan PCR targeting a gB segment homologous for HSV types 1 and 2. J. Clin. Microbiol. 2005, 43, 2058–2064. [CrossRef]
[PubMed]

17. Orłowski, P.; Kowalczyk, A.; Tomaszewska, E.; Ranoszek-Soliwoda, K.; Węgrzyn, A.; Grzesiak, J.; Celichowski, G.; Grobelny,
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Multifunctional tannic acid/silver nanoparticle-based mucoadhesive hydrogel for improved local treatment of HSV infection:
In vitro and in vivo studies. Int. J. Mol. Sci. 2018, 19, 387. [CrossRef]

20. Orlowski, P.; Soliwoda, K.; Tomaszewska, E.; Bien, K.; Fruba, A.; Gniadek, M.; Labedz, O.; Nowak, Z.; Celichowski, G.; Grobelny,
J.; et al. Toxicity of tannic acid-modified silver nanoparticles in keratinocytes: Potential for immunomodulatory applications.
Toxicol. In Vitro 2016, 35, 43–54. [CrossRef] [PubMed]

21. Park, E.J.; Yi, J.; Choi, K.; Park, K. Silver nanoparticles induce cytotoxicity by a Trojan-horse type mechanism. Toxicol. In Vitro
2010, 24, 872–878. [CrossRef]

22. Johnston, H.J.; Hutchinson, G.; Christensen, F.M.; Peters, S.; Hankin, S.; Stone, V. A review of the in vivo and in vitro toxicity of
silver and gold particulates: Particle attributes and biological mechanisms responsible for the observed toxicity. Crit. Rev. Toxicol.
2010, 40, 328–346. [CrossRef] [PubMed]

23. Baker, E.N.; Baker, H.M.; Kidd, R.D. Lactoferrin and transferrin: Functional variations on a common structural framework.
Biochem. Cell Biol. 2002, 80, 27–34. [CrossRef]

24. Nayak, P.S.; Borah, S.M.; Gogoi, H.; Asthana, S.; Bhatnagar, R.; Jha, A.N.; Jha, S. Lactoferrin adsorption onto silver nanoparticle
interface: Implications of corona on protein conformation, nanoparticle cytotoxicity and the formulation adjuvanticity. Chem. Eng.
J. 2019, 361, 470–484. [CrossRef]

25. Marr, A.K.; Jenssen, H.; Moniri, M.R.; Hancock, R.E.; Pante, N. Bovine lactoferrin and lactoferricin interfere with intracellular
trafficking of Herpes simplex virus-1. Biochimie 2009, 91, 160–164. [CrossRef] [PubMed]

26. Ziere, G.J.; van Dijk, M.C.; Bijsterbosch, M.K.; van Berkel, T.J. Lactoferrin uptake by the rat liver. Characterization of the
recognition site and effect of selective modification of arginine residues. J. Biol. Chem 1992, 267, 11229–11235. [CrossRef]

27. Weng, T.Y.; Chen, L.C.; Shyu, H.W.; Chen, S.H.; Wang, J.R.; Yu, C.K.; Lei, H.Y.; Yeh, T.M. Lactoferrin inhibits enterovirus 71
infection by binding to VP1 protein and host cells. Antiviral. Res. 2005, 67, 31–37. [CrossRef]

28. Shimizu, K.; Matsuzawa, H.; Okada, K.; Tazume, S.; Dosako, S.; Kawasaki, Y.; Hashimoto, K.; Koga, Y. Lactoferrin-mediated
protection of the host from murine cytomegalovirus infection by a T-cell-dependent augmentation of natural killer cell activity.
Arch. Virol. 1996, 141, 1875–1889. [CrossRef]

29. Fujihara, T.; Hayashi, K. Lactoferrin inhibits herpes simplex virus type-1 (HSV-1) infection to mouse cornea. Arch. Virol. 1995, 140,
1469–1472. [CrossRef] [PubMed]

30. Shestakov, A.; Jenssen, H.; Nordström, I.; Eriksson, K. Lactoferricin but not lactoferrin inhibit herpes simplex virus type 2 infection
in mice. Antiviral Res. 2012, 93, 340–345. [CrossRef]

31. Niikura, K.; Matsunaga, T.; Suzuki, T.; Kobayashi, S.; Yamaguchi, H.; Orba, Y.; Kawaguchi, A.; Haseggawa, H.; Kajino, K.;
Ninomya, T.; et al. Gold nanoparticles as a vaccine platform: Influence of size and shape on immunological responses in vitro
and in vivo. ACS Nano. 2013, 7, 3926–3938. [CrossRef]

32. Sanchez-Guzman, D.; le Guen, P.; Villeret, B.; Sola, N.; Borgne, R.L.; Guyard, A.; Kemmel, A.; Crestani, B.; Sallenave, J.-M.;
Verdugo, I.G. Silver nanoparticle-adjuvanted vaccine protects against lethal influenza infection through inducing BALT and
IgA-mediated mucosal immunity. Biomaterials 2019, 217, 119308. [CrossRef] [PubMed]

33. Zhang, M.; Deng, X.; Guan, X.; Geng, L.; Fu, M.; Zhang, B.; Chen, R.; Hu, H.; Hu, K.; Zhang, D.; et al. Herpes simplex virus type 2
infection-induced expression of CXCR3 ligands promotes CD4+ T cell migration and is regulated by the viral immediate-early
protein ICP4. Front. Immunol. 2018, 9, 2932. [CrossRef]

34. Cumberbatch, M.; Dearman, R.J.; Kimber, I. Langerhans cells require signals from both tumour necrosis factor alpha and
interleukin 1 beta for migration. Adv. Exp. Med. Biol 1997, 92, 125–128.

http://doi.org/10.1177/2049936117713593
http://doi.org/10.1371/journal.pone.0104113
http://doi.org/10.1021/acs.molpharmaceut.0c01033
http://doi.org/10.1128/JCM.43.5.2058-2064.2005
http://www.ncbi.nlm.nih.gov/pubmed/15872222
http://doi.org/10.3390/v10100524
http://doi.org/10.3389/fimmu.2018.01115
http://www.ncbi.nlm.nih.gov/pubmed/29872440
http://doi.org/10.3390/ijms19020387
http://doi.org/10.1016/j.tiv.2016.05.009
http://www.ncbi.nlm.nih.gov/pubmed/27216470
http://doi.org/10.1016/j.tiv.2009.12.001
http://doi.org/10.3109/10408440903453074
http://www.ncbi.nlm.nih.gov/pubmed/20128631
http://doi.org/10.1139/o01-153
http://doi.org/10.1016/j.cej.2018.12.084
http://doi.org/10.1016/j.biochi.2008.05.016
http://www.ncbi.nlm.nih.gov/pubmed/18573311
http://doi.org/10.1016/S0021-9258(19)49900-6
http://doi.org/10.1016/j.antiviral.2005.03.005
http://doi.org/10.1007/BF01718201
http://doi.org/10.1007/BF01322673
http://www.ncbi.nlm.nih.gov/pubmed/7661698
http://doi.org/10.1016/j.antiviral.2012.01.003
http://doi.org/10.1021/nn3057005
http://doi.org/10.1016/j.biomaterials.2019.119308
http://www.ncbi.nlm.nih.gov/pubmed/31279103
http://doi.org/10.3389/fimmu.2018.02932


Microorganisms 2022, 10, 110 18 of 18

35. Iijima, N.; Mattei, L.M.; Iwasaki, A. Recruited inflammatory monocytes stimulate antiviral Th1 immunity in infected tissue. Proc.
Natl. Acad. Sci. USA 2011, 108, 284–289. [CrossRef] [PubMed]

36. Belisle, S.E.; Tisoncik, J.R.; Korth, M.J.; Carter, V.S.; Proll, S.C.; Swayne, D.E.; Pantin-Jackwood, M.; Tumpey, T.M.; Katze, M.G.
Genomic profiling of tumor necrosis factor alpha (TNF-alpha) receptor and interleukin-1 receptor knockout mice reveals a link
between TNF-alpha signaling and increased severity of 1918 pandemic influenza virus infection. J. Virol. 2010, 84, 12576–12588.
[CrossRef]

http://doi.org/10.1073/pnas.1005201108
http://www.ncbi.nlm.nih.gov/pubmed/21173243
http://doi.org/10.1128/JVI.01310-10

	Introduction 
	Materials and Methods 
	Synthesis of Nanoparticles 
	Virus and Anti-Viral Tests 
	Cell Lines and Infection 
	Cell Viability Assay 
	Virus Titration 
	Ethical Statement 
	Genital HSV-2 Infection and Virus Challenge 
	Flow Cytometry Phenotypic Analysis 
	qPCR for Cytokines and Chemokines 
	Statistical Methods 

	Results 
	Characterization of Nanoparticles 
	Antiviral Effects of Lactoferrin Conjugates with Nanoparticles In Vitro 
	Lactoferrin-Modified Ag/AuNPs Show Differentiated Antiviral Mechanisms Depending on the Keratinocyte Origin 
	Lactoferrin-Modified Ag/AuNPs Reduce HSV-2 Infection In Vivo 
	Lactoferrin-Modified Ag/AuNPs Help to Activate Early Antiviral Response 

	Discussion 
	Conclusions 
	References

