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Chronic spinal cord injury (SCI) is a devastating condition that results in major
neurological deficits and social burden. It continues to be managed symptomatically,
and no real therapeutic strategies have been devised for its treatment. Neural
stem/neural progenitor cells (NSCs/NPCs) being used for the treatment of chronic SCI in
experimental SCI models can not only replace the lost cells and remyelinate axons in the
injury site but also support their growth and provide neuroprotective factors. Currently,
several clinical studies using NSCs/NPCs are underway worldwide. NSCs/NPCs also
have the potential to differentiate into all three neuroglial lineages to regenerate neural
circuits, demyelinate denuded axons, and provide trophic support to endogenous cells.
This article explains the challenging pathophysiology of chronic SCI and discusses
key NSC/NPC-based techniques having the greatest potential for translation over the
next decade.

Keywords: chronic spinal cord injury, neural stem/progenitor cell, glial scar, chondroitin sulfate proteoglycans,
regenerative medicine

HIGHLIGHTS

- The lack of repair following chronic SCI is a result of intrinsic neuronal cell factors and the
extrinsic SCI environment.

- NSCs/NPCs exhibit a promising therapeutic strategy to complement clinical practice by
replacing the three neuronal cell types; neurons, oligodendrocytes and astrocytes that
are lost after SCI.

- The two main aims of NSCs/NPCs-based treatment for chronic SCI are replacing lost cells
such as neurons and oligodendrocytes and providing the cells with a microenvironment that
supports or enhances the ability of cells within a lesion to provide neuroprotection and
promote regeneration.

- Chondroitin Sulfate Proteoglycans (CSPGs) are recognized mostly inhibitory effects and can
hinder regeneration of axons across lesions in chronic SCI environment. Chondroitinase ABC
(ChABC) is a bacterial enzyme that can effectively degrade CSPGs. ChABC pretreatment can
‘unlock’ the chronically injured spinal cord to produce a microenvironment conducive to
regenerative NSCs/NPCs therapy

- NSCs/NPCs treatment has the promising attempts in treatment for chronic SCI from the
previous preclinical trials. However there are still critical points in clinical studies.

- Several clinical trials are ongoing using NSCs/NPCs treatment in chronic SCI.
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INTRODUCTION

Severe traumatic spinal cord injury (SCI) disrupts long
descending and ascending nerve fibers as well as the orientated
glial framework of white matter tracts, thus causing a loss
of motor, sensory, and autonomic function. The subsequent
formation of reactive tissue scarring and cystic cavitation results
in the development of molecular and physical barriers to
regenerative axonal growth as well as long term neurological
deficits in chronic SCI (Adams and Cavanagh, 2004; Singh
et al., 2014; Ahuja and Fehlings, 2016; Ahuja et al., 2017; Angeli
et al., 2018). It is estimated that worldwide, SCI effects from
250,000 to 500,000 people per year (Singh et al., 2014). Thanks
to programs designed to prevent the debilitating long-term
effects of SCI, many of these affected individuals remain healthy
and productive. While these advances in care are dramatic,
there remains a pressing need for treatments that can improve
repair processes and recovery in individuals with longstanding
SCI. Despite extensive research, no effective treatment has been
developed to repair chronic SCI (Houle and Tessler, 2003;
Bareyre et al., 2004; Armour et al., 2016; Badhiwala et al., 2018;
Ashammakhi et al., 2019).

Various cell populations can be used for the treatment of
chronic SCI in experimental SCI models (Steeves et al., 2007;
Courtine et al., 2008; Blesch and Tuszynski, 2009; Hejcl et al.,
2010; Ruff et al., 2012; Amr et al., 2014; Kadoya et al., 2016;
Suzuki et al., 2017; Zhao et al., 2017; Nori et al., 2018; Courtine
and Sofroniew, 2019; Ruzicka et al., 2019). Several clinical
trials using stem cells are currently underway around the world
(Fawcett et al., 20071; accessed 20 August 2021). Among these
trials, therapies using exogenous neural stem cells (NSCs) appear
to be particularly promising because of the ability of these
cells to differentiate into all three neuroglial lineages to allow
regeneration of neural circuits, demyelination of denuded axons,
and trophic support of endogenous cells (Karimi-Abdolrezaee
et al., 2006, 2010; Ruff et al., 2012; Kadoya et al., 2016;
Suzuki et al., 2017).

This article explains the challenging pathophysiology of
chronic SCI and discusses key neural stem cell and neural
progenitor cell (NSC/NPC)-based techniques having the greatest
potential for translation over the next decade.

PATHOPHYSIOLOGY OF CHRONIC
SPINAL CORD INJURY

The primary injury triggers secondary injury in SCI. Secondary
injury produces further chemical and mechanical damage
to spinal tissues; leads to neuronal excitotoxicity caused by
hemorrhage, high calcium accumulation, and enzymatic lipid
hydrolysis; and increases reactive oxygen concentrations and
glutamate levels (Tator and Fehlings, 1991; Proskuryakov
et al., 2003; Ruff et al., 2012). Clinical manifestations of
secondary injury include increased cell permeability, apoptotic
signaling, ischemia, vascular damage, edema, excitotoxicity,

1https://www.clinicaltrials.gov

ionic deregulation, inflammation, lipid peroxidation, free radical
formation, demyelination, Wallerian degeneration, fibro-glial
scarring, and cystic formation as shown in Figure 1 (de Leon
et al., 1999; Fleming et al., 2006; Beck et al., 2010; Austin et al.,
2012; Ruff et al., 2012; Anderson et al., 2016; Anwar et al., 2016;
Badner et al., 2016; Hayashi et al., 2018).

Apoptosis is a morphologically defined type of programmed
cell death that occurs in various different circumstances such
as immune cell selection, carcinogenesis, and the development
of necrosis (Proskuryakov et al., 2003). Typical posttraumatic
necrosis occurs after SCI. Apoptotic cells have been found from
6 h to 3 weeks after injury, primarily in the spinal white
matter (Ruff et al., 2012) and also within remote degenerating
fiber tracts. Apoptosis appears to at least partially cause
secondary degeneration occurring at the site of SCI and chronic
demyelination of tracts leading away from the injury (Alizadeh
et al., 2015; Ahuja and Fehlings, 2016; Anderson et al., 2016;
Ahuja et al., 2017).

A unique feature of the pathological change after SCI is the
progressive enlargement of the lesion area, which usually results
in cavity formation and is accompanied by reactive astrogliosis
and chronic inflammation (Anwar et al., 2016; Assinck et al.,
2017; Yang et al., 2020). Reactive astrocytes line the spinal cavity
to wall off the lesion core from normal spinal tissue (Barnabé-
Heider et al., 2010; Ruff et al., 2012; Beattie and Hippenmeyer,
2017).

The lack of repair following SCI is a result of intrinsic cell
factors and the extrinsic injury environment (Bradbury et al.,
2002; Burda and Sofroniew, 2014; Bradbury and Burnside, 2019).
To unlock the regenerative potential at the cell body level of the
neuron, experimental efforts have focused on growth signaling
pathways, individual genes associated with regeneration, and the
transcriptional and epigenetic network (Burnside et al., 2018;
Bradbury and Burnside, 2019). Scar formation also plays a key
role in limiting regeneration. The scar acts to spatially contain
and isolate the damage, but additional gliotic scar formation,
the development of cysts and syrinxes inside the lesion, and
continuous Wallerian degeneration of the severed and injured
axons are the main characteristics in the chronic stage (Andrews
et al., 2012; Avram et al., 2014). Unfortunately, the application of
stem cells at the chronic stage has not been reported to result in
any clinically significant functional improvement.

AMERICAN SPINAL CORD INJURY
ASSOCIATION IMPAIRMENT SCALE

In clinical trials in chronic SCI, the methods of the measurement
of neurological recovery is most important issues. The most
standard measurement is American Spinal Cord Injury
Association (ASIA) Impairment Scale. The International
Standards for Neurological Classification of Spinal Cord Injury,
commonly referred to as the ASIA Exam, was developed by
the ASIA as a universal classification tool for spinal cord
injuries based on a standardized sensory and motor assessment
(Asia and ISCoS International Standards Committee, 2019). In
clinical trials in chronic SCI, this scale is the most important
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FIGURE 1 | Subsequent secondary injury is characterized by further neuronal/axonal cell death and myelin degradation led by secondary inflammation from
infiltrating lymphocytes and monocytes. Activated astrocytes composing the glial scar secret reactive oxygen species that widen the damaged area of the spinal
cord. Glial scarring and post-traumatic cyst or syrinx formation create physical impediments to regeneration. Neurons are further damaged by post-traumatic cyst
formation that exerts physical pressure on the damaged axons.

assessment tool of recovery. The following ASIA Impairment
Scale (AIS) designation is used in grading the degree of
impairment (Table 1).

The scale involves both a motor and sensory examination
to determine the sensory level and motor level for each side of
the body, the single neurological level of injury and whether the
injury is complete and incomplete (Burns et al., 2012).

CHONDROITIN SULFATE
PROTEOGLYCANS AND
CHONDROITINASE ABC

As a class of extracellular matrix molecule proteoglycans,
chondroitin sulfate proteoglycans (CSPGs) are widely expressed
within the central nervous system (CNS) and can be synthesized
by all neural cell types (Andrews et al., 2012; Avram et al.,
2014; Alizadeh et al., 2015). Scar tissues produce many kinds
of extracellular matrix components with growth-promoting
properties, fibronectin and laminin, indicating possible repairing
role of astrogliosis after CNS damage (Silver and Miller, 2004). In
early phase, astrogliosis is a defense response of CNS to minimize
and repair primary damage, including isolation of intact tissue
from secondary lesion, maintenance of favorable environment
for surviving neurons and generation of permissive substrates for
neurite elongation (Karimi-Abdolrezaee et al., 2010).

However, after injury to the nervous system, high upregulation
of CSPGs occurs in the glial scar. In addition, CSPGs exert mostly
inhibitory effects and can hinder regeneration of axons across

TABLE 1 | American Spinal Cord Injury Association impairment scale (AIS).

Grade Type of
Injury

Description of injury

A Complete No Sensory or Motor Function is preserved in the
Sacral Segments S4-S5

B Sensory
incomplete

Sensory but not Motor Function is preserved
below the neurological level and includes the
Sacral Segments S4-S5,
and
No Motor Function is preserved more than three
levels below the Motor Level on either side of the
body

C Motor
incomplete

Motor Function is preserved below the
Neurological Level
and
More than half of key muscle functions below the
Neurological Level of Injury have a muscle grade
less than 3 (Grades 0–2)

D Motor
incomplete

Motor Function is preserved below the
neurological level
and
At least half (half or more) of key muscle functions
below the NLI have a muscle grade ≥ 3

E Normal If sensation and motor function as tested with the
ISNCSCI are graded as normal in all segments
and the patient had prior deficits
Then the AIS Grade is E.

lesions in chronic SCI (Avram et al., 2014; Silver and Silver, 2014).
Despite these reports, some article revealed that tissues that
strongly express CSPGs do not always exclude the entry of axons
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(Oakley and Tosney, 1991; Yaginuma and Oppenheim, 1991;
Bandtlow and Zimmermann, 2000). In other papers reported
that CSPGs coincides with developing axon pathways (Sheppard
et al., 1991; Bicknese et al., 1994). Furthermore, several studies
suggest that CSPG promote rather than inhibit neurite outgrowth
(Streit et al., 1993).

It is still controversial whether scar-forming astrocytes
are primary producing CSPGs. Some articles reported that
ablating CSPG-producing cell types, astrocytes and NG2-
OPCs, failed to improve axonal regeneration (Kuchibhotla
et al., 2009; Filous et al., 2014; Anderson et al., 2016). Thus,
directly targeting CSPGs would be a better choice than the
ablation of particular CSPG-producing cell types for therapeutic
interventions to regulate CSPGs.

It is still controversial about the CSPGs effect, however,
CSPGs are recognized mostly inhibitory effects and can
hinder regeneration of axons across lesions in chronic SCI
environment. Chondroitinase ABC (ChABC) is a bacterial
enzyme that can effectively degrade CSPGs, including NG2
and was shown to promote functional gains after intrathecal
administration in mouse models (Bradbury et al., 2002; Jones
et al., 2002). Additional evidence has also shown that combined
administration of ChABC with NPCs enhances transplant
survival and host axon remyelination (Ikegami et al., 2005;
Carter et al., 2011). A more recent study of large-scale CSPG
digestion by direct lentiviral ChABC gene delivery into rat spinal
cords resulted in a reduced volume of cavitation and enhanced
axon preservation. The treated rats also displayed improved
sensorimotor function on behavioral and electrophysiological
assessments (Bartus et al., 2014). We also reported that ChABC
administration reduced chronic injury scar and significantly
improved NSCs derived from induced pluripotent stem cell
(iPSC-NSC) survival with clear differentiation into all three
neuroglial lineages. ChABC pretreatment can ‘unlock’ the
chronically injured spinal cord to produce a microenvironment
conducive to regenerative iPSC therapy (Suzuki et al., 2017).
The optimal delivery modality for exciting therapy with ChABC
remains to be elucidated. In the future, chronic SCI research
may focus on the exploration of human CNS-specific analogs of
ChABC and their development.

CHARACTERISTICS OF NEURAL
STEM/NEURAL PROGENITOR CELLS

Neural stem cells are self-renewing, multipotent cells that
initially produce the radial glial progenitor cells that generate
the neurons and glia of all animal nervous systems during
embryonic development (Barnabé-Heider et al., 2010; Beattie
and Hippenmeyer, 2017). Some neural progenitor stem cells
remain in highly restricted regions of the adult vertebrate brain
to produce neurons throughout life (Clarke et al., 2000). NSCs
are primarily characterized by their capacity to differentiate into
neurons, astrocytes, and oligodendrocytes.

Neural progenitor cells are the progenitor cells of the CNS
that produce the glial and neuronal cell types present in the
CNS. NPCs do not generate non-neural cells. Rather, NPCs can

be generated in vitro by the differentiation of embryonic stem
cells or iPSCs, which are derived from adult fibroblasts or blood
cells (Takahashi and Yamanaka, 2006; Yamanaka, 2012). NPCs
may differentiate into neural cells after transplantation into the
injured spinal cord to replace lost or damaged cells, provide
trophic support, restore connectivity, and facilitate regeneration
(Ruff et al., 2012; Suzuki et al., 2017).

Neural stem cells can be derived from various regions
along the neuroaxis during embryonic development and in
adult life (Salewski et al., 2012). They have been isolated
from both the subependymal zone of the adult mammalian
brain and the ependymal and non-ependymal regions of
adult mammalian spinal cord. Single adult NSCs can be
isolated in vitro in the presence of growth factors such as
epithelial growth factor (EGF) and fibroblast growth factor
(FGF) that enable the formation and proliferation of clonally
derived free-floating colonies. To promote the differentiation
and survival of cellular subpopulations in vitro, they can be
exposed to bone morphogenetic proteins to produce astrocytes
(Salewski et al., 2012); insulin-like growth factor-I, interleukin-1,
and neuregulin-1 to generate oligodendrocytes; and neurogenin-
2 to produce neurons (Salewski et al., 2012).

In the terminology used here, NSCs are multipotent cells
that can self-renew and proliferate without limit to produce
progeny cells that terminally differentiate into neurons, astrocytes
and oligodendrocytes. The non-stem cell progeny of NSCs are
referred to as NPCs. In contrast to NSCs, NPCs have the
capacity to proliferate and differentiate into more than one cell
type. Thus, they can be unipotent, bipotent, or multipotent
(Salewski et al., 2012). Unlike those of a stem cell, distinguishing
features of a NPC are its limited proliferative ability and inability
of self-renewal.

CELL-BASED THERAPIES USING
NEURAL STEM/NEURAL PROGENITOR
CELLS IN CHRONIC SPINAL CORD
INJURY

The two main aims of cell-based treatment for chronic
SCI are replacing lost or injured cells such as neurons
and oligodendrocytes and providing the cells with a
microenvironment that supports or enhances the ability of
cells within a lesion to provide neuroprotection and promote
regeneration. NSCs/NPCs have the ability to replace the lost cells
and remyelinate axons at the injury site and also to provide them
with supportive growth and neuroprotective factors (Courtine
et al., 2008; Lu et al., 2012; Salewski et al., 2012; Ahuja and
Fehlings, 2016; Ahuja et al., 2017; Suzuki et al., 2017).

NSCs/NPCs could differentiate into neurons,
oligodendrocytes and astrocytes. Grafted NSCs/NPCs survived
in chronic SCI lesion, reduced cavity and promoted axonal
regrowth (Lu et al., 2012; Salewski et al., 2012; Suzuki
et al., 2017). In addition, differentiated oligodendrocytes
promoted the remyelination of axons (Salewski et al., 2012).
Differentiated motor neurons and interneurons made new
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neuronal circuits between host and grafted cells to make new
synaptic connections (Suzuki et al., 2017). Also differentiated
astrocytes supported to provide the new vascularization and
supportive growth/neuroprotective factors (Ahuja and Fehlings,
2016; Ahuja et al., 2017).

PubMed/Medline Search to Identify
Experimental and Clinical Studies
Describing Treatment of Chronic Spinal
Cord Injury With Neural Stem/Neural
Progenitor Cells
The PubMed/Medline database was searched in August 2021
[search strategy: “(neural stem cell) OR (neural progenitor cell)
AND (chronic SCI)”]. Articles on cell transplantation within
4 weeks after SCI were excluded from the analysis, as were articles
on other forms of cell transplantation without NSCs/NPCs and
those lacking outcomes describing motor functional recovery. In
total, 184 articles were initially identified, and 33 articles were
ultimately selected based on the above criteria. There were 10
review articles, 16 basic research articles, and 6 articles on clinical
transplantation (Tables 2, 3, 4).

Neural Stem/Neural Progenitor Cells
Treatment for Chronic Spinal Cord Injury
in Experimental Models
We show the characteristics of the included experimental studies
for chronic SCI in Table 2. Several articles reported on the
neurological changes occurring following the transplantation
of NSCs/NPCs only in rat and mice models of chronic SCI
(Kusano et al., 2010; Salazar et al., 2010; Cheng et al., 2016;
Tashiro et al., 2016; Suzuki et al., 2017; Nori et al., 2018;
Okubo et al., 2018; Jones et al., 2021). However, the other
articles revealed no significant recovery of locomotor function
(Kumamaru et al., 2013; Nutt et al., 2013; Ruzicka et al., 2019;
Martín-López et al., 2021).

The combinatory and synergic effects of other treatments with
NSCs/NPCs transplantation were also reported. Rehabilitation
was the most common combinatory treatment used clinically.
Treadmill exercise combined with NPC transplantation was
found to promote neuronal differentiation and regeneration and
maturation of neural circuits. Further, it enhanced the recovery
of motor and sensory functions even when the intervention took
place during the chronic phase (Tashiro et al., 2016). Several
previous articles reported on the use of a scaffold with cell
transplantation: laminin-coated hydrogel and the NeuroRegen
scaffold (Nutt et al., 2013; Ruzicka et al., 2019). Combinatory
scaffold use reduced cavitation and supported graft-cell survival
(Ruzicka et al., 2019).

Some papers revealed that NSCs/NPCs grafts reduced cyst
volume and promoted axon regrowth through the synergic effect
of combining cell grafts with fibroblasts or neuroepithelial-like
stem cells (Pfeifer et al., 2006; Xu et al., 2021).

Synergic treatment with the neurotrophic factors EGF, bFGF,
PDGF-AA, and NT-3 along with NSCs/NPCs transplantation

was also reported and led to partial improvement of hindlimb
function (Karimi-Abdolrezaee et al., 2010; Kusano et al., 2010).

The most promising combinatory treatment reported
in these articles was the injection of ChABC prior to
NSCs/NPCs transplantation. ChABC pretreatment work to
‘unlock’ the chronically injured spinal cord to produce a
microenvironment conducive to regenerative NSC/NPC therapy
(Karimi-Abdolrezaee et al., 2010; Suzuki et al., 2017; Nori
et al., 2018). In addition, all three of these papers reported
partial motor functional recovery following ChABC and
NSCs/NPCs treatment.

One article revealed that the sites of cell injection were quite
important to regenerate damaged spinal cord (Cheng et al., 2016).
Among the articles we reviewed that reported neurologically
functional recovery, all reported transplantation rostral and/or
distal to the site of the SCI epicenter (Kusano et al., 2010; Salazar
et al., 2010; Cheng et al., 2016; Suzuki et al., 2017; Nori et al., 2018;
Okubo et al., 2018; Jones et al., 2021).

These articles indicate that NSCs/NPCs injection sites and
the synergic effects of ChABC and neurotrophic factors are
important factors leading to motor functional recovery following
chronic SCI as a combinatory treatment with NSCs/NPCs
transplantation. Even if only NSCs/NPCs transplantation is
performed, it can lead to and support histological regeneration
occurring at the site of chronic SCI.

Neural Stem/Neural Progenitor Cells
Treatment for Chronic Spinal Cord Injury
in Clinical Studies
We show the characteristics of the included clinical studies for
chronic SCI in Table 3. The transplanted NSCs/NPCs were
autologous NSI-566 and HuCNS-SC R© cells (Moviglia et al., 2006,
2009; Ghobrial et al., 2017; Curtis et al., 2018; Levi et al., 2018,
2019). Cell sources were bone marrow mesenchymal stem cells
(MSCs) and cells from the human spinal cord and brain. All of
the articles revealed that transplantation of NSCs/NPCs in the
site of the patients’ SCI can be performed safely. In addition,
injection techniques including free-hand transplantation and
infusion in the feeding artery were safe and feasible. One
case report showed that five of eight patients evolved from
ASIA (American Spinal Injury Association) class A to ASIA D
(Moviglia et al., 2009). Injection of HuCNS-SC R© cells was also
reported to lead to improvement in overall mean functional
outcome measures.

However, several critical points are still remain about the
NSCs/NPCs source, safety, administration route and the optimal
time-window of efficacy in clinical (Tsuji et al., 2019; Nagoshi
et al., 2020; Suzuki and Sakai, 2021; Table 5). Ethical concerns
still remain the use of NSCs/NPCs harvested from fetal or
embryonic stem cells (Nagoshi et al., 2020). iPSCs is one of
the ideal NSCs/NPCs source, however, still have the genetic
and epigenetic abnormalities and subsequent tumorigenicity
(Nagoshi et al., 2020). We have several administration route
for cell grafts, intramedullary, intrathecal, intraventricular and
intravascular. Each administration still have the advantages
and disadvantages in clinical (Yamazaki et al., 2020). Many
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TABLE 2 | Characteristics of included experimental studies for chronic SCI.

Authors, year Study title Timing of cell
transplantation

Location of
injury

SCI model Species Cell therapy Cell source Route of
administration

Combination Locomotion test Result

Tashiro et al.,
2016

Functional Recovery from
Neural Stem/Progenitor Cell
Transplantation Combined with
Treadmill Training in Mice with
Chronic Spinal Cord Injury

7 Weeks after SCI Thoracic Severe contusive injury
IH Impactor

Mice NSCs/NPCs Fetal brain,
Mouse

Transplant into
injured spinal cord

Treadmill training
Basso Mouse Scale
(BMS)
von Frey
monofilament test
Hargreaves plantar
test

Enhanced the recovery
of motor
and sensory
functions

Suzuki et al.,
2017

Neural stem cell mediated
recovery is enhanced by
Chondroitinase ABC
pretreatment in chronic cervical
spinal cord injury

8 Weeks after SCI Cervical Moderate to severe
injury
Clip compression
injury

Mice NSCs/NPCs iPSCs, Mouse Transplant into
1 mm away from

injured spinal cord

ChABC BMS
CatWalk digital gait
analysis
Forelimb grip
strength meter
Inclined plane test

Motor functional
recovery of upper limbs
New synaptic formation

Ruzicka et al.,
2019

The Effect of iPS-Derived
Neural Progenitors Seeded on
Laminin-Coated
pHEMA-MOETACl Hydrogel
with Dual Porosity in a Rat
Model of Chronic Spinal Cord
Injury

5 Weeks after SCI Thoracic Balloon compression
injury

Rat NPCs iPSCs, Human Transplant into
injured spinal cord

Laminin-coated
hydrogel

Basso, Beattie, and
Bresnahan
(BBB) open field test
Plantar test

No significant recovery
of
locomotor function
Reduced cavitation and
graft
cell survived

Cheng et al.,
2016

Local versus distal
transplantation of human neural
stem cells following chronic
spinal cord injury

4 Weeks after SCI Thoracic Moderate contusion
injury
The Multicenter Animal
Spinal Cord Injury
Study Impactor

Rat NSCs iPSCs, Human Transplant into
injured spinal cord

Transplant into
distally site from

SCI
Intrathecal

None BBB open field test Functional
improvement:
injected distally to
the site of injury

Nori et al., 2018 Human Oligodendrogenic
Neural Progenitor Cells
Delivered with Chondroitinase
ABC Facilitate Functional Repair
of Chronic Spinal Cord Injury

7 Weeks after SCI Thoracic Moderate to severe
injury
Clip compression
injury

Rat NSCs/NPCs Directly
reprogrammed
NPCs, Human

Intrathecal ChABC BBB open field test
von Frey
monofilament test
CatWalk digital gait
analysis

Motor functional
recovery
Remyelination

Salazar et al.,
2010

Human neural stem cells
differentiate and promote
locomotor recovery in an early
chronic spinal cord injury
NOD-scid mouse model

30 days after SCI Thoracic Contusion injury
IH device

Mice NSCs Fetal brain,
Human

Transplant into
both rostral and

caudal to the
injury epicenter

None BMS
CatWalk digital gait
analysis
von Frey
monofilament test

Functional improvement

Nutt et al.,
2013

Caudalized human
iPSC-derived neural progenitor
cells produce neurons and glia
but fail to restore function in an
early chronic spinal cord injury
model

4 Weeks after SCI Cervical Contusion injury
Fourth generation
Ohio State Injury
Device

Rat NPCs iPSCs, Human Transplant into
injured spinal cord

NeuroRegen
scaffold Limb-use

asymmetry test
Forelimb reaching
task
von Frey
monofilament test

No significant
improvement in forelimb
function or induced
allodynia

Kusano et al.,
2010

Transplanted neural progenitor
cells expressing mutant NT3
promote myelination and partial
hindlimb recovery in the chronic
phase after spinal cord injury

6 Weeks after SCI Thoracic Microvascular clip
injury

Rat NPCs secreting
Neutrotrophin-3

Fetal brain, Rat Transplant around
the cavity

Neutrotrophin-3 BBB open field test Enhanced myelin
formation
Partial improvement of
hindlimb function

Karimi-
Abdolrezaee
et al., 2010

Synergistic effects of
transplanted adult neural
stem/progenitor cells,
chondroitinase, and growth
factors promote functional
repair and plasticity of the
chronically injured spinal cord

6 Weeks after SCI Thoracic Clip compression
injury

Rat NSCs/NPCs Fetal brain,
Mouse

Transplant into
both rostral and

caudal to the
injury epicenter

ChABC, EGF,
bFGF, PDGF-AA BBB open field test

Grid-walking
analysis
von Frey
monofilament test

Promoted the axonal
integrity and plasticity of
the corticospinal tract
and enhanced the
plasticity of descending
serotonergic pathways.

(Continued)
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TABLE 2 | (Continued)

Authors, year Study title Timing of cell
transplantation

Location of
injury

SCI model Species Cell therapy Cell source Route of
administration

Combination Locomotion test Result

Dagci et al.,
2009

Alterations in the expression of
the apurinic/apyrimidinic
endonuclease-1/redox factor-1
(APE/ref-1) and DNA damage in
the caudal region of acute and
chronic spinal cord injured rats
treated by embryonic neural
stem cells

4 Weeks after SCI Thoracic Selectively ablated
only the lateral white
matter tracts and
a minimal portion of
the dorsal and ventral
gray matter.

Rat NSCs Embryo, Rat Transplant into
injured spinal cord

None BBB open field test Decreased DNA
damage levels

Pfeifer et al.,
2006

Autologous adult rodent neural
progenitor cell transplantation
represents a feasible strategy to
promote structural repair in the
chronically injured spinal cord

8 Weeks after SCI Cervical Dorsal corticospinal
tract were transected
using a tungsten wire
knife

Rat Autologous NPCs Adult Brain, Rat Transplant into
injured spinal cord

Fibroblasts None Promoted axon
regrowth and tissue
replacement in SCI

Jones et al.,
2021

Human Embryonic Stem
Cell-derived Neural Crest Cells
Promote Sprouting and Motor
Recovery Following Spinal Cord
Injury in Adult Rats

7 Weeks after SCI Cervical Lateral funiculus and
adjacent gray matter
were transected

Rat Neural crest cells ES cells Transplant into
injured spinal cord

None Vertical cylinder test Promoted remodeling of
descending raphespinal
projections and
contributed to the
partial recovery of
forelimb motor function

Kumamaru
et al., 2013

Therapeutic activities of
engrafted neural
stem/precursor cells are not
dormant in the chronically
injured spinal cord

12 Weeks after
SCI

Thoracic Moderate contusion
injury
Infinite Horizons
Impactor Precision
Systems
Instrumentation

Mice NSCs/NPCs Embryo, Mouse Transplant into
both rostral and

caudal to the
injury epicenter

None
BMS
Grip walk test
Footprint analysis

No significant recovery
of locomotor function
Differentiated into
neurons/
oligodendrocytes

Okubo et al.,
2018

Treatment with a
Gamma-Secretase Inhibitor
Promotes Functional Recovery
in Human iPSC- Derived
Transplants for Chronic Spinal
Cord Injury

6 Weeks after SCI Thoracic Contusive injury
IH impactor

Mice NSCs/NPCs iPSCs, Human Transplant into
injured spinal cord

Gamma-
secretase
inhibitor

BMS
Rotarod testing
Treadmill gait
analysis

Promoted and
maintained motor
function recovery
Induced red myelination
and promoted axonal
regeneration

Xu et al., 2021 Transplantation of Human
Neural Precursor Cells
Reverses Syrinx Growth in a
Rat Model of Post-Traumatic
Syringomyelia

10 Weeks after
SCI

Thoracic IH spinal cord
impactor

Rat NSCs/NPCs iPSCs, Human Transplant into
injured spinal cord Neuroepithelial-

like stem
cells

BBB open field test
KSAT for swim
performance
Beam walk
assessing the ability
to traverse narrow
square beams
Grid walk counting
misplaced steps

Reduced cyst volumes

Martín-López
et al., 2021

Modeling chronic cervical spinal
cord injury in aged rats
for cell therapy studies

4 Weeks after SCI Cervical Contusion injury
Fourth generation
Ohio State Injury
Device

Rat NPCs iPSCs, Human Transplant into
injured spinal cord

None BBB open field test Grafted cells survived
and did not cause
tumors
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TABLE 3 | Characteristics of included clinical trials for chronic SCI.

Authors,
year

Study title Timing of cell
transplantation

Location of
injury

Cell therapy Cell source Route of
administration

Combination Result

Curtis
et al., 2018

A First-in-Human, Phase I
Study of Neural Stem Cell
Transplantation for Chronic

Spinal Cord Injury

Chronic Th2-T12 NSCs (NSI-566) Human spinal
cord

Transplant into injured
spinal cord

NSI-566 transplanted in the
spinal injury site of patients can

be performed safely.

Levi et al.,
2019

Clinical Outcomes from a
Multi-Center Study of Human

Neural Stem Cell
Transplantation in Chronic
Cervical Spinal Cord Injury

Chronic
(4–24 months)

C5-7 NSCs
(HuCNS-SC) R©

Human brain Transplant into injured
spinal cord

Intramedullary
free-hand (manual)

transplantation

Cohorts I and II demonstrated a
trend toward Upper Extremity

Motor Score (UEMS) and
Graded Redefined Assessment

of Strength, Sensibility, and
Prehension (GRASSP) motor

gains in the treated
participants.

Levi et al.,
2018

Emerging Safety of
Intramedullary Transplantation
of Human Neural Stem Cells in
Chronic Cervical and Thoracic

Spinal Cord Injury

Chronic C5-7
Th2-T12

NSCs
(HuCNS-SC) R©

Human brain Transplant into injured
spinal cord

Intramedullary
free-hand (manual)

transplantation

A manual injection technique
are safe and feasible.

Ghobrial
et al., 2017

Human Neural Stem Cell
Transplantation in Chronic
Cervical Spinal Cord Injury:

Functional Outcomes at
12 Months in a Phase II Clinical

Trial

Chronic Cervical/
Thoracic

NSCs
(HuCNS-SC) R©

Human brain Transplant into injured
spinal cord

Intramedullary
free-hand (manual)

transplantation

Improvements in overall mean
functional outcomes measures.

Moviglia
et al., 2009

Case report on the clinical
results of a combined cellular
therapy for chronic spinal cord

injured patients

Chronic Cervical/
Thoracic

Autologous NSCs Feeding artery infusion Bone marrow
mononuclear cells

Effector T cells

Five of eight patients evolved
from ASIA A to ASIA D.

Moviglia
et al., 2006

Combined protocol of cell
therapy for chronic spinal cord
injury. Report on the electrical
and functional recovery of two

patients

Chronic Cervical/
Thoracic

Autologous NSCs BMSCs Feeding artery infusion Neurorehabilitation Effective for the repair of
chronic SCI.
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TABLE 4 | Included review articles on chronic SCI.

Authors, year Study title

Yousefifard
et al., 2016

Neural stem/progenitor cell transplantation for spinal cord
injury treatment; A systematic review and meta-analysis

Platt et al.,
2020

Stem Cell Clinical Trials in Spinal Cord Injury: A Brief Review
of Studies in the United States

Jin et al., 2016 Transplantation of neural progenitor cells in chronic spinal
cord injury

Vancamp et al.,
2020

Thyroid Hormone and Neural Stem Cells: Repair Potential
Following Brain and Spinal Cord Injury

Lane et al.,
2017

Improving the therapeutic efficacy of neural progenitor cell
transplantation following spinal cord injury

Curt, 2012 Human neural stem cells in chronic spinal cord injury

Tsuji et al.,
2019

Concise Review: Laying the Groundwork for a
First-In-Human Study of an Induced Pluripotent Stem
Cell-Based Intervention for Spinal Cord Injury

Dalamagkas
et al., 2018

Translational Regenerative Therapies for Chronic Spinal
Cord Injury

Nagoshi et al.,
2020

Regenerative therapy for spinal cord injury using iPSC
technology

Suzuki and
Sakai, 2021

Current Concepts of Stem Cell Therapy for Chronic Spinal
Cord Injury

researchers have investigated the phases to determine the
optimal time-window of efficacy for NSCs/NPCs therapy in
animals (Tetzlaff et al., 2011). For grafted cell survival, the
microenvironment in chronic phase was the most difficult
one. However, the clinical study does not necessarily require
double-arm study (Oh et al., 2016). Several complications
following stem cell grafts in clinical were reported that transient
neuropathic pain, transient deterioration in sensorimotor
symptoms, subarachnoid hemorrhage, cerebrospinal fluid
leakage, subcutaneous seroma, fever, transient hypertension,
vomiting, urinary tract infection, abnormal blood profiles,
pulmonary thromboembolism and general body ache
(Jeong et al., 2020).

There are still additional limitations of NSCs/NPCs treatment
for chronic SCI in clinical studies. We could have only partial
functional recovery and there were variability in both anatomical
and functional outcomes in several articles (Lane et al., 2017;
Table 5). For example, preclinical trials using HuCNS-SC R© cells
revealed no evidence of efficacy (Anderson et al., 2017). They
mentioned that the data raised questions about the development
and validation of potency/comparability assays for clinical testing
of cell products.

Several critical points are still remain, however, NSCs/NPCs
treatment has the promising attempts in treatment for chronic
SCI from the many kinds of preclinical trials (Kusano et al.,
2010; Salazar et al., 2010; Kumamaru et al., 2013; Nutt et al.,
2013; Cheng et al., 2016; Tashiro et al., 2016; Suzuki et al., 2017;
Nori et al., 2018; Okubo et al., 2018; Ruzicka et al., 2019; Jones
et al., 2021; Table 5). Grafted NSCs/NPCs survived in chronic
SCI lesion and differentiated into neuronal lineages. The cell
grafts also reduced cyst volume and promoted axon regrowth,
remyelination and neural pathway plasticity. In addition, these
therapeutic effects led to pathophysiological regeneration and
motor/sensory functional recovery.

TABLE 5 | Promising attempts, limitations and discussing points in NSC/NPC
treatment for chronic SCI.

Promising
attempts

References Limitations/
Discussion points

References

Improvement of
functional outcome

Moviglia et al.,
2009; Kusano
et al., 2010;
Karimi-
Abdolrezaee
et al., 2010;
Salazar et al.,
2010; Cheng
et al., 2016;
Tashiro et al.,
2016; Suzuki
et al., 2017;
Nori et al.,
2018; Okubo
et al., 2018;
Jones et al.,
2021

Partial functional
recovery

Tetzlaff et al.,
2011; Oh et al.,
2016;
Anderson et al.,
2017; Lane
et al., 2017;
Deng et al.,
2018; Tsuji
et al., 2019;
Yamazaki et al.,
2020; Nagoshi
et al., 2020;
Suzuki and
Sakai, 2021

Grafted NSC/NPC
survive in chronic
SCI lesion

Partial control of
directing cell
differentiation

Differentiate into
neuronal lineages
-Neuron,
Oligodendrocyte
and Astrocyte-

Limitation of functional
integration
with the host neural
circuitry

Promotion of axon
regrowth

Variability in both
anatomical and
functional outcomes

Reduction of cyst
volume Safety in clinical trials

(NSC/NPC source)

Promotion of
Neural Pathway
Plasticity

Pfeifer et al.,
2006; Ruzicka
et al., 2019; Xu
et al., 2021

Lack of control on the
processes
rewiring the neural new
circuits.

Remyelination Administration route
-Intramedullary,
Intrathecal,
Intraventricular and
Intravascular-

Optimal time-window of
efficacy

Issue of cost-benefit
ratio

Review Articles on Neural Stem/Neural
Progenitor Cells Treatment for Chronic
Spinal Cord Injury
We list the review articles on NSCs/NPCs treatment for
chronic SCI in Table 4. Many therapeutic approaches have
been reviewed in these articles in the attempt to treat chronic
SCI, and many studies reported that cellular transplantation
offered the greatest promise in reconstituting the architecture
of the damaged spinal cord (McDonald et al., 1999; Curt, 2012;
Jin et al., 2016; Yousefifard et al., 2016; Lane et al., 2017;
Dalamagkas et al., 2018; Tsuji et al., 2019; Nagoshi et al., 2020;
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Platt et al., 2020; Vancamp et al., 2020; Suzuki and Sakai,
2021). Most of the ongoing clinical trials are targeting acute
to subacute SCI; however, several are including the chronic
phase as well (Table 4). Some of the articles showed that
the grafted NSCs/NPCs had a strong capacity to differentiate
into neural cells and that they retained the secretory function
of growth factors and regenerative molecules. However, two
articles pointed out that the recovery of locomotor function
was quite difficult following the transplantation of NSCs/NPCs
only (Nagoshi et al., 2020; Suzuki and Sakai, 2021). Several
review articles mentioned that combinatory therapy could be
an appropriate strategy with the use of drug administration
and rehabilitation, in addition to NSCs/NPCs transplantation
in chronic SCI (Tsuji et al., 2019; Nagoshi et al., 2020;
Suzuki and Sakai, 2021).

Some papers reviewed safety issues and their resolution for
NSCs/NPCs derived from human iPSCs (Tsuji et al., 2019;
Nagoshi et al., 2020; Table 5). The primary safety issue of
concern was the risk of tumor formation (Tsuji et al., 2019;
Nagoshi et al., 2020). One article listed five key issues involved
in improving the safety of NSCs/NPCs derived from human
iPSCs. First, not to use genetically unstable human iPSC;
second, to prevent contamination by undifferentiated pluripotent
cells; third, to prevent the transformation of progenitor cells
into tumor; fourth, to minimize the risk of proliferation of
differentiation-resistant abnormal cells; and fifth, to remove
any abnormal cells after the transplantation (Deng et al., 2018;
Tsuji et al., 2019).

Neurorehabilitation in Experimental and
Clinical Studies Following Neural
Stem/Neural Progenitor Cells Therapies
for Chronic Spinal Cord Injury
We described about SCI rehabilitation in clinical studies
on stem cell therapies using mesenchymal stem cells
and olfactory ensheathing cells (OECs) in previous article
(Suzuki and Sakai, 2021). However, only the article reported
the combinatory treatment with treadmill training and
NSCs/NPCs graft in chronic SCI in mice (Tashiro et al.,
2016; Table 2). This article reported that treadmill training
was started just after NSCs/NPCs transplantation. In addition,

they revealed that the combined therapy enhanced these
independent effects of each single therapy (Tashiro et al.,
2016). In addition, only one article mentioned about
the combinatory treatment with neurorehabilitation and
NSCs/NPCs therapy in chronic SCI in clinical study (Curtis
et al., 2018; Table 3). This clinical study reported only case
reports following NSCs/NPCs graft, the rehabilitation was not
same in each patient and not systematic neurorehabilitation
program. Therefore, it is difficult to discuss about the
efficacy of neurorehabilitation following NSCs/NPCs
treatment in chronic SCI.

In this session we would like to discuss about the timing of
rehabilitation and what kinds of rehabilitation were combined
with several stem cell therapies in chronic SCI. In the
transplantation of OECs, it was reported that the quality and
quantity of rehabilitation influenced the long-term outcome
in patients with chronic SCI (Huang et al., 2012). However,
it was not describing about the timing of rehabilitation and
what type of rehabilitation was performed (Huang et al.,
2012). To our knowledge, unfortunately, this is the only study
investigating the relationship between functional recoveries
and the sufficient/insufficient of neurorehabilitation following
stem cell treatment in chronic SCI patients (Tashiro et al.,
2021). There were several combinatory treatment of stem
cell therapy (Umbilical cord blood cell and BMSC) and
neurorehabilitation in ongoing clinical trials (NCT03979742,
NCT01354483, and NCT01393977, see footnote 1). However
these clinical trials are ongoing, therefore, these data are
not published now.

ONGOING CLINICAL TRIALS
CURRENTLY TARGETING CHRONIC
SPINAL CORD INJURY THAT USE
NEURAL STEM/NEURAL PROGENITOR
CELLS

We list the ongoing clinical trials currently targeting chronic SCI
that use NSCs/NPCs in Table 6 (see footnote 1 [accessed 20
August 2021]). All of the ongoing clinical trials were started on
the basis of the good results obtained in preclinical studies. In
chronic SCI, phase 1 and 2 studies are now ongoing to transplant

TABLE 6 | Ongoing clinical trials currently targeting chronic SCI utilizing NSC/NPCs (https://www.clinicaltrials.gov/).

Identifier Study title Phase Subjects
(participants)

Cell therapy Route of
administration

Combination

NCT04205019 Safety Stem Cells in Spinal Cord Injury Phase 1 10 Neuro-Cells
(autologous fresh stem
cell-containing product)

Intrathecal

NCT02688049 NeuroRegen ScaffoldTM Combined
With Stem Cells

for Chronic Spinal Cord Injury Repair

Phase 1
Phase 2

30 NSCs with
mesenchymal stem

cells

Transplant into injured
spinal cord

NeuroRegen scaffold

NCT01772810 Safety Study of Human Spinal
Cord-derived Neural Stem Cell

Transplantation for the Treatment of
Chronic SCI

Phase 1 8 Human spinal
cord-derived NSCs

Surgical implantation
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NSCs/NPCs using autologous fresh stem cells containing product
or MSCs. Only the NCT02688049 study is transplanting the
NeuroRegen scaffold with NSCs/NPCs.

The NCT04205019 phase 1 clinical study begun on November
14, 2020, is an open clinical trial designed to investigate the safety
of the intrathecal application of Neuro-Cells in the treatment of
patients with end-stage (i.e., chronic) traumatic complete (AISA
grade A) or incomplete (AISA grade B/C) SCI.

In the NCT02688049 phase 2 clinical study, patients with
chronic SCI (ASIA grade A) are receiving NeuroRegen Scaffold
with 10 million NSCs transplanted after localized scarring
is cleared and after surgery patients undergo comprehensive
rehabilitation, psychological, and nutritional measures. This
clinical trial was started in January 2016.

The NCT01772810 trial is a phase 1 clinical study of SCI injury
classified as AISA A in the UCSD Medical Center, Division of
Neurosurgery that initially started in August 2014. The treatment
is surgical implantation of human spinal cord-derived NSCs. The
inclusion criterion is at least 1 year but no more than 2 years from
time of injury to the time of surgery.

FUTURE CANDIDATES FOR
COMBINATORY TREATMENT WITH
NEURAL STEM/NEURAL PROGENITOR
CELLS TRANSPLANTATION FOR
CHRONIC SPINAL CORD INJURY

As previously mentioned, combinatory treatment with
NSCs/NPCs is an important factor leading to improved
recovery of locomotor function in chronic SCI. Several other
approaches were reported in the treatment of chronic SCI,
and we reviewed rehabilitation and scaffold treatment for
chronic SCI as the most promising candidates for combinatory
treatment with NSCs/NPCs.

Tissue Engineering Approaches for
Chronic Spinal Cord Injury
Several scaffolds were reported for use in bridging defects in
experimental models of chronic SCI (Austin et al., 2012; Haggerty
and Oudega, 2013; Pawar et al., 2015; Chedly et al., 2017; Koffler
et al., 2019). It was reported that anisotropic alginate hydrogel
scaffolds promoted axonal growth across chronic spinal cord
transections after scarring was removed (Huang et al., 2020).
Both electrophysiological conductivity and locomotor function
improved significantly after engraftment with this scaffold.
Transplantation of human umbilical cord-derived MSCs seeded
in collagen scaffolds reduced scar formation and promoted
functional recovery in chronic SCI (Li et al., 2017; Wang
et al., 2018). Some articles revealed the efficacy of Laminin-
Coated pHEMA-MOETACl Hydrogel (Ruzicka et al., 2019),
HPMA-RGD hydrogels (Hejcl et al., 2010), and chimeric self-
assembling nanofiber (Tavakol et al., 2016). However, these were
combined with iPSC-derived NPCs or MSCs. Three-dimensional
aligned nanofiber-hydrogel scaffolds (Nguyen et al., 2017),
self-assembling scaffolds, Taxol-modified collagen scaffolds (Yin

et al., 2021), graphene oxide scaffolds (López-Dolado et al.,
2016), and nanostructured composite scaffolds (Gelain et al.,
2011) were reported for the treatment of chronic SCI. These
articles revealed the possibility of recreating an anatomical,
structural, and histological framework that could lead to the
replacement of large hollow tissue gaps in the chronically
injured spinal cord, thus encouraging axonal regeneration and
neurological recovery.

In a clinical study, peripheral nerve grafts combined with a
chitosan-laminin scaffold were grafted in chronic SCI patients
and were reported to enhance regeneration (Amr et al.,
2014). The NeuroRegen scaffold was also reported to be
transplanted into 51 chronic complete SCI patients, resulting in
16 patients achieving expansion of their sensation level and 30
patients experiencing enhanced reflexive defecation sensation or
increased skin sweating below the injury site. Nearly half of the
patients with chronic cervical SCI developed enhanced finger
activity (Tang et al., 2021). The study also revealed that increased
finger activity, enhanced trunk stability, defecation sensation, and
recovery of autonomic neural function were observed in some
patients following transplantation of the NeuroRegen scaffold
combined with human MSCs (Zhao et al., 2017).

Rehabilitation Approaches for Chronic
Spinal Cord Injury
In this section, we review the articles that mention rehabilitative
training after chronic SCI in clinical studies. We focus on
robotic-assisted gait training (RAGT) and functional electrical
stimulation (FES) for enhancing the recovery of neuronal
plasticity as new rehabilitation approaches.

One of the challenges in neurorehabilitation targeting the
restoration of functional independence and quality of life
is recovery of the ability to plan and execute movement
again (Maier et al., 2019). Several researchers found that
RAGT in SCI patients improved the cardiorespiratory, urinary,
musculoskeletal, neuronal and somatosensory systems, due to
body compensation and neural plasticity (Fleerkotte et al., 2014;
Labruyère and van Hedel, 2014; Holanda et al., 2017; Nam
et al., 2017). A review article that included 10 trials involving
502 participants showed that the acute RAGT groups showed
significantly greater improvements in gait distance, leg strength,
and functional level of mobility and independence than the over-
ground training groups. Significantly greater improvements in
speed and balance were also observed in the chronic RAGT
group versus the group with no intervention (Nam et al., 2017).
Another systematic review showed that significant progress was
being made with robotic devices as an innovative and effective
therapy for the rehabilitation of individuals with SCI (Holanda
et al., 2017). However, Piira et al. (2019) reported in a clinical trial
that RAGT did not improve walking function in patients with
chronic incomplete SCI. Wearable powered robotic exoskeletons
allow chronic complete SCI patients to perform over-ground
walking. In addition, different exoskeleton software control of
the smoothness of the gait pattern improves functional outcome,
eliminating the relationship between anthropometric factors and
gait performance (Guanziroli et al., 2019).
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Some other papers revealed that neurorehabilitation using
a voluntary driven exoskeletal (VDE) robot improved trunk
function and voluntary contractions (Grasmücke et al., 2017;
Okawara et al., 2022). VDE training immediately improved lower
limb function and muscle activity and correct synergy control of
the lower limb muscles during gait and also increased excitability
in the primary somatosensory cortex (Sczesny-Kaiser et al., 2015;
Shimizu et al., 2017; Matsuda et al., 2018; Tan et al., 2018).

Recently, gait training using the Alternating Hybrid Assistive
Limb (HAL R©) Robot was reported. By combining gait training
using HAL-assisted and conventional gait training with physical
therapy, the ability of patients with a chronic SCI to walk may
be improved over a short period (Sczesny-Kaiser et al., 2015;
Shimizu et al., 2017; Matsuda et al., 2018; Kanazawa et al., 2019).
The potential for gait training using HAL to improve the ability
of patients with chronic severe incomplete tetraplegic SCI to walk
was also shown. HAL motion-assistive technologies contributed
to improvement in patient walking ability by facilitating proper
joint motion and loading and unloading muscle movements
(Soma et al., 2021).

A systematic review of the clinical benefits of rehabilitation
training in SCI reported that robotic-assisted treadmill training
improved lower extremity function (95% CI 3.44, 6.56) compared
with related controls, and FES also significantly increased upper
extremity independence (95% CI 0.37, 5.48) (Duan et al., 2021).

FES treatment is one of the new challenges in active
rehabilitation training for chronic SCI patients (Marquez-Chin
and Popovic, 2020). Several clinical studies reported the efficacy
of FES therapy for chronic SCI (Bajd et al., 1999; Popovic et al.,
1999, 2011; Mangold et al., 2005; Thrasher et al., 2006; Kapadia
et al., 2013, 2014). These articles reported increases in strength
and improvement in drop foot and plantar flexion after training
using a neuroprosthesis for walking after SCI (Bajd et al., 1999).
The efficacy of FES treatment to restore the ability to walk

following chronic SCI revealed significantly greater improvement
in locomotion function with FES treatment compared with
a non-FES treatment-controlled intervention (Thrasher et al.,
2006). In one recent study, a phase I randomized control trial
was conducted in the same population (chronic incomplete SCI
between C2 and T12 levels) (Kapadia et al., 2014). The efficacy
of 6 months use of the Bionic Glove was also shown to improve
upper limb function (increased power grasp and/or range of
movements) in individuals with tetraplegia resulting from SCI at
the C5–C7 level (Popovic et al., 1999). Several studies reported
improvements in grasping function or muscle strength in the
majority of 11 individuals who received FES training using a
neuroprosthesis for grasping (Popovic et al., 1999; Mangold et al.,
2005; Kapadia et al., 2013).

CONCLUSION

Currently, numerous clinical and experimental studies have
shown positive results in terms of functional improvement with
neural stem/progenitor cell treatment in chronic SCI. There
are still some inherent limitations in human chronic SCI trials.
However, promising results have been reported in basis research
and clinical trials. We are convinced that neural stem/progenitor
cell therapy will provide the drastic treatment needed for chronic
SCI patients in the near future.
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