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The tyrosine phosphatase SHP2 controls TGFβ-
induced STAT3 signaling to regulate fibroblast
activation and fibrosis
Ariella Zehender1, Jingang Huang1, Andrea-Hermina Györfi1, Alexandru-Emil Matei 1, Thuong Trinh-Minh1,

Xiaohan Xu1, Yi-Nan Li1, Chih-Wei Chen1, Jianping Lin2, Clara Dees1, Christian Beyer1, Kolja Gelse3,

Zhong-Yin Zhang2, Christina Bergmann1, Andreas Ramming1, Walter Birchmeier4, Oliver Distler5,

Georg Schett1 & Jörg H.W. Distler1

Uncontrolled activation of TGFβ signaling is a common denominator of fibrotic tissue

remodeling. Here we characterize the tyrosine phosphatase SHP2 as a molecular checkpoint

for TGFβ-induced JAK2/STAT3 signaling and as a potential target for the treatment of

fibrosis. TGFβ stimulates the phosphatase activity of SHP2, although this effect is in part

counterbalanced by inhibitory effects on SHP2 expression. Stimulation with TGFβ promotes

recruitment of SHP2 to JAK2 in fibroblasts with subsequent dephosphorylation of JAK2 at

Y570 and activation of STAT3. The effects of SHP2 on STAT3 activation translate into major

regulatory effects of SHP2 on fibroblast activation and tissue fibrosis. Genetic or pharma-

cologic inactivation of SHP2 promotes accumulation of JAK2 phosphorylated at Y570,

reduces JAK2/STAT3 signaling, inhibits TGFβ-induced fibroblast activation and ameliorates

dermal and pulmonary fibrosis. Given the availability of potent SHP2 inhibitors, SHP2 might

thus be a potential target for the treatment of fibrosis.
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F ibrotic diseases are characterized by an excessive accumu-
lation of extracellular matrix, which destroys the physiolo-
gical architecture of affected tissues and often leads to severe

dysfunction of the involved organs. Fibrotic tissue responses can
affect virtually every organ and can manifest either as local or
systemic fibrotic disease. Systemic sclerosis (SSc) is a prototypical
systemic fibrotic disease that can affect multiple organ systems
including the skin, the lungs, the heart and the intestine1.
Although most individual fibrotic diseases have a low incidence,
fibrotic tissue responses in chronic disease are highly prevalent,
constituting a major burden on modern societies accounting for
up to 45% of deaths in the developed world2,3.

Fibroblasts are key effector cells in fibrotic diseases. Upon
activation, resting fibroblasts can acquire a myofibroblast phe-
notype, which is characterized by expression of contractile pro-
teins and enhanced release of extracellular matrix4. While
myofibroblasts are only temporarily observed during physiologi-
cal tissue remodeling, they remain stably activated in fibrotic
diseases. Transforming growth factor-β (TGFβ) is a core pathway
of fibroblast activation in physiologic and pathologic conditions
and plays a central role for the persistent activation of fibroblasts
in fibrotic diseases5–7. TGFβ signaling occurs only temporarily in
wound healing, but remains active in fibrotic diseases. Fibroblasts
isolated from patients with fibrotic diseases demonstrate a TGFβ-
biased gene expression signature. Moreover, prolonged activation
of TGFβ signaling in mice by fibroblast-specific overexpression of
constitutively active TGFβ receptor type I results in a systemic
fibrotic disease, whereas targeted inhibition of TGFβ signaling
ameliorates fibrosis1. Uncontrolled and prolonged activation of
TGFβ signaling is thus sufficient and required to induce persistent
fibroblast activation and tissue fibrosis8. Although the central role
of TGFβ in the pathogenesis of fibrotic diseases is well estab-
lished, it remains still enigmatic why TGFβ signaling is not
appropriately terminated in fibrotic diseases. Identification of
central checkpoints and re-establishment of effective feedback
regulation of TGFβ signaling might offer potential targeted
therapies for fibrotic diseases.

SHP2, encoded by the PTPN11 gene, is a ubiquitously
expressed non-receptor tyrosine phosphatase (PTP). SHP2 con-
tains two N-terminal Src homology 2 (SH2) domains, a catalytic
PTP domain and a C-terminal tail with two tyrosyl phosphor-
ylation sites9. While SHP2 is normally inactive in its basal state,
binding to phosphotyrosyl residues of substrate proteins induces
conformational changes that activate its phosphatase activity10.
SHP2 plays a complex role in the regulation of multiple signaling
cascades11,12. SHP2 has been shown to modulate signaling
pathways activated by growth factors such as platelet-derived
growth factor (PDGF), epidermal growth factor (EGF), fibroblast
growth factor (FGF) and insulin-like growth factor-1 (IGF-1), by
interferons and by cytokines such as interleukin (IL)-3, IL-6,
granulocyte-macrophage colony-stimulating factor (GM-CSF), as
well as by peptide hormones such as erythropoietin (EPO) and
insulin. SHP2 participates in signal transduction of various
intracellular pathways including RAS/RAF/mitogen-activated
protein kinase (MAPK), Janus kinase/signal transducer and
activator of transcription (JAK/STAT) and phosphatidylinositol-3
(PI3) kinase pathways11–13. However, SHP2 does not only
modulate multiple pathways, but may act at multiple sites within
a single signaling pathway to modulate the signal relay. For
instance, SHP2 directly interacts with cytokine and growth factor
receptors, but also binds to a variety of signaling intermediates
such as GRB2, FRS2, JAK2, the p85 subunit of PI3 kinase, IRS1
and GAB proteins to further modulate the signaling outcome14,15.
This regulation at multiple levels enables SHP2 to generate a wide
range of diverse effects in different cellular contexts. In most
cases, SHP2-induced dephosphorylation diminishes the signaling

intensity. However, SHP2 can also promote signaling, either by
dephosphorylation of endogenous inhibitors at activating sites or
by dephosphorylation of inhibitory tyrosine phosphorylation
sites16,17. Finally, SHP2 may not only modulate signaling by
dephosphorylation of target proteins, but also in a phosphatase-
independent manner18. Altered activity of SHP2 has been
implicated in the pathogenesis of multiple diseases. Those include
the Noonan syndrome and the Leopard syndrome with inherited
mutations of the PTPN11 gene9,19. The activity of SHP2 is also
altered in various types of tumors due to acquired mutations of
PTPN11. In addition, changes in expression and activity of SHP2
have been implicated into the pathogenesis of autoimmune dis-
eases such as systemic lupus erythematosus or rheumatoid
arthritis20–22.

In our study, we aimed to characterize the role of SHP2 in SSc.
We characterize SHP2 as a molecular checkpoint of TGFβ sig-
naling. SHP2 is required for the activation of JAK2 and STAT3 by
TGFβ. Inactivation of SHP2 prevents TGFβ-induced JAK2/
STAT3 signaling, reduces fibroblast activation and ameliorates
experimental fibrosis. These findings might have translational
implications as potent inhibitors of SHP2 currently undergo
clinical evaluation in cancer.

Results
TGFβ induces SHP2 activity. To investigate the role of SHP2 in
the pathogenesis of SSc, we first analyzed the expression pattern
of SHP2 in skin biopsies of SSc patients and healthy controls. The
messenger RNA (mRNA) levels of SHP2 were modestly but sta-
tistically significantly decreased in fibrotic skin of SSc patients
compared to matched healthy individuals (Fig. 1a). This down-
regulation was confirmed by immunohistochemistry (Fig. 1b) and
immunofluorescence staining (Fig. 1c). Double staining with the
fibroblast marker prolyl-4-hydroxylase-β (P4Hβ), the endothelial
marker CD31 and the leukocyte marker CD45 demonstrated that
fibroblasts account for most of the SHP2 expression in the dermis
and that SSc fibroblasts express reduced levels of SHP2 compared
to fibroblasts in healthy skin (Fig. 1c). Quantification of the
staining further confirmed the decrease of SHP2 in SSc fibroblasts
compared to those in healthy skin (Fig. 1c). The mRNA (Fig. 1d)
and protein levels (Fig. 1e) of SHP2 were also decreased in cul-
tured SSc fibroblasts as compared to fibroblasts from healthy
individuals. The expression of Shp2 was also modestly down-
regulated in murine models of SSc. The mRNA and protein levels
of Shp2 were decreased by 35–45% in the skin of bleomycin-
challenged mice and in TSK1 mice. Co-staining of Shp2 with
vimentin demonstrated reduced expression of Shp2 in fibroblasts
in fibrotic murine skin (Supplementary Fig. 1a–b).

We next investigated the molecular mechanisms underlying
the decreased expression of SHP2 in fibrotic tissues. As activation
of TGFβ signaling is a common denominator of fibrotic
conditions, we analyzed potential effects of TGFβ on SHP2
expression. Indeed, stimulation of human fibroblasts with
recombinant TGFβ reduced the mRNA and protein levels of
SHP2 with maximal effects after 24 h and 72 h, respectively
(Fig. 2a, b). Furthermore, activation of TGFβ signaling by
overexpression of a constitutively active TGFβ receptor type I
(TBRICA) downregulated Shp2 mRNA and protein levels in
murine skin (Fig. 2c, d). In contrast, inhibition of TGFβ signaling
by treatment with the selective TBRI inhibitor SD-208 prevented
the downregulation of Shp2 in experimental fibrosis (Fig. 2e–h).

We next investigated the effects of TGFβ on SHP2 activity
using phosphatase assays. In contrast to its inhibitory effects on
SHP2 expression, TGFβ increased SHP2 activity in human
dermal fibroblasts (Fig. 2i). Stimulation of SHP2 activity by TGFβ
was observed as early as within 5 min and reached a plateau
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Fig. 1 Decreased expression of SHP2 in SSc. a The mRNA levels of SHP2 are significantly reduced in SSc skin as compared to healthy skin (n= 7).
b Immunohistochemistry of SHP2 in SSc skin and matched healthy controls. Representative images are shown at 200- and 1000-fold magnification.
c Immunofluorescence staining of SHP2 with co-staining for the fibroblast marker P4Hβ, the endothelial cell marker CD31 and the leukocyte marker CD45,
and DAPI. SSc fibroblasts demonstrated a reduced staining for SHP2 compared to healthy control. Representative images are shown at 400-fold
magnification. Immunofluorescence pictures were processed to generate Voronoi tessellated pictures amenable to computational simulation.
Quantification of SHP2 staining intensity (n= 5) and of SHP2-positive cells (n= 5). d, e The mRNA (n= 5) (d) and protein level (n= 4) (e) of SHP2 are
decreased in cultured SSc fibroblasts. Horizontal scale bar, for all images, 500 μm. All data are presented as median ± s.e.m. The p values are expressed as
follows: 0.05 > p > 0.01*; 0.01 > p > 0.001**; p < 0.001***. Significance was determined by Mann–Whitney test. SSc: systemic sclerosis, Healthy: healthy
individual, int.: intensity
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between 30 min and 6 h. The less pronounced upregulation of
SHP2 phosphatase activity by TGFβ at later time points parallels
the inhibitory effects of TGFβ on SHP2 expression and may thus
result from reduced SHP2 levels. Activation of TGFβ also
stimulated Shp2 activity in vivo as demonstrated by increased
Shp2 activity in the skin of mice overexpressing TBRICA as
compared to control mice (Fig. 2i).

Shp2 regulates TGFβ-induced fibroblast activation. To inves-
tigate the functional effects of decreased Shp2 levels, we knocked

out Shp2 by infecting dermal fibroblasts from Shp2fl/fl mice with
AdCre (Fig. 3a). Knockout of Shp2 ameliorated TGFβ-induced
myofibroblast differentiation with reduced mRNA and protein
levels of α-smooth muscle actin (α-SMA) and impaired formation
of stress fibers (Fig. 3b–e). The induction of Col1a1 mRNA and of
collagen protein by TGFβ was also reduced in Shp2-deficient
fibroblasts (Fig. 3f, g).

Knockout of SHP2 ameliorates fibrosis. To generate mice with
fibroblast-specific, tamoxifen-inducible deletion of Shp2, we
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crossbred mice harboring Shp2 alleles flanked by loxP sites
(Shp2fl/fl) with mice expressing CreER under the control of a
tamoxifen-inducible, fibroblast-specific type I collagen promoter
(Col1a2-CreER)8. In the absence of fibrotic stimuli, mice with
fibroblast-specific knockout of Shp2 (referred to as Shp2 Fib KO)
did not show an overt phenotype and the skin architecture and
the collagen content were comparable to Shp2fl/flxCol1a2-CreER
mice injected with corn oil (referred to as control mice).

However, Shp2 Fib KO mice were protected from experimental
skin fibrosis in different mouse models. Fibroblast-specific
knockout of Shp2 ameliorated TBRICA-induced fibrosis with
reduced dermal thickening, decreased myofibroblast counts and
lower hydroxyproline content upon overexpression of TBRICA as
compared to control mice (Fig. 4a). Shp2 Fib KO mice were also
protected from bleomycin-induced skin fibrosis as an
inflammation-driven model of fibrosis with decreased dermal
thickening, impaired myofibroblast differentiation and reduced
hydroxyproline content as compared to control littermates
(Fig. 4b).

TSK1 mice represent a genetic model of fibrosis with
endogenous, TGFβ-dependent activation of fibroblasts.
Fibroblast-specific knockout of Shp2 reduced the hypodermal
thickening, the hydroxyproline content and the myofibroblast
counts in the TSK1 model (Fig. 4c).

Knockout of Shp2 inhibits JAK2/STAT3 signaling. SHP2 has
been shown to regulate angiotensin-II-induced activation of JAK/
STAT signaling in vascular smooth muscle cells4, mesangial
cells23 and hepatocellular carcinoma cells24. The effects of SHP2
on JAK/STAT have been shown to be highly context and/or cell
type dependent: while SHP2 inhibits JAK/STAT signaling in
leukocytes under inflammatory conditions, e.g., upon stimulation
with IL-613,25, it promotes JAK/STAT signaling in mesenchymal
cells under non-inflammatory conditions, e.g., upon stimulation
with angiotensin26,27. JAK2 and STAT3 have recently been
identified as downstream mediators of TGFβ signaling in fibro-
sis28–30. We therefore aimed to investigate whether SHP2 may
modulate TGFβ signaling by regulation of JAK2/
STAT3 signaling. JAK2 activation was assessed by three
approaches. First, by analysis of the phosphorylation status of
JAK2 at Y1007/Y1008 (pJAK2Y1007/Y1008), as phosphorylation of
JAK2 at this particular site is considered as a key step in the
activation of JAK2. As a second readout, we analyzed phos-
phorylation of STAT3 at Y705 (pSTAT3Y705), as STAT3 is a main
downstream target of JAK2. Finally, we quantified changes in
STAT3-dependent transcription in reporter studies. Knockout of
Shp2 in cultured fibroblasts inhibited TGFβ-induced JAK2/
STAT3 signaling with reduced levels of pJAK2Y1007/Y1008 and
decreased levels of pSTAT3 (Fig. 5a). The total expression levels
of JAK2 and STAT3 did not change. Knockdown of SHP2 also
ameliorated STAT3-dependent reporter activity (Fig. 5a). The
impaired activation of JAK2/STAT3 signaling upon inactivation

of Shp2 was confirmed in experimental fibrosis. Fibroblast-
specific knockout of Shp2 was associated with decreased levels of
pJAK2Y1007/Y1008 and pSTAT3Y705 in TBRICA- (Fig. 5b) and
bleomycin-induced fibrosis (Fig. 5c) as well as in TSK1 mice
(Fig. 5d) compared to corresponding controls.

SHP2 regulates TGFβ signaling via its phosphatase activity.
SHP2 can regulate growth factor signaling by dephosphorylation
of target proteins or in a phosphatase-independent manner18. To
investigate whether the phosphatase activity of SHP2 is required
for regulation of TGFβ signaling in fibroblasts, we overexpressed
a phosphatase-dead mutant of SHP2 (SHP2C459S) in cultured
human fibroblasts and compared the effects of overexpression of
SHP2C459S and the non-mutated SHP2 (SHP2WT) on TGFβ
signaling and fibroblast activation. Overexpression of SHP2WT

increased the mRNA levels of COL1A1 and ACTA2, increased the
release of collagen (Fig. 6a, b) and upregulated the levels of α-
SMA and the formation of stress fibers (Fig. 6c, d) as compared to
control cells transfected with the empty coding vector. In con-
trast, overexpression of SHP2C459S did not enhance fibroblast
activation, but rather acted in a dominant negative manner to
suppress TGFβ-induced fibroblast activation (Fig. 6c, d). Con-
sistently, JAK2/STAT3 signaling was enhanced by overexpression
of SHP2WT with decreased levels of pJAK2Y570 and increased
levels of pJAK2Y1007/Y1008 and pSTAT3Y705, while it was found
suppressed by overexpression of SHP2C459S (Fig. 6b).

To further confirm that SHP2 regulates TGFβ-induced JAK2/
STAT3 signaling by dephosphorylation of JAK2 at the inhibitory
phosphorylation site at Y570, we overexpressed a mutant JAK2
resistant to phosphorylation at Y570 (JAK2ΔY570F) in fibroblasts.

Overexpression of JAK2ΔY570F promoted activation of resting
fibroblasts and rendered them more susceptible to the stimulatory
effects of TGFβ as compared to fibroblasts transfected with
control vector or non-mutated JAK2 vectors (Fig. 7a–c). Treat-
ment with NSC-87877, an inhibitor of both SHP1 and SHP2,
ameliorated the stimulatory effects of TGFβ in fibroblasts
transfected with control vector or with non-mutated JAK2
constructs. However, fibroblasts overexpressing JAK2ΔY570F were
insensitive to SHP2 inhibition. Treatment with NSC-87877 did
not decrease the mRNA levels of COL1A1 and COL1A2, the
release of collagen protein, α-SMA expression and stress fiber
formation in fibroblasts overexpressing JAK2ΔY570F (Fig. 7a–c).
Similar findings were obtained in STAT3 reporter assays (Fig. 7d).
Overexpression of JAK2ΔY570F increased STAT3 reporter activity
and cells overexpressing JAK2ΔY570F were insensitive to the
inhibitory effects of SHP2 inhibition on STAT3 reporter activity.
We next aimed to show that TGFβ promotes binding of SHP2 to
JAK2. Indeed, stimulation of fibroblasts with TGFβ promoted
interaction of SHP2 with JAK2 and increased amounts of JAK2
precipitated with SHP2 in fibroblasts upon stimulation with
TGFβ (Fig. 7e). Together, these data demonstrate that TGFβ

Fig. 2 SHP2 is downregulated in TGFβ signaling. a, b Decreased mRNA (n= 6) (a) and protein (n= 4) (b) levels of SHP2 in healthy fibroblasts stimulated
with TGFβ (10 ng/ml) for different time points as measured by RT-PCR and western blot, respectively. c, d Overexpression of TBRICA (6.67 × 107 IFUs
every 2 weeks) significantly reduced mRNA (n= 8) and the protein levels of Shp2 in murine skin as shown by qPCR (c) and immunofluorescence staining
(d) of Shp2 with co-staining for fibroblast marker Vimentin and DAPI (n≥ 6 per each group). Representative images are shown at 100–200- and 600-fold
magnification. Horizontal scale bar, 500 μm. Immunofluorescence pictures were analyzed by Voronoi tessellation. e, f Treatment with the selective TGFβ
receptor type 1 kinase inhibitor SD208 (60mg/kg/day) reversed the decrease of Shp2 mRNA (n= 6) (e) and protein (n= 4) (f) in bleomycin-challenged
mice (50 µg every other day). g, h Treatment with the selective TGFβ receptor type 1 kinase inhibitor SD-208 reversed the decrease of Shp2 mRNA (n= 6)
(g) and protein (h) in TSK1 mice (2 mg tamoxifen over 5 days) (n≥ 6 per each group). i Phosphatase activity assay. Increases in SHP2 activity after TGFβ
stimulation (10 ng/ml) (n= 4) in cultured fibroblasts and upon overexpression of TGFβRI (6.67 × 107 IFUs) in murine skin (n≥ 4 per each group). Results
shown are representative of three independent experiments. All data are presented as median ± s.e.m. The p values are expressed as follows: 0.05 > p >
0.01*; 0.01 > p > 0.001**; p < 0.001***. Significance was determined by Mann–Whitney test. AdLacZ: adenovirus LacZ, TBRICA: constitutively active TGFβ
receptor type I, TSK1: Tight skin, Bleo: bleomycin, Pa/Pa: control for TSK1, fluo.: fluorescence, int.: intensity, Unst.: unstimulated
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induces SHP2-dependent dephosphorylation of JAK2 at Y570 to
promote activation of STAT3.

As NSC-87877 does not discriminate between SHP1 and SHP2
and may also inhibit other tyrosine phosphatases in higher
concentrations (half-maximal inhibitory concentration (IC50) for
SHP2 is 0.318 µM, for SHP1 0.355 µM, for PTP1b= 1.691 µM
and for HePTP= 7.745 µM), we aimed to confirm our findings
with more specific SHP2 inhibitors. To better discriminate
between SHP1- and SHP2-mediated effects, we confirmed our
results with SHP099 (allosteric inhibitor) and 11-a1 (active site
inhibitor), both of which possess high selectivity for SHP2 over
SHP120,31,32. Both inhibitors effectively reduced TGFβ-induced
fibroblast activation to an extent similar to that observed with
NSC-87877 (Supplementary Fig. 2a–c).

Inhibition of SHP2 exerts anti-fibrotic effects. After demon-
strating that fibroblast-specific genetic inactivation of Shp2
ameliorates experimental fibrosis, we next aimed to investigate
the anti-fibrotic potential of pharmacological inhibition of SHP2.
Incubation with NSC-87877 ameliorated the stimulatory effects of
TGFβ on COL1A1mRNA and release of collagen protein (Fig. 8a)
and inhibited myofibroblast differentiation with reduced mRNA
(Fig. 8b) and protein levels of α-SMA and impaired formation of
stress fibers (Fig. 7c) at non-toxic concentrations (Supplementary
Fig. 3a). In accordance with our proposed mode of action

(Supplementary Fig. 4a-b), incubation with NSC-87877 inhibited
the accumulation of pJAK2Y1007/Y1008 and of its downstream
target pSTAT3, but increased the levels of pJAK2Y570 in TGFβ-
stimulated fibroblasts (Fig. 8d). Consistently, incubation with
NSC-87877 inhibited the TGFβ-induced activation of STAT3-
dependent transcription in reporter assays (Fig. 8e).

Treatment with NSC-87877 also ameliorated bleomycin-
induced skin fibrosis with decreased dermal thickening, hydro-
xyproline content and myofibroblast counts as compared to
vehicle-treated mice (Fig. 9a). Similar results were obtained in
the TBRICA-induced skin fibrosis (Fig. 9b). In addition, NSC-
87877 also ameliorated bleomycin-induced pulmonary fibrosis
(Fig. 9c).

We employed three different inhibitors of SHP2, the active site
inhibitors 11-a1 and PHPS1, as well as the allosteric inhibitor
SHP09931–33 to confirm the findings obtained with the SHP1/
SHP2 inhibitor NSC-87877. This may be of particular importance
as SHP1 has been shown to inhibit proliferation of pro-fibrotic
hepatic stellate cells and may thus also modulate the outcome of
fibrotic diseases34,35. 11-a1, PHPS1 and SHP099 all ameliorated
bleomycin-induced pulmonary fibrosis (Fig. 10a) and TBRICA-
induced dermal fibrosis (Fig. 10b). Hydroxyproline content,
myofibroblast counts and fibrotic area or dermal thickness,
respectively, were significantly reduced in mice treated with 11-
a1, PHPS1 or SHP099 compared to vehicle-treated controls and
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the anti-fibrotic effects were in the range of those observed with
NSC-87877 in previous experiments.

Discussion
Our data characterize SHP2 as an important regulator of TGFβ
signaling in fibroblasts. Shp2-deficient murine fibroblasts are less
responsive to TGFβ. An impaired response to the pro-fibrotic
effects of TGFβ was also observed in human fibroblasts upon
pharmacological inhibition of SHP2. Consistent with these find-
ings, inhibition of SHP2 prevented epithelial-to-mesenchymal
transition in A549 adenocarcinoma cells36. In contrast, ectopic
expression of full-length but not of phosphatase-deficient SHP2 in
fibroblasts enhances TGFβ signaling. Mechanistically, SHP2
regulates the TGFβ-dependent activation of JAK2. The tyrosine

kinase JAK2 has recently been identified as a pro-fibrotic med-
iator. Inhibition of JAK2 exerts anti-fibrotic effects and has been
shown to ameliorate skin, liver, pulmonary and renal
fibrosis29,37,38. The activity of JAK2 is tightly regulated
by phosphorylation. Depending on the actual target site, these
phosphorylation events can either activate or inhibit
JAK2. Phosphorylation of JAK2 at Y570 inhibits JAK2 activation.
Dephosphorylation of JAK2 at Y570 is a pre-requisite for JAK2 to
undergo the activating phosphorylation at Y1007/Y1008, whereas
mutation of the Y570 leads to enhanced and prolonged JAK2
activation39. We demonstrate that SHP2 can dephosphorylate
JAK2 at Y570 to promote TGFβ-dependent activation of JAK2
and its downstream mediator STAT3 (Supplementary Fig. 4a). In
contrast, pharmacological inhibition of SHP2, overexpression of a

0

1

2

3

4

5
**

Control

ns

0

1

2

3

***

Control Shp2 Ko

NaCl Bleo

ns

0

1

2

3

4

*

Control Shp2 Ko

ns

0

2

4

6

**

Control Shp2 Ko

ns

0.0

0.5

1.0

1.5

2.0

2.5

***

Control Shp2 Ko

AdLacZ TBRICA

ns

0.0

0.5

1.0

1.5

2.0

2.5

*

Control Shp2 Ko Shp2 Ko

##

AdLacZ TBRICA

NaCl Bleo

TSK1– TSK1+

O
il

T
am

ox
ife

n
O

il
T

am
ox

ife
n

O
il

T
am

ox
ife

n

0

1

2

3

4

5
**

Control Shp2 Ko

ns

0

5

10

15

***

Control Shp2 Ko

TSK1 – TSK1 +

ns

0.0

0.5

1.0

1.5

2.0

2.5

*

Control Shp2 Ko

ns

x-
fo

ld
 c

ha
ng

es
 in

de
rm

al
 th

ic
kn

es
s

x-
fo

ld
 c

ha
ng

es
 in

hy
dr

ox
yp

ro
lin

e 
co

nt
en

t

x-
fo

ld
 c

ha
ng

es
 in

m
yo

fib
ro

bl
as

t c
ou

nt
s

Shp2 fl/fl x Col1a2;CreER 

Shp2 fl/fl x Col1a2;CreER

Shp2fl/fl x Col1a2;CreER

x-
fo

ld
 c

ha
ng

es
 in

de
rm

al
 th

ic
kn

es
s

x-
fo

ld
 c

ha
ng

es
 in

hy
dr

ox
yp

ro
lin

e 
co

nt
en

t

x-
fo

ld
 c

ha
ng

es
 in

m
yo

fib
ro

bl
as

t c
ou

nt
s

x-
fo

ld
 c

ha
ng

es
 in

hy
po

de
rm

al
 th

ic
kn

es
s

x-
fo

ld
 c

ha
ng

es
 in

hy
dr

ox
yp

ro
lin

e 
co

nt
en

t

x-
fo

ld
 c

ha
ng

es
 in

m
yo

fib
ro

bl
as

t c
ou

nt
s

a

b

c

Fig. 4 Fibroblast-specific knockout of Shp2 protects from experimental fibrosis. a TBRICA-induced fibrosis (6.67 × 107 IFUs every 2 weeks). Representative
images of Masson trichrome-stained skin shown at 100-fold magnification. Dermal thickness, hydroxyproline content and myofibroblast counts. All groups
consisted of ≥9 mice each. b Bleomycin-induced skin (50 µg every other day) fibrosis. Representative images of Masson trichrome-stained skin shown at
100-fold magnification. Dermal thickness, hydroxyproline content and myofibroblast counts. All groups consisted of ≥8 mice each. c TSK1 model (2 mg
tamoxifen over 5 days). Representative images of Masson trichrome-stained skin shown at 40-fold magnification. Hypodermal thickness, hydroxyproline
content and myofibroblast counts. All groups consisted of ≥8 mice each. Horizontal scale bar in all images, 500 μm. All data are presented as median ± s.e.
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catalytically inactive SHP2 mutant or knockout of Shp2 inhibits
dephosphorylation of pJAK2Y570, which prevents phosphoryla-
tion of JAK2 at Y1007/Y1008 and subsequent activation of
STAT3 in TGFβ-stimulated fibroblasts and in experimental
fibrosis30,40.

We previously characterized the serine/threonine kinase CK2
as an upstream activator of JAK2/STAT3 signaling in fibroblasts.

Pharmacological inhibition of CK2 ameliorated experimental
fibrosis and those anti-fibrotic effects were associated with
decreased levels of pJAK2Y1007/1008 and pSTAT340. However,
SHP2 regulates JAK2 signaling at a different level and by a dif-
ferent mechanism than CK2. Although the precise mechanisms
by which the serine/threonine kinase CK2 promotes accumula-
tion of pJAK2Y1007/1008 and pSTAT3 have not been uncovered,
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the effects seem to be indirect, given the delayed effects of CK2 on
JAK2 signaling. CK2 may thus serve to amplify JAK2 signaling by
enhancing positive signaling input. In contrast, SHP2 provides a
permissive signaling environment, as it removes the inhibitory
phosphorylation of JAK2 at Y570, which is required for sub-
sequent phosphorylation at Y1007/1008 and thus for activation of
JAK2 signaling. SHP2-induced removal of this inhibitory phos-
phorylation mark may thus be a pre-requisite for effective acti-
vation of JAK2 signaling, which may explain the potent anti-
fibrotic effects of targeting SHP2.

The activating effects of SHP2 on TGFβ-induced JAK2/STAT3
activation directly translate into stimulatory effects on fibroblasts.
Fibroblasts overexpressing SHP2 are more susceptible to the pro-
fibrotic effects of TGFβ, whereas the stimulatory effects of TGFβ
on myofibroblast differentiation and collagen release are reduced
in Shp2 knockout fibroblasts. Selective inactivation of Shp2 in
fibroblasts also reduced the pro-fibrotic effects of TGFβ signaling
in vivo. Shp2 Fib KO mice were protected from experimental
fibrosis induced by overexpression of a constitutively active TGFβ
receptor type I. Moreover, fibroblast-specific inactivation of Shp2
also protected from bleomycin-induced skin fibrosis and ame-
liorated fibrosis in TSK1 mice, thereby confirming the central
regulatory function of Shp2 on TGFβ signaling and fibroblast
activation in multiple complementary models of SSc. Consistent
with the role of SHP2 as a mediator of tissue remodeling, inac-
tivation of Shp2 in airway epithelial cell reduced pulmonary
remodeling in response to ovalbumin challenge as a model of
chronic asthma41. Our findings are also in line with recent results
which show that SHP2 is required for epithelial-to-mesenchymal
transition induced by IL-6 in breast cancer cells42. Our findings
may also be supported by reports about fibrotic changes in
patients with Noonan syndrome with hyperactive SHP2 such as
myocardial fibrosis43,44, fibrosis of the extraocular muscles45 and
recurrent keloid formation34.

The inhibitory effects of SHP2 on fibroblast activation may not
be limited to myofibroblasts. Inhibition of SHP2 has recently been
shown to ameliorate the responsiveness of synovial fibroblast-like
cells from patients with rheumatoid arthritis that exhibit a
characteristic inflammatory and invasive phenotype to tumor
necrosis factor and PDGF21,22. Together, these findings identify
SHP2 as a key regulator of growth factor-induced fibroblast
activation.

These findings may have translational implications. The critical
role of SHP2 in various types of cancer prompted the develop-
ment of small inhibitors of SHP231, some of which already
showed promising results in first clinical trials46. The SHP inhi-
bitor NSC-87877, which serves as a lead compound for the
development of new SHP inhibitors, exerted anti-fibrotic effects
in bleomycin- and TBRICA-induced skin fibrosis in well-tolerated
doses. These murine models resemble different stages and sub-
groups of SSc. The mouse model of bleomycin-induced dermal
fibrosis mimics inflammatory stages of SSc, in which fibroblasts
are pre-dominantly activated by pro-fibrotic mediators released
from infiltrating leukocytes. In contrast, the mouse model of

TBRICA-induced fibrosis resembles SSc patients, in which
inflammatory infiltrates have largely resolved and fibroblasts are
endogenously activated47. Moreover, treatment with NSC-87877
also ameliorated pre-established bleomycin-induced pulmonary
fibrosis as the leading cause of fibrosis-associated death in SSc.
Extrapolating the findings from the mouse models to humans,
these findings may indicate that SHP2 plays a crucial role in the
pathogenesis of inflammatory as well as non-inflammatory types
of fibrotic diseases, that the pro-fibrotic effects of SHP2 are not
limited to the skin, but are also operative in the lung and that
inhibition of SHP2 is not only effective in preventive, but also in
therapeutic settings. However, considering the complex patho-
genesis and the heterogeneity of SSc, further in vivo studies are
required to confirm these findings. Particular attention should be
appointed to the effects of SHP2 inhibition on macrophage
polarization. A recent report demonstrated that SHP2 is required
for M1 polarization of macrophages in the context of Haemo-
philus influenza infection48 and that inactivation of SHP2 may
promote M2 polarization49. Macrophage polarization in SSc is
skewed towards M2 polarization and those alternatively activated
fibroblasts are thought to play an important role in fibroblast
activation by the release of pro-fibrotic mediators such as IL-4
and IL-1350,51. Indeed, selective knockout of SHP2 may actually
promote experimental fibrosis49. Thus, a careful selection for
patients with less inflammatory activity may be required to ensure
that the beneficial effect of SHP2 inhibition on fibroblasts are not
outweighed by the effects on M2 polarization52.

We focused on the role of SHP2 in the pathogenesis of fibrosis.
However, SHP2 is also differentially expressed in microvascular
endothelial cells of SSc patients as demonstrated by immuno-
histochemistry in our study and first evidence links SHP2 to the
pathogenesis of vascular diseases. SHP2 has been reported to
enhance PDGF signaling during vascular neointima formation53

and to be required for angiotensin-II-induced apoptosis of pul-
monary endothelial cells54. The role of SHP2 in the vascular
pathogenesis of SSc requires further investigation in murine
models that resemble the vascular alterations in SSc such as Fra-2
transgenic mice or uPAR (urokinase-type plasminogen activator
receptor) knockout mice55,56.

In summary, we characterize SHP2 as a positive regulator
of TGFβ-dependent activation of JAK2/STAT3 signaling.
Genetic or pharmacologic inactivation of SHP2 inhibits JAK2/
STAT3 signaling, reduces fibroblast activation and ameliorates
experimental fibrosis in several complementary models. These
findings identify SHP2 as a potential molecular target for the
treatment of fibrosis in fibrotic diseases such as SSc.

Methods
Patients. Dermal fibroblasts were isolated from skin biopsies of 24 SSc patients and
28 age- and sex-matched healthy volunteers. All patients fulfilled the ACR/EULAR
(American College of Rheumatology/European League Against Rheumatism) 2013
criteria57. Sixteen patients were female and seven were male. The median age of
SSc patients was 49 years (range: 19–72 years), and their median disease duration
was 6 years (range: 1–12 years). The human studies were approved by the Ethical
committee of the Medical Faculty of the University of Erlangen-Nuremberg. All

Fig. 6 SHP2 enhances TGFβ-induced fibroblast activation via JAK2/STAT3. a mRNA levels of SHP2 after overexpression in human dermal fibroblasts.
mRNA levels of COL1A1 in human fibroblasts transfected with empty vector, SHP2WT- and SHP2C459S-expression vectors, with or without TGFβ1 treatment
(10 ng/ml for 24 h) (n≥ 4). b Western blot analysis and respective quantifications for type I collagen and SHP2 in human fibroblasts transfected with
empty vector, SHP2WT- and SHP2C459S-expression vectors, with or without TGFβ1 treatment (10 ng/ml for 24 h). Western blot for pJAK2Y1007/Y1008,
pJAK2Y570, total JAK2, pSTAT3Y705 and total STAT3 with β-actin as loading control (TGFβ 10 ng/ml for 6 h) (n= 3). Results shown are representative of
three independent experiments. c, d Representative images of immunofluorescence stainings for α-SMA and stress fiber staining are shown at 400-fold
magnification (c) and quantification of α-SMA staining intensity as well as stress fiber staining intensity (d) (n≥ 4). Horizontal scale bar, 500 μm. All data
are presented as median ± s.e.m. The p values are expressed as follows: 0.05 > p > 0.01*; 0.01 > p > 0.001**; p < 0.001***. Significance was determined by
Mann–Whitney test. Vector: empty vector, SHP2WT: plasmid carrying full length of SHP2 wild-type gene, SHP2C459S: plasmid carrying a phosphatase-dead
mutant of SHP2, unstim.: unstimulated, int.: intensity
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Fig. 7 Overexpression of JAK2ΔY570F prevents the inhibitory effects of SHP2 inhibitors on TGFβ-induced fibroblast activation. amRNA levels of COL1A1 and
COL1A2 (TGFβ 10 ng/ml for 24 h) (n≥ 5). b Release of collagen protein (TGFβ 10 ng/ml for 24 h) (n≥ 6). c Representative images of immunofluorescence
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patients and controls signed a consent form approved by the local institutional
review board. All human studies were performed in compliance with the relevant
ethical regulations

Animal studies. Mice carrying two conditional alleles of Shp2 (Shp2fl/fl) were
crossbred with Col1a2-CreER mice8. Cre-mediated recombination was induced by
repeated intraperitoneal injections of 2 mg tamoxifen over 5 days. Control groups
were injected with corn oil. The role of Shp2 signaling in fibrosis was investigated
in three different mouse models. (i) In the model of bleomycin-induced dermal
fibrosis (10 weeks of age, mixed genders), fibrosis was induced by local injections of
bleomycin (50 µg every other day) for 4 weeks58. Subcutaneous injections of 0.9%
NaCl served as control. (ii) In the TBRICA model, injections of replication-deficient
type 5 adenoviruses encoding for a constitutively active TBRI construct8 induced
localized skin fibrosis (12 weeks of age, mixed genders). Mice injected with type 5
adenoviruses encoding for LacZ served as controls. 6.67 × 107 infectious units
(IFUs) were injected intracutaneously and analyzed after 8 weeks59. (iii) TSK1 mice
are a genetic model of skin fibrosis (10 weeks of age, mixed genders) with pro-
gressive accumulation of extracellular matrix in the hypodermal layer of the skin47.
TSK1 mice were analyzed at an age of 10 weeks. The effect of SHP2 inhibitors
NSC-87877 (Santa Cruz Technologies), PHPS1 (Calbiochem, Darmstadt, Ger-
many), SHP099 (Chemietek, Indianapolis, USA) and 11-a1 (Professor Zhang,
Indiana, USA) on experimental fibrosis was evaluated in three animal models: (i)
In the bleomycin-induced dermal fibrosis model, treatment with intraperitoneal
injection of 5 mg/kg q.d. NSC-87877 was initiated simultaneously with the first
bleomycin injection and the outcome was analyzed after 3 weeks. (ii) In the
TBRICA virus-induced dermal fibrosis model (C57BL/6 background 12 weeks of
age, mixed genders), treatment with intraperitoneal injections of 5 mg/kg/day NSC-

87877, 7.5 mg/kg q.d. 11-a1, 5 mg/kg q.d. PHPS1 or 75 mg/kg q.d. SHP099 via oral
gavage was started simultaneously with the first virus injection and the outcome
was analyzed after 8 weeks. (iii) Bleomycin-induced pulmonary fibrosis was
induced by a single intra-tracheal application of bleomycin (50 µg) in C57BL/6
mice (14 weeks of age, mixed genders) using a high pressure syringe (Penn-Cen-
tury, Wyndmoor, PA, USA)60. Instillation of equal volumes of 0.9% NaCl served as
control. Treatment with Shp2 inhibitors was started simultaneously with the
instillation of bleomycin and analysis was performed after 4 weeks. In all mouse
models, vehicle-treated mice served as controls. TGF-β-RI kinase inhibitor SD208
was injected intraperitoneal in a dose of 60 mg/kg q.d. All animal experiments were
approved by the governments of Mittelfranken or Unterfranken, Germany. All
animal experiments were performed in compliance with the relevant ethical
regulations.

Cell culture. Human dermal fibroblasts were isolated from 10 SSc patients and 10
age- and sex-matched healthy volunteers. Mouse fibroblasts were isolated from
skin biopsies of Shp2-deficient (Shp2fl/flCol1a2-CreER) mice and wild-type litter-
mates. After enzymatic digestion of the skin biopsies with dispase II (Merck KGaA,
Darmstadt, Germany), cells were cultured in Dulbecco's modified Eagle's medium/
F-12 medium containing 10% heat-inactivated fetal calf serum, 25 mM HEPES,
100 U/ml penicillin, 100 μg/ml streptomycin, 2 mM L-glutamine, 2.5 μg/ml
amphoteric-in B (all Gibco–Life Technologies, Darmstadt, Germany) and 0.2 mM
ascorbic acid (Sigma-Aldrich, Steinheim, Germany). Fibroblasts from passages 4–8
were used for all experiments. Cell lines were tested for mycoplasma contamina-
tion61. Gene silencing was achieved by transfection of 3 μg short interfering RNA
(siRNA) duplexes using the 4D-Nucleofector (Lonza, Cologne, Germany). The
siRNA duplexes: human SHP2 5′-GGU ACA UCG ACU UCC UCU A-3′
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Fig. 9 Treatment with NSC-87877 ameliorates experimental fibrosis. The SHP1/SHP2 inhibitor NSC-87877 was applied at doses of 5 mg/kg q.d. a
Bleomycin-induced skin (50 µg every other day) fibrosis: representative images of Masson trichrome-stained skin shown at 100-fold magnification. Dermal
thickness, hydroxyproline content and myofibroblast counts. b TBRICA-induced (6.67 × 107 IFUs every 2 weeks) skin fibrosis: representative images of
Masson trichrome-stained skin shown at 100-fold magnification. Dermal thickness, hydroxyproline content and myofibroblast counts. c Bleomycin-induced
lung fibrosis (50 µg single doses): representative images of Sirius red-stained lung shown at 100-fold magnification. Quantification of Sirius red-positive
area (fibrotic area), hydroxyproline content and myofibroblast counts. All groups in all models consisted of ≥5 mice each. Horizontal scale bar in all images,
500 μm. All data are presented as median ± s.e.m. The p values are expressed as follows: 0.05 > p > 0.01*; 0.01 > p > 0.001**; p < 0.001***. Significance was
determined by Mann–Whitney test; Bleo: bleomycin, TBRICA: constitutively active TGFβ receptor type I, AdLacZ: adenovirus LacZ
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(forward), 5′-UAG AGG AAG UCG AUG UAC C-3′ (reverse); non-targeting
siRNAs (Life Technologies, Darmstadt, Germany) served as controls. Cre-mediated
recombination in murine fibroblasts isolated from Shp2fl/fl mice was induced by
infection with type 5 adenoviral vectors encoding for Cre recombinase (AdCre - 80
IFUs/fibroblast). Type 5 adenoviral vectors encoding for LacZ (AdLacZ) served as
controls. In selective experiments, cells were incubated with recombinant TGFβ
(10 ng/ml) (PeproTech, Hamburg, Germany).

SHP2 activity was inhibited in fibroblasts using the following inhibitors: NSC-
87877 (100 µM), SHP099 (1.4 µM) and 11-a1 (0.2 µM). Cells were pretreated with

inhibitors 2 h before addition of TGFβ. JAK2 was inhibited using the JAK2
inhibitor TG101209 (500 nM) (Selleckchem, Houston, USA).

Quantitative real time-PCR. Gene expression was quantified by SYBR Green real
time-PCR using the MX3005P Detection System (Agilent Technologies, Böblingen,
Germany). Primers are listed in the Supplementary table 1. Samples without
enzyme in the reverse transcription reaction (Non-RT controls) were used as
negative controls. Unspecific signals caused by primer dimers were excluded by
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non-template controls and by dissociation curve analysis62. β-Actin was used to
normalize for the amounts of complementary DNA within each sample.

Western blot analysis. The protein concentration of cell lysates was determined
by amido black assays or Bradford protein assay (#5000001 BIO-RAD, Hercules,
USA). Proteins were separated by sodium dodecyl sulfate–polyacrylamide gel
electrophoresis (SDS-PAGE) and transferred to a polyvinylidene difluoride (PVDF)
membrane. The membrane was incubated with antibodies against SHP2 (1:1000),
pJAK2Y1007/Y1008 (1:500), JAK2 (1:1000) (# sc-7384, #sc-280, #sc-16566R, #sc-278,
Santa Cruz Technologies, Heidelberg, Germany), pJAK2 (Y570) (1:500)
(#CPA1629, Cohesion Biosciences), Collagen I (1:1000) (#ab138492, Abcam,
Cambridge, UK), pSTAT3 (1:1000), STAT3 (1:1000) (#9145, #9139, Cell Signaling,
Boston, USA) and horseradish peroxidase (HRP)-conjugated secondary antibodies
(Dako, Hamburg, Germany). Blots were visualized by ECL. β-Actin was used as
loading control. Western blots were quantified using the ImageJ Software (version
1.41). The uncropped scans of western blots presented in the figures are shown in
Supplementary Fig. 5 and 6.

Co-immunoprecipitation. After stimulation of fibroblasts with TGFβ (10 ng/ml)
for 3 min, cells were collected in lysis buffer (Tris–HCl 50 mM, NaCl 150 mM,
EDTA 1mM, NP-40 1%, dithiothreitol (DTT) 1 mM and phenylmethylsulfonyl
fluoride 1 mM). Five percent of the lysates were used as input. Then, 500 µg of
protein lysate (Cell extract) was first incubated with 2 μg of antibodies
against either SHP2 or serum IgG (all from Santa Cruz Biotechnology, Heidelberg,
Germany) for 2 h at 4 °C under rotation. Subsequently, 30 μl of Protein A/G
Sepharose was added to the samples. Unbound proteins were removed by washing
with Tris buffer (Tris–HCl 50 mM, NaCl 150 mM, EDTA 1mM, NP-40 1%).
Sepharose-bound protein complexes were separated via SDS-PAGE followed by
western blotting on a PVDF membrane. Proteins were visualized via ECL prime kit
(GE Healthcare, Braunschweig, Germany).

Phosphatase activity assay (PTP activity assay). Protein samples were isolated
from human fibroblasts and SHP2 immunprecipitated as described above. Para-
nitrophenyl phosphate (p-NPP; Sigma-Aldrich) was used as enzyme substrate. The
SHP2 immune complexes were washed three times in Tris buffer and once in
phosphatase buffer (30 mM HEPES pH 7.4, 120 mM NaCl). Afterwards, samples
were resuspended with 200 µl of phosphatase assay buffer (30 mM HEPES pH 7.4,
120 mM NaCl, 5 mM p-NPP, 1 mM DTT and 65 ng/µl bovine serum albumin) and
incubated at 30 °C for 30 to 90 min. Hydrolysis of p-NPP was determined by
reading the absorbance at 405 nm with a microtiter plate reader (spectro-
photometer)20. A Recombinant Human SHP2 (R&D Systems, Minneapolis, USA)
was used to generate a standard curve (0, 1, 2, 4, 6, 8 and 10 ng).

Quantification of collagen protein. The amount of soluble collagen in cell culture
supernatants was quantified using the SirCol collagen assay (Biocolor, Belfast,
Northern Ireland). The total collagen content of tissue samples was determined by
hydroxyproline assays using the chloramines-T method28,63. In brief, samples were
digested with 6M HCl for 4–6 h. Samples were centrifuged to remove debris and
pH of the solution is adjusted to 7. Samples were hydrolyzed by incubation at 60 °C
for 30 min. The cloramines-T was added to the hydrolyzate to allow oxidation
followed by the addition of Ehrlich’s aldehyde reagent. The absorbance intensity of
each sample was analyzed at 550 nm using a microtiter plate reader
spectrophotometer.

Immunohistochemistry and immunofluorescence staining. Formalin-fixed,
paraffin-embedded skin sections or fibroblasts fixed in 4% paraformaldehyde and
permeabilized by 0.25% Triton X-100 were stained with antibodies against α-SMA
(1:1000) (Life Technologies), SHP2 (1:200) (#sc-280, Santa Cruz Technologies,
Heidelberg, Germany), P4Hβ (1:200) (#AP08767PU-N, Acris Antibodies, Herford,
Germany), vimentin (1:500) (#20346, Abcam), CD31 (1:200) (#AF3628, R&D
Systems, Minneapolis, USA) and CD45 (1:200) (#MA5-17687, Thermo Fisher,
Massachusetts, USA). HRP-conjugated or Alexa Fluor antibodies (1:200) (Life
Technologies) were used as secondary antibodies. Irrelevant isotype-matched
antibodies served as controls. Stress fibers were visualized with rhodamine-
conjugated phalloidin (#R415, Sigma-Aldrich). Nuclei were counterstained using
4′,6-diamidino-2-phenylindole (DAPI; Santa Cruz Biotechnology). The staining

was analyzed using a Nikon Eclipse 80i microscope (Nikon, Badhoevedorp,
Netherlands). Voronoi tessellation of in vivo immunofluorescence pictures were
performed using the ImageJ2 software64,65.

Plasmid and reporter constructs. pJ3-SHP2C459S and pJ3-SHP2WT were pro-
vided by Ben Neel66 via Addgene (Cambridge, USA, plasmids #8319 and #8317,
respectively). The Luciferase reporter plasmids p-TA-luc and pSTAT3-TA-luc were
purchased from ClonTech (Mountain View, CA, USA). Fibroblasts were trans-
fected with 5 μg of either plasmid or empty control vectors using the Amaxa 4D-
Nucleofector (Amaxa, Cologne, Germany). The transfection efficiency was deter-
mined by co-transfection with vectors encoding for β-galactosidase (Promega,
Mannheim, Germany).

The plasmid pCMV3-Flag-JAK2 encoding the human JAK2 was purchased
from Sino Biological (Beijing, China). In vitro mutagenesis of JAK2 was performed
using the QuickChange Multi site-directed mutagenesis kit (Agilent Technologies)
to yield JAK2 ΔY570F, a JAK2 mutant that cannot be phosphorylated at the
inhibitory site Y570. After verification of the correct sequence, the construct was
transfected in dermal human fibroblasts using Amaxa 4D-Nucleofector for
overexpression studies.

Histological analyses. Skin sections were stained with hematoxylin/eosin or tri-
chrome. The dermal thickness was analyzed at four different sites in each mouse in
a blinded manner67. Dermal thickness was analyzed with a Nikon Eclipse 80i
microscope (Nikon) at 100-fold magnification by measuring the distance between
the epidermal–dermal junction and the dermal–subcutaneous fat junction at sites
of induration at three consecutive skin sections of each animal68. For direct
visualization of collagen fibers, Sirius Red staining was performed (Sigma-Aldrich).

Statistics. All data are presented as median ± s.e.m, and differences between the
groups were tested for their statistical significance by Mann–Whitney U-test. The p
values of less than 0.05 were considered as statistically significant; p values are
expressed as follows: 0.05 > p > 0.01*; 0.01 > p > 0.001**; p < 0.001***. GraphPad
Prism software 7.0 was used for statistical analysis. The sample size was estimated
based on previous experiments. No statistical method was used to predetermine
sample size.

Experiments were not done in a blinded fashion except when specifically
indicated. There were no exclusion criteria for the human and animal experiments.
Mice were stratified according to sex and then randomized into the different
treatment groups. Cells from human donors were also randomized.

Data availability. The datasets generated and analyzed during the current study
are available from the corresponding authors on reasonable request.
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