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A B S T R A C T

Hepatocellular carcinoma is one of the leading causes of cancer-related death worldwide. Recently, radiomics and
radiogenomics have been introduced as novel dimensions in oncology research. In the current review, we sum-
marize the clinical applications of radiomics and radiogenomics in hepatocellular carcinoma.
1. Introduction

Globally, hepatocellular carcinoma (HCC) is one of the leading causes
of cancer-related death [1]. China accounts for more than half of all new
HCC cases and fatalities worldwide [2]. Surgical and local ablative
therapies are considered as radical HCC treatments [3]. However, the
postoperative 5-year recurrence rate of hepatitis B virus-related HCC
remains as high as 78.7% [4]. HCC is heterogeneous cancer and is
difficult to treat. The heterogeneity is mainly caused by the accumulation
of genetic changes resulting from aberrant cell proliferation [5]. There-
fore, the genomic landscape, such as the PI3K/Akt/mTOR pathway, is
linked to chemotherapy [6]. However, this information was acquired
through postoperative pathology, which is lagging information. More-
over, preoperative needle biopsy using a single sample cannot provide
comprehensive information about malignancy [7]. Therefore, it is
essential to identify non-invasive methods to characterize genomic al-
terations in patients with HCC.

Medical imaging has traditionally been fundamental for diagnosis,
staging, clinical decision, and survival monitoring. The imaging finding
has been supplemented by quantitative aspects, leading to the develop-
ment of image biomarker assessment, called radiomics [8]. Radio-
genomics is a combination of the above modalities with underlying
molecular features at the genomic, transcriptomic, and proteomic levels.
This new technology has the potential to identify the biological basis of
phenotype imaging [9].

The current review summarizes the clinical applications of radiomics
and radiogenomics in HCC. Additionally, the challenges associated with
radiomics and radiogenomics in terms of their limited application in the
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clinic will be focused on, thereby highlighting the role that may influence
patient management in interventional treatment (Fig. 1).

2. Evaluation of pathological data

2.1. Evaluation of MVI status

Interventional radiologists face many limitations in the management
of patients with HCC; characterizing the status of microvascular invasion
(MVI) and genomic alterations is regarded as the first priority.

MVI is an independent factor associated with postoperative recur-
rence aggressiveness and early recurrence of HCC, defined as the inva-
sion of tumor cells into the vascular endothelial cell space, such as
microvessels of the portal vein, hepatic artery, and lymphatic vessels
[10]. A recent study showed that recurrent intermediate-stage cases with
MVI have more possibility getting survival benefits than patients with
negative MVI by applying the combined treatment therapy (sorafenib
plus transarterial chemoembolization, TACE) [11]. However, the MVI
status mainly detected through immunohistochemical and pathological
analyses of postoperative tissue specimens [12]. The inability to identify
MVI preoperatively leads to incomplete surgical resection and increases
the risk of postoperative recurrence. The effectiveness of treatment was
limited. And furthermore the long-term survival time of HCC may be
affected. Thus, radiomics may be a supplementary and quantitative tool
for precise diagnosis of MVI. Many researchers found that the parameters
of radiomics were linked with the MVI status.

Recently, a meta-analysis study involving 22 studies with 4129
patients indicated that radiomics is a non-invasive tool with a good
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Fig. 1. The current study route of radiomics and radiogenomics.
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diagnostic performance for MVI status, with a sensitivity, specificity, and
area under the receiver operating characteristic curve (AUC) of 0.84, 0.83,
and 0.90, respectively [13]. Nevertheless, small sample size (15/23),
univariable selection (11/23), lack of calibration evaluation (12/23), and
lack of internal validation cohorts (3/23)were the leakages. Interestingly,
no significant difference was found between radiomics models from
computed tomography (CT) and magnetic resonance imaging (MRI)
(p¼ 0.469). Furthermore, the CT and MRI radiomics models were higher
than ultrasound radiomics models (p < 0.05) [13].

Majority of investigations paid attention to the inter-tumor radiomics
rather than the peritumoral region. The peritumor area contains addi-
tional data outside the oncology, but MVI may still occur in the hepatic.
The region of interest extracted from peritumor site seldom has been
studied. Gao et al. investigated the multi-sequence MRI (T2WI, pre-
contrast T1WI, artery phase, portal venous phase, delay phase) across
various regions (whole, periphery, whole þ periphery, and interface).
Those different models were established with four algorithms. The
multivariable logistic regression was used to select significant factors
from clinical and radiomics parameters. They found a fusion model,
T2WI-artery radiomics signature with non-smooth tumor margin was a
potential biomarker for the preoperative prediction of MVI [14].
2.2. Correlation between Radiomics/Radiogenomics and HCC gene
landscape

In addition to MVI status, the HCC gene landscape represents a clin-
ically significant problem while making pharmacological choices. For
example, multitargeted tyrosine kinase inhibitors that target the PI3K/
Akt/mTOR pathway are now accessible as first-line medicines and direct
sorafenib treatment [15]. Genetic testing is expensive, invasive, and
time-consuming, making it unavailable for all patients. Radiogenomics, a
fusion of radiomics and genomic tumor data, may play a vital role in
providing accurate imaging surrogates [9].

In 2007, Segal et al. first discovered that the HCC gene distribution into
modules defined by imaging traits was not random but highly enriched for
specific and diverse biological functions and processes [16]. Comparing
gene membership inmodules versus published Gene Ontology annotations
revealed significant overlaps, allowing many fundamental physiologic
properties of tumors to be gleaned from CT images. The results demon-
strated that 28 features on CT images could accurately predict 78% of the
gene expression profiles. Hectors et al. [17] suggested that the expression
levels of early HCC markers, such as BIRC5, HSP70, LYVE, and EZH2,
angiogenesis marker VEGFA, and immune checkpoint CD274 significantly
correlated with both central tendency and heterogeneity parameters. Thus,
they used quantitative MRI to quantify intratumor heterogeneity in HCC
lesions and connect MRI parameters with gene expression analysis [17].
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Hoshida et al. [18] revealed that radiomic features (10 Haralick texture
features and one other quantitative feature) were correlated with the
expression levels of 14 genes (r¼�0.61–0.56, p< 0.043). A radiogenomics
feature derived from pretreatment Fluorodeoxyglucose-positron emission
tomography (FDG-PET) was linked with mTOR pathway genes [19].
2.3. Radiomics/Radiogenomics in clinical decision-making treatment
options

Patients with HCC often present with liver dysfunction. Factors
affecting mortality rates in patients with HCC include tumor burden and
organ failure, such as liver function deterioration [20]. Therefore, toler-
ation should be considered during liver cancer treatment. Hepatectomy is
thefirst choice for the treatment of patientswith liver cancer [21]. TACE is
minimally invasive; however, residual tumor cells may be present even
after treatment. Because of technological development, the scope of
application of hepatectomy and TACE continues to expand and overlap
[22,23]. Therefore, the optimal treatment should be selected according to
the patient's status.

Hepatectomy and liver transplantation are limited in their applica-
bility because of factors such as liver malfunction, illness, or insufficient
liver source [24]. Presently, local surgical procedures, such as radio-
frequency ablation, microwave ablation, and cryoablation, have widely
entered clinical practice [25]. However, they have their limitations
regarding clinical applicability when it comes to treatment modality se-
lection, such as physician subjectivity in treatment selection and inade-
quate treatment validation.

Hence, a new technique to non-invasively and objectively select
hepatectomy or local HCC treatment for patients is required to assist in
the development of tailored and personalized treatment plans [26]. To
address this issue, Fu et al. [27] constructed a model for adjuvant hep-
atectomy and TACE treatment selection using preoperative CT image
data from 520 patients with HCC in five hospitals. The traditional im-
aging features included tumor location, absence or presence of fusion
lesions, shape, tumor capsule, and enhancement type. Patients were
weighed to control the difference in baseline data, and the Cox regression
model was constructed with progression-free survival (PFS) as the
endpoint [27]. The results revealed that the prediction model had good
identification and correction ability: the AUC of 3-year PFS in the
training set and the test set were 0.80 and 0.75, respectively [27]. They
finally constructed a nomogram for the corresponding treatment (hepa-
tectomy or TACE) to be selected according to different scores. Patients
were classified according to the score threshold (threshold ¼ �5.00),
and when the score was��5.00, hepatectomy showed a longer PFS than
TACE (hazard ratio [HR]: 0.52; 95% confidence interval [CI]: 0.29–0.93;
p ¼ 0.026); therefore, hepatectomy was a better treatment option. No



Fig. 2. Commonly used parameters in paper.
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statistical difference was found in the PFS for hepatectomy and TACE
with a score of >�5.00 (HR: 1.14; 95% CI: 0.69–1.85; p ¼ 0.614), but
TACE was less invasive [27]. Therefore, it was a better treatment option.
Although the curative effect has been confirmed, the use of combination
therapy of TACE is controversial [28]. There is uncertainty in the
appropriate application and modality of therapy in current clinical
practice guidelines. As a result, Allen Mo et al. investigated a retrospec-
tive observational study [29]. The patients were diagnosed with stage
I-III HCC for decade, treated with TACE, followed by adjuvant radio-
frequency ablation (RFA), Stereotactic body radiation therapy (SBRT), or
no additional liver-directed modality. The results showed that the ma-
chine learning model was able to provide treatment recommendations
for HCC who had undergone prior TACE. Additional treatment in line
with model recommendations was associated with significant improve-
ment in PFS, suggesting a potential benefit for machine learning-guided
medical decision-making. It is the tip of the iceberg. Further prospective
studies, such as immune checkpoint inhibitors with TACE, need to
investigate more combination therapy.
2.4. Prediction of response

The initial treatment response of TACE and RFA is a predictor of PFS
and overall survival [30]. Several investigations [31–35] have performed
non-contrast CT, contrast CT, andmulti-parameter MRI to construct exact
models for predicting the early response to TACE and RFA.

Guo et al. [31] investigated the short-term response for TACE treatment
in patients with HCC based on non-contrast CT radiomics and clinical fea-
tures. They extracted 30 CT radiomic features. The AUCs of the model for
TACE responsewere 0.840 and 0.815 in the training and validation groups.
Like this approach, Kim et al. [32] investigated radiomic features on pre-
treatment CT in patients with HCC undergoing TACE and concluded that
treatment outcomes were associated with entropy, skewness, and kurtosis
[32]. These features might reflect high tumor heterogeneity and most
importantly the presence of intratumoral angiogenesis. Liu et al. [33] re-
ported that the model that combined MRI radiomics with clinical factors
displayed better performance with an AUC of 0.813 in the training group
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and 0.781 in the validation group for predicting the response.
Another key point is the possibility of predicting the response from

RFA with pretreatment MRI. Both Alexandra and Nataly et al. [34,35]
revealed that radiomic analysis of pretreatment MRI could predict the
complete RFA response. However, the relatively small sample size
limited the broad clinical translation.
2.5. Application in survival prediction

Following TACE and RFA treatment, predicting the recurrence rate
and recurrence-free survival of patients is clinically important to estab-
lish follow-up strategies, such as shortened follow-up intervals and
prompt medication adjustments [24].

Yuan et al. [36] included 184 patients with HCC to develop the radio-
mics nomogram that could predict early recurrence after curative ablation.
They extracted the radiomic features from the three-phase enhanced CT
images. Among all radiomic models, the portal venous phase radiomic
model performed best in the validation set, with a C-index of 0.74 (95%CI:
0.63–0.84). The optimal predictive performance was obtained by com
bining portal venous phase radiomics with clinicopathological factors.
Additionally, the validation set C-index was 0.76 (95% CI: 0.65–0.86),
which was significantly improved compared with the clinical model using
clinical variables alone (C-index¼ 0.56; 95% CI: 0.47–0.64). Additionally,
Song et al. [37] presented similar resultswithMRI that the combinedmodel
exhibited better performance than the clinical-radiological model alone.

Alexandra et al. assess the Liver Imaging Reporting and Data
System and radiomic features in pretreatment MRI for predicting PFS in
patients with nodular HCC treated with RFA [38]. There were 65 patients
with 85 tumors in this retrospective study. The authors point out that
imaging features such as multifocality, continuity of an enhancing
capsule appearance, and a higher radiomic signature based on nodular
and perinodular radiomic features in HCC were predictors for poorer PFS
within the first 2 years. The studies have shown that pretreatment
radiomic data of patients with HCC could be used to predict survival and
provide help for personalized patient treatments. However, they did not
perform an additional assessment of the nearest ablation zone which is
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regarded as a known predictor of recurrence.

2.6. Challenges and future perspectives

Radiomics and radiogenomics are rapidly gaining attention in the
interventional field. However, these are associated with significant chal-
lenges and are now limited to interventional management in the scientific
literature. Most research were retrospective and includes a small sample
[30–35]; therefore,more prospective andmulticenter studies are required
to obtain more data in the future. Furthermore, the standardization of
parameters extraction remains inadequate (Fig. 2). Moreover, radiomic
characteristics include a wide array of parameters. Each study leads to a
different model; therefore, it is currently not a clear modeling method to
determine such biological aspects. Deep learning and multi-omics are
emerging tool in the radiomics and radiogenomics area. Especially, for
multi-omics, there is the urged need for multidisciplinary coordination
with the oncologists, radiologists, geneticists, statisticians, data analysts,
and medical engineers [39].

3. Conclusion

Radiomics and radiogenomics support the decision-making process
for HCC intervention; this could be used as a basis to guide personalized
care. The aim of this research is to integrate radiomics and radiogenomics
with clinical practice; however, this will be a long process.
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