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Abstract: Heart failure (HF) is a growing public health burden, with high prevalence and mortality
rates. In contrast to ischemic heart failure (IHF), the diagnosis of non-ischemic heart failure (NIHF) is
established in the absence of coronary artery disease. Angiopoietins (ANGPTs), vascular endothelial
growth factors (VEGFs) and secretory phospholipases A2 (sPLA2s) are proinflammatory mediators and
key regulators of endothelial cells. In the present manuscript, we analyze the plasma concentrations
of angiogenic (ANGPT1, ANGPT2, VEGF-A) and lymphangiogenic (VEGF-C, VEGF-D) factors
and the plasma activity of sPLA2 in patients with IHF and NIHF compared to healthy controls.
The concentrations of ANGPT1, ANGPT2 and their ratio significantly differed between HF patients
and healthy controls. Similarly, plasma levels of VEGF-D and sPLA2 activity were higher in HF as
compared to controls. Concentrations of ANGPT2 and the ANGPT2/ANGPT1 ratio (an index of
vascular permeability) were increased in NIHF patients. VEGF-A and VEGF-C concentrations did
not differ among the three examined groups. Interestingly, VEGF-D was selectively increased in IFH
patients compared to controls. Plasma activity of sPLA2 was increased in IHF and NIHF patients
compared to controls. Our results indicate that several regulators of vascular permeability and
smoldering inflammation are specifically altered in IHF and NIHF patients. Studies involving larger
cohorts of these patients will be necessary to demonstrate the clinical implications of our findings.
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1. Introduction

Heart failure (HF) represents a growing public health burden with an estimated prevalence
in Europe and United States ranging from 0.4% to 2% [1]. Based on left ventricle ejection fraction
(EF), HF recognizes three different classes: HF with a reduced EF (HFrEF with an EF < 40%); HF
with a mild-range EF (HFmEF with an EF between 40% and 49%), and HF with a preserved EF
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(HFpEF with an EF ≥ 50%) [2]. Although classification systems for HF causes are largely debated,
within HFrEF ischemic heart disease represents the most common cause of myocardial injury and
ventricular dysfunction, leading in a significant percentage of cases to post-ischemic heart failure
(IHF). Non-ischemic HF (NIHF), which accounts for less than 50% of HFrEF cases, comprises all
the remaining heterogeneous HF etiologies ranging from valvular diseases to toxic damage, up to
metabolic conditions and genetic cardiomyopathies [3]. In a significant percentage (� 30%) of HF
patients, the etiology remains undetermined, and the syndrome is referred to as “idiopathic HF” [4].
Identification of these diverse etiologies may be obtained through a complex diagnostic workup,
frequently without a relevant therapeutic implication. Neurohormonal and inflammatory activation
are widely recognized as playing a pivotal role in HF onset and progression, irrespective of etiology [5].
Despite advances in management and therapies, the prognosis in HF patients remains poor, thus a
deeper knowledge of the molecular mechanisms involved in the complex HF pathophysiology are
needed for the identification of novel therapeutic targets and biomarkers to stratify prognosis and
drive decision-making processes [6]. To this aim, several investigations have focused their attention on
inflammatory and neurohormonal molecules.

The angiopoietin (ANGPT) family is an important group of factors, specific for vascular
endothelium, whose functions are mediated through two tyrosine kinase receptors, Tie1 and Tie2 [7].
The ANGPT-Tie ligand-receptor system exerts a key role in regulating vascular integrity [8,9]. Beside their
roles in the modulation of angiogenesis [10,11] and lymphangiogenesis [12,13], ANGPTs also regulate
inflammation in several disorders, including cardiovascular diseases [9,14,15]. Angiopoietin-1 (ANGPT1),
produced by peri-endothelial mural cells (pericytes) [16] and immune cells [17,18], is a potent agonist of
Tie2 receptor on endothelial cells [11,19]. ANGPT1 is an anti-inflammatory molecule [20] that maintains
vascular integrity [21,22]. ANGPT2, stored in Weibel–Palade bodies in endothelial cells [23], is rapidly
released in response to various stimuli [24]. ANGPT2 is considered a pro-inflammatory molecule [25,26]
and inhibits ANGPT1/Tie2 interaction [10,27], resulting in vascular instability and leakage [26].

Elevated ANGPT2 levels have been found in patients with acute coronary syndrome [28,29],
hypertension [30,31], congestive heart failure [32] and congenital heart failure [33]. ANGPT2 has been
proposed as a prognostic biomarker of adverse cardiovascular events in myocardial infarction [34] and
after percutaneous coronary intervention (PCI) [35,36]. In contrast, ANGPT1 plays a protective role in
rodent models of vascular injuries [37,38].

The vascular endothelial growth factor (VEGF) family includes VEGF-A, VEGF-B, VEGF-C,
and VEGF-D [39]. VEGFs and their receptors on blood and lymphatic endothelial cells play intricate
roles in initiating and promoting inflammatory and tumor angiogenesis [40]. VEGF-A, the most
potent proangiogenic factor [41], was first identified for its permeabilizing activity and named vascular
permeability factor (VPF) [42]. VEGF-A and VEGF-B are key regulators of systemic and cardiac
angiogenesis [39,43,44]. VEGF-C and VEGF-D are the most important modulators of inflammatory and
tumor lymphangiogenesis [45,46]. Several studies have found elevated levels of circulating VEGF-A
in patients with myocardial infarction [28,47–50]. By contrast, the roles of VEGF-A [32] VEGF-C and
VEGF-D in HF remain unclear or totally unexplored.

Phospholipases A2 (PLA2) hydrolyze the fatty acids from membrane phospholipids releasing
arachidonic acid and lysophospholipids [51–54]. Secreted or extracellular PLA2 (sPLA2) modulate
vascular permeability [55] and activate inflammatory cells [53,56,57]. Circulating levels of sPLA2

predict coronary events in patients with coronary artery disease [58] and in apparently healthy men and
women [59]. Serum sPLA2 levels also predict long-term mortality for HF after myocardial infarction [60].
Intima of coronary atherosclerotic lesions of patients with angina or myocardial infarction express
sPLA2 [61] and elevated serum levels of sPLA2 increase the risk of early atherosclerosis [62].

While some studies are available on ANGPTs, VEGF isoforms, and sPLA2 involvement in ischemic
heart disease, very little is known in the clinical setting of IHF and, to the best of our knowledge, no data are
available in NIHF. Thus, the aim of the present study is to evaluate the circulating levels of ANGPTs, VEGFs,
and sPLA2 activity in HF patients, particularly comparing the ischemic and non-ischemic etiologies.
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2. Materials and Methods

2.1. Study Population

Patients with systolic HF were enrolled at the Department of Translational Medical Sciences of
the University of Naples Federico II. Inclusion criteria were: age ≥ 18 years, diagnosis of HF from at
least six months [2], left ventricular ejection fraction (LVEF) ≤ 45%, stable clinical condition during
the month prior to inclusion, and an optimal guideline-based pharmacotherapy from at least three
months, if not contraindicated. Exclusion criteria were represented by chronic obstructive pulmonary
disease (COPD), diabetes mellitus (DM), immune disorders (rheumatoid arthritis, systemic lupus
erythematosus, systemic sclerosis, Sjögren syndrome, vasculitis, psoriatic arthritis, dermatomyositis,
ankylosing spondylitis), malignancies (also past), severe obesity as assessed through a body mass
index (BMI) more than 32 kg/m2, dialysis-dependent kidney failure, acute coronary syndromes and/or
coronary revascularization in the previous 6 months, and an inability to provide informed consent.
The control group was represented by subjects without HF and in accordance with the exclusion
criteria. All patients underwent medical history evaluation and collection of demographic/clinical
data, including age, gender, BMI, cardiovascular risk factors, and comorbidities. Clinical examination,
transthoracic echocardiography, and serum BNP determination were performed at the time of the
enrolment. The HF population was subsequently divided into two groups based on the HF etiology:
ischemic HF (IHF) or non-ischemic HF (NIHF). Ischemic etiology was established based on either
previous documented myocardial infarction and/or significant coronary artery disease with indication
of cardiac revascularization. This study was approved by the Ethics Committee of the University of
Naples Federico II (protocol number 124/17). All participants were carefully informed and signed a
written consent to participate in the study.

2.2. Blood Sampling

Blood was collected during routine diagnostic procedures, scheduled in the course of hospital
access for the determination of the main blood parameters (blood counts, biochemical. and coagulation
profile), and the remaining plasma sample was labeled with a code that was documented into a data
sheet. As mentioned above, blood samples were collected in patients under stable clinical conditions,
strictly verifying all inclusion and exclusion criteria. The samples were collected by means of a clean
venipuncture and minimal stasis using sodium citrate 3.2% as anticoagulant. After centrifugation
(2000 g for 20 min at 22 ◦C), the plasma was divided into aliquots and stored at −80 ◦C until used.
Technicians who performed the assays were blinded to the patients’ history.

2.3. Assays of ANGPTs and VEGFs

Plasma levels of ANGPT1, ANGPT2, VEGF-A, VEGF-C, and VEGF-D were measured
using commercially available ELISA kits (R&D System, Minneapolis, MN, USA) according to
the manufacturer’s instructions. The ELISA sensitivity was 156.25–10,000 pg/mL for ANGPT1,
31.1–4000 pg/mL for ANGPT2, 31.1–2000 pg/mL for VEGF-A, 62.5–4000 pg/mL for VEGF-C,
and 31.3–2000 pg/mL for VEGF-D.

2.4. Assay of Phospholipase A2 Activity

PLA2 activity in the plasma of patients and healthy controls was measured by Life
Technologies EnzChek (Milan, Italy) phospholipase A2 assay. Briefly, a PLA2 substrate
cocktail consisting of 7-hydroxycoumarinyl-arachidonate (0.3 mM), 7-hydroxycoumarinyl-linolenate
(0.3 mM), hydroxycoumarinyl 6-heptenoate (0.3 mM), dioleoylphosphatidylcholine (DOPC) (10 mM),
and dioleoylphosphatidylglycerol (DOPG) (10 mM) was prepared in ethanol. Liposomes were formed
by gradually adding 77 µL substrate/lipid cocktail to 10 mL of PLA2 buffer (50 mM Tris–HCl, 100 mM
NaCl, 1 mM CaCl2) while stirring rapidly over 1 min using a magnetic stirrer. Fluorescence (excitation at
360 nm and emission at 460 nm) was measured and specific activity [relative fluorescent units (RFU)/mL]
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for each sample was calculated. Plasma (50 µL) was added to 96-well plates, and PLA2 activity was
evaluated by adding 50 µL of substrate cocktail.

2.5. Statistical Analysis

The sample size was determined by the primary outcome, which was defined through a comparison
of ANGPT2 plasma levels between HF patients and healthy controls in a 1:1 ratio. Assuming an
alpha error equal to 5% and a statistical power equal to 80%, considering the mean concentrations of
ANGPT2 to be approximately 500 pg/mL in healthy individuals, according to previous evidence [32],
a minimum of 70 patients (35 per group) are necessary to capture as significant a 40% difference
in ANGPT2 plasma concentration between controls and HF patients. Data were analyzed with the
GraphPad Prism 7 software package. Data were tested for normality using a D’Agostino-Pearson
normality test. If normality was not rejected at the 0.05 significance level, we used parametric tests.
Otherwise, for not-normally distributed data we used nonparametric tests. Statistical analysis was
performed using a Student’s t-test or one-way ANOVA and Bonferroni’s multiple comparison test,
as indicated in the figure legends. Correlations between two variables were assessed by Spearman’s
rank correlation analysis and reported as coefficients of correlation (r). Plasma concentrations of VEGFs
and ANGPTs and activity of sPLA2 are shown as the median (horizontal black line), the 25th and
75th percentiles (boxes), and the 5th and 95th percentiles (whiskers) of HF, NIHF, and IHF patients and
controls. Statistically significant differences were accepted when the p-value was ≤0.05.

3. Results

3.1. Clinical and Demographic Characteristics of Overall Population

Table 1 summarizes the demographic and clinical characteristics of patients with IHF, NIHF,
and matched healthy controls. The overall study population comprised 43 patients suffering from
HF and 42 healthy donors, carefully selected according to inclusion/exclusion criteria. Patients with
HF were divided into two groups based on HF etiology [3]: 19 with IHF and 25 with NIHF. Both HF
groups were homogeneous in age, gender, BNP levels and LVEF. As expected, IHF and NIHF showed
higher BNP levels and lower LVEFs compared to healthy controls (Table 1).

Table 1. Demographic and clinical characteristics of patients with ischemic heart failure (IHF) or
non-ischemic heart failure (NIHF) and healthy controls.

Characteristics Healthy Controls (N = 42) IHF (N = 19) NIHF (N = 25)

Age-median years (range) 75.5 (46–98) 77 (54–87) 65 (45–87)
Gender male-no. (%) 16 (38.1) 12 (63.1) 16 (64)

BMI (kg/m2) 25.2 ± 4.1 25.4 ± 3.0 25.5 ± 4.2
Caucasian (%) 100 100 100
BNP (pg/mL) 50.6 ± 32.0 1025.8 ± 733.3 * 968.6 ± 802.2 *

Leukocytes (×103/mm3) 7.2 ± 2.5 8.6 ± 4.1 7.9 ± 3.0
GFR (mL/min) 71.2 ± 23.3 48.5 ± 24.3 69.6 ± 32.4

LVEF (%) 61.6 ± 5.8 34.3 ± 6.9 * 34.6 ± 7.4 *

Data are expressed as the mean ± standard deviation of the mean (BMI, BNP, Leukocytes, GFR, LVEF) or median
value (Age). IHF: ischemic heart failure; NIHF: non-ischemic heart failure; BNP: B-type natriuretic peptide; GFR:
glomerular filtration rate (assessed through CKD-EPI equation); LVEF: left ventricular ejection fraction. * p < 0.01
when compared to healthy controls analyzed by one-way ANOVA and Bonferroni’s multiple comparison test.

3.2. Plasma Concentrations of ANGPT1, ANGPT2, VEGF-A, VEGF-C, VEGF-D and PLA2 Activity in
Healthy Controls and HF Patients

As shown in Figure 1, lower concentrations of ANGPT1 and higher levels of ANGPT2 and
ANGPT2/ANGPT1 ratios were detected in subjects suffering from HF compared to healthy controls.
No differences were observed in plasma concentrations of VEGF-A and VEGF-C in the two groups
(Figure 2). Otherwise, HF patients presented higher concentrations of VEGF-D compared to controls.
Moreover, HF was associated with higher PLA2 activity (Figure 3).
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in healthy controls; (B) Plasma concentrations of ANGPT2 in HF patients and in healthy controls;
(C) ANGPT2/ANGPT1 ratio in HF patients and in healthy controls. Data are shown as the median
(horizontal block line), the 25th and 75th percentiles (boxes), and the 5th and 95th percentiles (whiskers)
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3.3. Plasma Concentrations of ANGPT1, ANGPT2 and Their Ratio in Patients With IHF and NIHF

The concentrations of ANGPT1 were significantly reduced in NIHF compared to controls
(Figure 4A). By contrast, the plasma concentrations of ANGPT2 were selectively increased only in
NIHF compared to healthy donors (Figure 4B). Similarly, the ANGPT2/ANGPT1 ratio, a parameter of
vascular permeability [63], was also increased only in NIHF patients compared to controls (Figure 4C).
Importantly, no difference emerged between IHF group and healthy controls in the ANGPT2/ANGPT1
ratio, whereas there was a significant difference between the ANGPT2/ANGPT1 ratio in NIHF vs.
IHF (Figure 4C). There were no differences in ANGPT1 or ANGPT2 between male and female values
in both controls and patients. Moreover, the age of patients and the concentrations of the different
mediators examined did not correlate.

3.4. Plasma Concentrations of VEGF-A, VEGF-C, and VEGF-C in Patients with IHF and NIHF

VEGF-A is a powerful permeability [42] and angiogenic mediator [41]. Elevated concentrations of
VEGF-A have been found in patients with acute myocardial ischemia [28,47–50]. By contrast, the role of
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VEGF-A in chronic heart failure remains unclear [32]. We found that the mean plasma concentrations
of VEGF-A were essentially similar in patients with different types of HF and controls (Figure 5A).
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Figure 5. (A) Plasma concentrations of VEGF-A in IHF and NIHF patients and in healthy controls;
(B) plasma concentrations of VEGF-C in IHF and NIHF patients and in healthy controls; (C) plasma
concentrations of VEGF-D in IHF and NIHF patients and in healthy controls. Data are shown
as the median (horizontal block line), the 25th and 75th percentiles (boxes), and the 5th and
95th percentiles (whiskers) (statistical analysis was performed by one-way ANOVA and Bonferroni’s
multiple comparison test). * p < 0.05

VEGF-C and VEGF-D are known to play a major role as lymphangiogenic factors acting on VEGF
receptor 3 (VEGFR3) on lymphatic endothelial cells (LECs) [64,65]. More recently, it has been shown
that these factors are produced by human cardiac mast cells [43] and, under certain circumstances,
can exert a protective effect in cardiovascular disorders [66,67]. In addition, it has been demonstrated
that VEGF-C and VEGF-D can exert different effects [45]. The mean plasma concentrations of VEGF-C
did not differ in patients with different HF types and controls (Figure 5B). In contrast, the plasma
concentrations of VEGF-D were increased in IHF patients compared to healthy controls (Figure 5C).
There were no differences in VEGF-A, VEGF-C, and VEGF-D concentrations between male and female
values in either controls and patients. Moreover, the age of patients and the concentrations of VEGFs
examined did not correlate.

3.5. Plasma Concentrations of sPLA2 Activity in Patients With IHF and NIHF

sPLA2 modulates vascular permeability [55] and promotes inflammation [52,53,56]. Circulating
sPLA2 levels increase the risk of early atherosclerosis [62] and predict long-term mortality of HF after
myocardial infarction [60]. Figure 6 shows that plasma activity of sPLA2 activity was significantly
increased in both groups of HF patients compared to healthy controls. There was no differences in
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sPLA2 activity between male and female values in both controls and patients. Moreover, the age of
patients and the concentration of sPLA2 activity did not correlate.
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Figure 6. Plasma concentrations of sPLA2 activity in IHF and NIHF patients and in healthy controls.
Data are shown as the median (horizontal block line), the 25th and 75th percentiles (boxes), and the
5th and 95th percentiles (whiskers) (statistical analysis was performed by one-way ANOVA and
Bonferroni’s multiple comparison test). ** p < 0.01; *** p < 0.001.

3.6. Correlations between ANGPT1 or ANGPT2 Plasma Concentrations and sPLA2 Activity in Patients with
IHF and NIHF

As shown in Figure 7, there was an inverse correlation between plasma concentrations of
ANGPT2 and ANGPT1 (Figure 7A) and sPLA2 activity and ANGPT1 (Figure 7B) in NIHF patients.
Furthermore, a positive correlation between PLA2 activity and ANGPT2 was detected in NIHF
(Figure 7C). No correlation was observed between sPLA2 activity and the ANGPT2/ANGPT1 ratio
in NIHF.
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Contrariwise, no correlations were observed among the plasma concentrations of ANGPT1 and
BNP, ANGPT2 and BNP, and sPLA2 activity and BNP in NIHF patients. Similarly, no correlations were
found between plasma concentrations of ANGPT1, ANGPT2, and sPLA2 activity vs. LVEF in patients
with IHF or NIHR.

4. Discussion

To the best of our knowledge, this is the first study reporting significant and distinct alterations of
plasma concentrations from three different classes of proinflammatory mediators that are essential
for vascular development, integrity and remodeling (i.e., angiopoietins, VEGFs, and secretory
phospholipase A2) in patients with two forms of HF (i.e., ischemic and non-ischemic).

ANGPTs bind to and activate the Tie2 receptor on endothelial cells [9,27]. ANGPT1, produced
by periendothelial mural cells [16] acts as a vascular stabilizer by affecting the connections between
endothelial cells and the cytoskeleton [68]. In contrast, ANGPT2, produced by blood endothelial
cells [23], is rapidly released from Wiebel–Palade bodies in response to various stimuli [24]. ANGPT2
also binds to Tie2 [27] and antagonizes ANGPT1-mediated Tie2 phosphorylation, thereby inducing
vascular instability and leakage [25,26,69]. In addition, ANGPT2 is an important permeability [63,70]
and proinflammatory mediator [16].

Elevated circulating levels of ANGPT2 have been reported in acute coronary syndromes [28,29],
and this mediator has been proposed as a negative prognostic marker after myocardial infarction [34]
and PCI [35,36]. ANGPT2 is associated with a greater risk of cardiovascular mortality in the general
population [71], as well as with higher mortality in patients suffering from myocardial infarction
and cardiogenic shock [29,72]. A recent report demonstrates that ANGPT2 is highly expressed in
endothelial cells at the border of the infarct area after ischemic injury in mice [15]. In the remodeling
phase after myocardial infarction, endothelial- and macrophage-derived ANGPT2 promotes abnormal
vascular remodeling and exacerbates inflammation. In contrast, ANGPT1 plays a protective role in
preclinical models of vascular injury [37,38] and exerts anti-inflammatory effects [20].

Our study shows that HF is associated with reduced ANGPT1 plasma concentrations, increased
ANGPT2 levels, and an increased ANGPT2/ANGPT1 ratio as compared with healthy controls.
Of importance, different alterations of ANGPT1 and ANGPT2 expression have been detected in
patients with IHF and NIHF. For instance, plasma levels of ANGPT1 are significantly decreased
only in NIHF, but not in IHF patients compared to controls. Contrarywise, circulating levels of
ANGPT2 are increased in NIHF, but not in IHF patients compared to healthy donors. Moreover,
the ANGPT2/ANGPT1 ratio, an index of vascular permeability [63], was exclusively increased only in
NIHF patients.

We did not find a correlation between plasma concentrations of ANGPT1 or ANGPT2 and BNP
in either IHF or NIHF patients. In contrast, a recent study reported a significant correlation between
serum concentrations of ANGPT2 and NT-proBNP in more than 200 patients that had undergone
diagnostic cardiac catheterization [73]. Several explanations can justify these apparently different
results. The latter study included patients with (54%) or without coronary artery disease, as well as
with comorbidities (e.g., diabetes, hypertension) that may have influenced the results. In our study,
the population of IHF and NIHF participants was selectively included, and patients with comorbidities
were not selected. Although the two examined cohorts were rather small, the patients examined in our
study were very homogeneous for the principal clinical and demographic features.

Our results may have clinical implications for patients suffering from HF. First, if confirmed
in larger cohorts, the evaluation of plasma concentrations of ANGPT1, ANGPT2, and their ratio
may be useful in the identification of different pathophysiological patterns underlying ischemic and
non-ischemic HF. Second, the unique role of the ANGPTs/Tie2 signaling pathway in vascular stability
suggests that it could serve as a target for therapeutic intervention in diseases whose pathophysiology
comprises the alteration of vascular integrity [27], such as HF. Recently, it has been demonstrated that
ANGPT2 inhibition, through an anti-ANGPT2 blocking antibody, substantially alleviated autoimmune
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inflammation [70]. Importantly, specific ANGPT2 deletion or the use of an anti-ANGPT2 antibody
markedly reduced cardiac hypoxia, proinflammatory macrophage polarization, adverse vascular
remodeling, and the consequent progression of HF after myocardial infarction in mice [15]. The results
of the latter study contribute to elucidating the roles of ANGPT2 in the pathogenesis of post-ischemic
cardiovascular remodeling. Finally, these fascinating experimental results designate ANGPT2 as a
promising therapeutic target to prevent/ameliorate HF.

VEGF-A is a powerful permeability factor [42] and a potent proangiogenic and proinflammatory
mediator [41,74]. Although several clinical studies have found elevated circulating levels of VEGF-A
in myocardial infarction [28,47–50], the role of this mediator in HF still remains poorly elucidated. Our
results show that, differently from acute vascular injuries, plasma levels of VEGF-A are not altered
in the overall HF population or in either IHF or NIHF patients. Thus, our results suggest that this
mediator could play different roles in an acute vs. chronic setting of myocardial ischemia.

VEGF-C and VEGF-D are major lymphangiogenic factors produced by human macrophages [52,75]
and cardiac mast cells [43]. In a mouse model of HF, VEGF-C and VEGF-D were upregulated in the
early stages of disease, with levels returning afterwards to baseline [76]. Levels of VEGF-C have been
reported as elevated in patients with ischemic or non-ischemic cardiomyopathy [77]. An increased
level of VEGF-D was found in an animal model of ischemic cardiomyopathy [78] as well as in human
atherosclerotic lesions [79]. Recent evidence indicates that lymphangiogenesis [66] and VEGF-C
improve cardiac functions after experimental myocardial infarction [80]. Our results indicate that
the plasma concentrations of VEGF-C were similar in patients with HF (IHF and NIHF) and controls.
Interestingly, the circulating concentrations of VEGF-D were increased in HF patients compared
to controls, but significant differences were exclusively detected in IHF patients. The differential
alterations of VEGF-C and VEGF-D in these patients is intriguing but not surprising. In fact, recent
evidence demonstrates that VEGF-C and VEGF-D can differently modulate the immune system [45].
The possible role of VEGF-D in HF patients deserves further investigations.

PLA2 activity was found increased in plasma from both groups of HF patients compared to
healthy controls. PLA2 modulates endothelial cell migration and vascular permeability in vitro
and in humans [53,55–57,81]. Previous studies have demonstrated that circulating levels of sPLA2

predict coronary events in patients with coronary artery disease [58], as well as in apparently
healthy men and women [59]. Moreover, serum sPLA2 levels also predicts readmission for HF after
myocardial infarction [60]. More recently, elevated circulatory levels of sPLA2 were associated with
risk of early atherosclerosis [62]. Our study is, to our knowledge, the first to demonstrate that high
plasma concentrations of PLA2 activity can be found in HF patients, both with an ischemic and
non-ischemic etiology.

Along with the epidemiologic transition of global population, the pathophysiology of HF has
changed over time. According to the Framingham Heart Study, hypertension represented the most
frequently associated condition in HF patients, irrespective of LVEF [82]. It is widely recognized that
coronary heart disease represents the predominant cause of HFrEF [83]. Coronary stenosis-dependent
cardiomyocyte hypoxia, through inadequate oxygen supply to metabolic needs and leading to
ventricular dysfunction, may be the result of both acute and chronic cardiac ischemia. Indeed, in acute
coronary syndromes, a sudden drop in myocardial perfusion rapidly determines cardiomyocyte
injury. In the setting of chronic ischemia there is often an imbalance between coronary blood flow and
augmented demand due to progressive atherosclerosis, especially under stress. This leads over time to
hibernation, stunning, and secondary myocardial remodeling, resulting in reduced cardiac output [84].

NIHF pathophysiology is more heterogeneous due to several etiologic factors that are sometimes
concurrent. The most relevant causes of NIHF are represented by primary valvular diseases,
arterial hypertension, microbial cardiomyopathy, DM, toxic agents (drugs or alcohol), and genetic
cardiomyopathies. Once all the listed factors have been excluded, idiopathic HF is the resulting
diagnosis [85]. In NIHF there is a primary injury in the cardiomyocyte structure and function that
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manifests in cell apoptosis and a consequent substitution with fribotic tissue, without alteration in
coronary flow.

However, independently from ischemic or non-ischemic etiology, all patients suffering from systolic
HF present reduction of LVEF, maladaptive LV remodeling, and similar clinical presentations including
dyspnea and hydro-saline retention. Our results identify an HF-dependent impact on the expression
levels of several vascular permeability and inflammatory mediators, with different patterns in the clinical
setting of NIHF and IHF that potentially reflect the above-mentioned pathophysiological differences.

Several immune cells produce sPLA2 [86–88], ANGPTs [15,17,18,24,70,89], VEGF-A [43,52,74,90],
and VEGF-C/VEGF-D [52,74,91]. In this study, we did not address the issue of the contribution of
different cells to the increased plasma levels of these powerful inflammatory mediators observed in
patients with IHF or NIHF. ANGPT2 appears to be a potential therapeutic option in experimental heart
failure [15]. Future studies with the aim of identifying the cellular sources of these powerful mediators
could lead to the identification of novel and selective therapeutic targets in IHF and NIHF patients.

The limited number of subjects enrolled represented the main limitation of the present investigation.
However, it is important to point out that in order to identify specific differences between NIHF and
IHF the study protocol included stringent exclusion criteria to reduce potential interference with the
inflammatory and angiogenic patterns explored in the study. Indeed, very common comorbidities such
as COPD, DM, immune disorders, malignancies, and severe obesity were excluded from the study.
As a consequence, the patients examined were very homogeneous, but rather small. The results of this
preliminary study will have to be extended in a future multicenter trial examining larger cohorts of
IHF and NIHF patients.

5. Conclusions

In the present study we demonstrated that the ANGPT system is selectively modulated in NIHF
patients, with an increased ANGPT2/ANGPT1 ratio compared to IHF and controls, whereas VEGF-D
was exclusively augmented in IHF patients. In contrast, sPLA2 activity was increased in both IHF and
NIHF patients compared to healthy controls. To the best of our knowledge this represents the first
evidence reporting that several regulators of vascular permeability and inflammation is specifically
altered in patients with IHF and NIHF, paving the way for the identification of new molecular
mechanisms underlying HF pathophysiology and novel therapeutic targets.
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ACE angiotensin-converting enzyme
ANGPT angiopoietin
ARB angiotensin receptor blocker
BMI body mass index
BNP B-type natriuretic peptide
COPD chronic obstructive pulmonary disease
DM diabetes mellitus
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DOPC dioleoylphosphatidylcholine
DOPG dioleoyphosphatidylglycerol
EF ejection fraction
GFR glomerular filtration rate
HF heart failure
IHF ischemic heart failure
LVEF left ventricular ejection fraction
NIHF non-ischemic heart failure
PLA2 phospholipase A2
VEGF vascular endothelial growth factor
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