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Abstract
Objective To evaluate the agreement, accuracy, and longitudinal reproducibility of quantitative cartilage morphometry 
from 2D U-Net-based automated segmentations for 3T coronal fast low angle shot (corFLASH) and sagittal double echo at 
steady-state (sagDESS) MRI.
Methods 2D U-Nets were trained using manual, quality-controlled femorotibial cartilage segmentations available for 92 
Osteoarthritis Initiative healthy reference cohort participants from both corFLASH and sagDESS (n = 50/21/21 training/
validation/test-set). Cartilage morphometry was computed from automated and manual segmentations for knees from the 
test-set. Agreement and accuracy were evaluated from baseline visits (dice similarity coefficient: DSC, correlation analysis, 
systematic offset). The longitudinal reproducibility was assessed from year-1 and -2 follow-up visits (root-mean-squared 
coefficient of variation, RMSCV%).
Results Automated segmentations showed high agreement (DSC 0.89–0.92) and high correlations (r ≥ 0.92) with manual 
ground truth for both corFLASH and sagDESS and only small systematic offsets (≤ 10.1%). The automated measure-
ments showed a similar test–retest reproducibility over 1 year (RMSCV% 1.0–4.5%) as manual measurements (RMSCV% 
0.5–2.5%).
Discussion The 2D U-Net-based automated segmentation method yielded high agreement compared with manual segmenta-
tion and also demonstrated high accuracy and longitudinal test–retest reproducibility for morphometric analysis of articular 
cartilage derived from it, using both corFLASH and sagDESS.

Keywords Cartilage · Automated segmentation · Knee osteoarthritis · Magnetic resonance imaging · Convolutional neural 
network

Introduction

Osteoarthritis (OA) is a highly prevalent, chronic disease 
that affects more than 300 million people world-wide [1, 
2]. OA patients experience pain and functional limitations, 
and the knee is by far the most commonly affected joint [2]. 
Amongst other structural pathologies of this whole-joint-dis-
ease, articular cartilage loss is a hallmark of knee OA. While 
radiography was previously used to assess the structural 
progression of OA, quantitative measurement of articular 
cartilage based on serial magnetic resonance images (MRI) 
is now the method of choice and provides the high test–retest 
precision and sensitivity to longitudinal change required for 

 * Wolfgang Wirth 
 wolfgang.wirth@pmu.ac.at

1 Department of Imaging and Functional Musculoskeletal 
Research, Institute of Anatomy and Cell Biology, Paracelsus 
Medical University Salzburg and Nuremberg, Strubergasse 
21, 5020 Salzburg, Austria

2 Ludwig Boltzmann Institute for Arthritis and Rehabilitation, 
Paracelsus Medical University, Salzburg, Austria

3 Chondrometrics GmbH, Ainring, Germany
4 ETH, Zurich, Switzerland
5 Department of Radiology, Stanford University, Stanford, CA, 

USA

http://orcid.org/0000-0002-2297-8283
http://crossmark.crossref.org/dialog/?doi=10.1007/s10334-020-00889-7&domain=pdf


338 Magnetic Resonance Materials in Physics, Biology and Medicine (2021) 34:337–354

1 3

clinical trials [3–5]. The use of quantitative MRI also has 
revolutionized the conduct of clinical trials on structure or 
disease modifying OA drugs (S/DMOADs) [5–8], by having 
recently been scaled up from exploratory to secondary or 
even primary endpoints for submission for potential regula-
tory approval [6, 9].

Several groups have proposed semi- or fully automated 
approaches for reducing the time required for the segmen-
tation of articular cartilage from MRI, including model-, 
atlas-, graph-, voxel classification-, or active-contour-based 
methods [10–12]. More recently, convolutional neural net-
works (CNNs), primarily based on the U-Net architecture 
[13], have been employed for automated cartilage segmenta-
tions and have demonstrated a good segmentation agreement 
between automated vs. ground-truth approaches [14–23]. 
Yet, only few of these CNN-based studies examined the 
accuracy of quantitative cartilage measures (e.g. thickness, 
volume, and surface area) derived from CNN-based seg-
mentations [14, 16, 23]. Particularly, none of these reported 
the longitudinal stability or test–retest precision of quantita-
tive cartilage measures derived from CNN-based cartilage 
segmentation, which is an important prerequisite before a 
segmentation methodology can be applied to data from a 
clinical trial, or compared the segmentation and analysis per-
formance between different MRI sequences typically used 
in osteoarthritis studies [24].

The objective of the current study was, therefore, to eval-
uate the segmentation agreement as well as the accuracy 
and longitudinal test–retest reproducibility of quantitative 
cartilage measures obtained from a 2D U-Net-based meth-
odology for automated femorotibial cartilage segmentation 
using two different MRI sequences for the same subject. To 
that end, we used data from the publicly accessible Osteoar-
thritis Initiative (OAI) cohort, specifically the subcohort of 
reference knees that were free of symptoms, signs and risk 
factors of knee OA, and for which cartilage thickness values 
(and their stability over time) have been reported previously 
[25–27]. Specifically, this work encompasses:

• Evaluating the agreement between automated and qual-
ity-controlled, manual segmentation of articular cartilage 
as “ground truth”.

• Testing the accuracy (correlations and systematic offsets) 
of quantitative cartilage morphometry measures (thick-
ness, volume, surface areas) derived from automated 
segmentations compared to manual segmentation.

• Analysis of the longitudinal test–retest reproducibility of 
quantitative cartilage measures derived from automated 
vs. manual segmentation over a 1-year period (using 
year-1 and -2 follow-up data).

• Comparison of the agreement, accuracy, and longitudinal 
test–retest reproducibility of the automated segmentation 
(and quantitative cartilage measures derived therefrom) 

between two different MRI sequences with different con-
trasts and orientations.

Materials and methods

Participants and MR imaging

This study used data from the OAI (clinicaltrials.gov: 
NCT00080171) [28]. The OAI was approved by the Com-
mittee on Human Research, the Institutional Review Board 
for the University of California, San Francisco (UCSF). All 
OAI participants provided written informed consent, and this 
study was carried out in accordance with the OAI data user 
agreement. The OAI enrolled participants aged 45–79 years 
with established knee OA (progression cohort, n = 1390), 
with risk of developing OA (incidence cohort, n = 3284), 
and participants without signs, symptoms, or risk factors 
for developing OA (reference cohort, n = 122, based on the 
initial clinical site readings). Demographic, clinical and 
radiographic data, as well as MRIs were collected by four 
clinical sites at the baseline visit and each of the annual fol-
low-up visits (https ://data-archi ve.nimh.nih.gov/oai/). MRIs 
were acquired by the OAI using 3T Magnetom Trio scan-
ners (Siemens Medical Solutions, Erlangen, Germany) and 
quadrature transmit/receive knee coils (USA Instruments, 
Aurora, OH) [28, 29]. The OAI imaging protocol included 
coronal fast low angle shot (FLASH) acquisitions with 
water excitation (in-plane resolution 0.3125 × 0.3125 mm, 
slice thickness 1.5 mm, flip angle 12°, echo time 7.6 ms, 
repetition time 20 ms) of the right knees, and sagittal dou-
ble echo steady state (DESS) with water excitation of both 
knees (in-plane resolution 0.37 × 0.46 mm, interpolated to 
0.37 × 0.37 mm, slice thickness 0.7 mm, flip angle 25°, echo 
time 4.7 ms, repetition time 16.3 ms) [29].

The current study included all 92 participants from the 
OAI reference cohort that were confirmed to be free from 
radiographic signs of OA in both of their knees during post 
hoc central readings by experienced readers [28], and that 
had at least the year-1 follow-up MRI available.

Manual segmentation

Manual segmentations of the weight-bearing part of the 
femorotibial cartilages were available from previous pro-
jects for the right knees of the 92 OAI reference cohort 
participants [25–27]. Segmentations of baseline and year-1 
follow-up MRIs from coronal FLASH (corFLASH) MRI 
were performed for all 92 right knees after the year-1 fol-
low-up data from the OAI became available [25] and were 
later repeated together with year-2 and -4 follow-up MRIs 
for 81 of the 92 knees that also had year-4 follow-up MRIs 
available [26]. Segmentations of baseline, year-1, -2, and -4 
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follow-up sagittal DESS (sagDESS) MRIs were performed 
for the same 92 knees, and year-2/year-4 follow-up MRIs 
were available for 88/82 of the knees, respectively [26, 27].

Segmentation comprised the entire medial and lateral 
tibia (MT/LT), and the central (weight-bearing) part of the 
medial and lateral femoral condyles (cMF/cLF), defined as 
60% of the distance between the inter-condylar notch and 
the posterior end of the condyles (Fig. 1) [30, 31]. This 60% 
femoral region of interest (ROI) was necessary to avoid the 
inclusion of posterior parts of the cartilages in the segmen-
tation, which are affected from partial volume effects in 
coronal MRIs and display a lesser amount of longitudinal 
change than the weight-bearing part in knee OA [30]. Man-
ual segmentation was performed by a team of experienced 
readers using custom software (Chondrometrics GmbH, 
Ainring, Germany) by tracing the subchondral bone (tAB) 
and articular cartilage surface area (AC) of all four femo-
rotibial cartilages (Fig. 1) [32]. All visits of each knee were 
segmented by the same reader, using one of the visits as a 
reference, but with blinding to the image dates, visit identi-
fiers, and acquisition order. All manual segmentations were 
quality-controlled by an expert reader.

Automated, U‑Net‑based segmentation

The 92 OAI reference cohort participants were divided into 
a training (n = 50), validation (n = 21) and test set (n = 21, 
Fig. 2). The division was controlled to ensure a similar 
distribution of sex and body height between the sets. Par-
ticipants for which no manual year-2 segmentations from 
corFLASH MRI were available, were only considered for 

inclusion into the training and validation set, to ensure that 
manual segmentations from year-1 and -2 follow-up MRIs 
were available for all participants from the test set to evalu-
ate the longitudinal test–retest reproducibility (see below).

The automated segmentation method was based on the 
2D encoder-decoder U-Net architecture proposed by Ron-
neberger et al. [13] with the number of feature maps in the 
transpose convolutions of the up-sampling path set to the 
number of feature classes [33]. This implementation of the 
2D U-Net architecture has been previously applied to the 
segmentation of MRIs of cardiac tissue [33] and thigh mus-
cle cross-sectional areas [34]. In the current study, the U-Net 
was trained using a weighted cross-entropy loss function 
(background weight 1/[1 + 2 × number of feature classes]; 
foreground weight 2/[1 + 2 × number of feature classes]) 
that was minimized using the adaptive moment estimation 
(ADAM) optimizer (initial learning rate 0.01, decay rate 0.1, 
beta1 = 0.9, beta2 = 0.999) [35]. All network weights were 
randomly initialized using the tensorflow variance scaling 
initializer. The software was implemented in Python (Python 
Software Foundation, DE, USA) using the Tensorflow 
framework (Google LLC, CA, USA).

The training was performed on the training set using full-
resolution (512 × 512 pixel for corFLASH, 384× 384 pixel 
for sagDESS), full-sized MRI slices on a NVIDIA RTX 
2080TI GPU. The signal intensity was normalized in each 
slice by subtracting the mean intensity, and dividing by the 
standard deviation of the signal intensity. Bright voxels in 
the image corners (15 × 15 pixels) were set to zero intensity 
to avoid a negative impact of these imaging artefacts on the 
signal intensity normalization.

Fig. 1  Manual segmentation of 
the femorotibial cartilages [MT/
LT medial/lateral tibia, cMF/
cLF central (weight-bearing) 
part of the medial and lateral 
femoral condyles] from coronal 
FLASH and sagittal DESS 
MRI. The figure shows the 
cartilage areas (top row) and 
the cartilage contours (bottom; 
green: total area of subchondral 
bone; magenta: cartilage surface 
area). The sagittal MRIs also 
show the 60% femoral region of 
interest (magenta line: anterior 
margin; blue line: posterior end 
of the condyles; turquoise line: 
60% margin)
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Fig. 2  Overview over the workflow and analysis steps used for the current study
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For corFLASH MRI, one network was trained compris-
ing all four femorotibial cartilage plates. For sagDESS MRI, 
two networks were trained in parallel, one for the medial 
femorotibial compartment (MFTC) and one for the lateral 
femorotibial compartment (LFTC). Each cartilage plate 
was treated as an individual feature class, with the train-
ing including only the segmented slices. The three network 
weights (corFLASH, sagDESS MFTC, sagDESS LFTC) that 
achieved the best segmentation agreement with the valida-
tion set during 50 epochs were eventually applied for auto-
matic segmentation of the test set (Fig. 2). The automated 
segmentations were not quality-controlled and not manually 
corrected.

Automated post‑processing

Because the predictions made by the U-Net may extend into 
anatomically implausible locations and because the auto-
mated segmentations required adaption before the compu-
tation of morphometric cartilage measures, the following, 
automated rule-based post-processing steps were imple-
mented as a non-interactive command line program using 
C++:

• Filling of small gaps by detecting enclosed, unsegmented 
areas

• Removal of segmentations in slices not connected to the 
segmentation in the same or other slices (i.e., segmenta-
tions at implausible locations)

• Removal of spikes (smoothing)
• Removal of femoral cartilage segmentations outside the 

(60%) femoral ROI
• Separation of segmentations into the subchondral bone 

area (tAB), articular cartilage surface area (AC), and 
inner cartilage (IC), which was required for the compu-
tation of morphological parameters (see below).

The separation of segmentations into tAB, AC, and IC 
was performed for each structure and each slice separately 
by identifying the two points with the greatest distance from 
each other and by subsequently assigning the border pixel 
of the structures’ segmentation to the tAB and AC. When 
segmentation of the cMF and cLF bordered the femoral ROI 
(sagDESS only), the intersection between the segmentation 
and the femoral ROI was used instead. Non-border voxels 
were assigned to IC.

Statistical analysis

The agreement between automated and quality-controlled 
manual segmentations was evaluated using the 3D Dice 
similarity coefficient (DSC), the 3D volume overlap error 
(VOE), the 3D Hausdorff distance (HD), and the 3D average 

symmetric surface distance (ASSD) for the knees from the 
test set, before and after applying the post-processing steps.

To evaluate the repeatability of the training process, train-
ing was repeated from scratch using the same sets with a 
different random initialization of network weights (“repeated 
run”). To evaluate, whether the agreement between auto-
mated vs. manual segmentations is dependent on the assign-
ment of knees to each of the sets, training was repeated 
using the knees from the validation and test set, together 
with 8 knees from the original training set as training set, 
and by assigning the remaining 42 knees from the train-
ing set into validation and test sets (each n = 21, “reversed 
run”). For both these runs, the agreement of automated vs. 
manual segmentations was again evaluated using the DSC, 
VOE, HD, and ASSD, after automatically segmenting the 
cartilages from the respective test set (with and without 
post-processing).

Cartilage thickness, cartilage volume, and the total area of 
subchondral bone (tAB) were calculated from both manual 
and post-processed automated segmentations of the knees in 
the test set using custom software (Chondrometrics GmbH, 
Ainring, Germany). Measures for the medial and lateral 
femorotibial compartment (MFTC/LFTC) were calculated as 
sums of MT + cMF and LT + cLF, respectively. The accuracy 
of baseline cartilage measures computed from the automated 
segmentations vs. measures computed from manual segmen-
tations was evaluated by examining the Pearson correlation. 
In addition, paired t tests were used to assess differences 
between cartilage measures computed from automated vs 
manual segmentations. Bland and Altman plots were used 
to evaluate potential systematic offsets between both seg-
mentation methods, and between corFLASH and sagDESS. 
Furthermore, Pearson correlation analyses were conducted 
to study the association of cartilage thickness differences 
between automated and manual segmentations vs. DSC, 
VOE, HD, and ASSD values.

Cartilage thickness has been previously observed to 
remain stable over periods of 1 year and longer in knees 
from the OAI reference cohort [25, 26]. Consequently, the 
year-1 and -2 follow-up visits were used to assess the longi-
tudinal test–retest reproducibility of the automated cartilage 
analysis over such an observation period typical of interven-
tional clinical trials. The longitudinal stability was assessed 
using a paired t test and the test–retest reproducibility using 
the root-mean-square standard deviation (RMSSD) and coef-
ficient of variation (RMSCV%) of repeated measurements. 
To quantitatively evaluate whether the trained CNNs were 
overfitting to the data used during the training (training and 
validation sets), the longitudinal test–retest reproducibility 
was additionally computed for the knees from the valida-
tion and training set that had year-1 and -2 follow-up visits 
available (n = 19/41 pairs). The standard error of the meas-
urement (SEM) and the smallest detectable change (SDC) 
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threshold were calculated from year-1 and -2 data for the 
knees in the test set as described previously [36].

Demographic variables were compared between groups 
using unpaired t tests. The significance level for all statistical 
testing was set to α = 0.05. Descriptive statistics and t tests 
were computed using Excel 2010 (Microsoft Corporation, 
WA, USA).

Results

The 55 female and 37 male OAI reference cohort par-
ticipants were on average 54.7 ± 7.5 years old, had a BMI 
of 24.4 ± 3.1 kg/m2 and a body height of 1.68 ± 0.09 m 
(Table 1). These demographic data did not differ statisti-
cally significantly between training, validation, and test set 
(p ≥ 0.15).

During the training of the networks, the best segmen-
tation agreement with data from the validation set was 
achieved for corFLASH/sagDESS LFTC/sagDESS MFTC 
after 14/33/34 epochs (99/167/159 min of training), and 
these U-Net weights were subsequently chosen for the auto-
mated segmentations on the hold-out test set.

Agreement of the automated U‑Net segmentation 
with manual segmentation

A high agreement was observed between automated and 
manual cartilage segmentations for both corFLASH and 
sagDESS MRI already before the post-processing (Table 2). 
The DSC ranged from 0.88 ± 0.03 to 0.92 ± 0.02, the VOE 
from 14.9 ± 3.3 to 21.9 ± 4.8%, the HD from 2.8 ± 1.1 
to 8.3 ± 13.3  mm, and the ASSD from 0.13 ± 0.03 to 
0.28 ± 0.13 mm (Table 2). Post-processing only had a small 
effect on the DSC (range 0.89 ± 0.03–0.92 ± 0.02) and the 
VOE (range 14.9 ± 3.3–20.1 ± 4.4%), but notably reduced 
the HD (range 2.1 ± 0.6–3.2 ± 0.9 mm) and the ASSD (range 
0.13 ± 0.03–0.17 ± 0.06 mm, Table 2, Fig. 3). 

The agreement between automated vs. manual segmen-
tation obtained in both the repeated run (Table 2) and the 
reversed run (data now shown) was largely consistent with 

the results from the main run: A somewhat lower agreement 
was observed for the cMF in the repeated run for corFLASH 
MRI (Table 2). A similar observation was made for the cMF 
(DSC 0.86 ± 0.04, VOE 23.9 ± 5.6%, HD 16.5 ± 16.3 mm, 
ASSD 0.37 ± 0.20 mm) and cLF (DSC 0.84 ± 0.05, VOE 
26.8 ± 7.0%, HD 4.1 ± 13 mm, ASSD 0.40 ± 0.19 mm) with 
corFLASH MRI in the reversed run (data not shown). These 
differences were only evident prior to the post-processing.

Accuracy of cartilage morphometry using 
automated, U‑Net vs. manual segmentation

All morphometric cartilage measures computed from the 
automated segmentations of the baseline MRIs in the test set 
displayed high correlations with those obtained from man-
ual segmentations (range r = 0.92–0.99, Table 3). Cartilage 
thickness from the automated segmentation had a slight, but 
consistent overestimation when compared to the measures 
derived from manual segmentation for both corFLASH and 
sagDESS (range 1.9–5.5%, Table 3). This difference was sta-
tistically significant in all cartilage plates, except for the cMF 
with sagDESS (Table 3). Bland and Altman plots comparing 
cartilage thickness measures computed from automated vs. 
manual segmentations are shown in Fig. 4, Bland and Alt-
man plots comparing cartilage thickness between corFLASH 
and sagDESS MRI in Fig. 5. In brief, cartilage thickness 
computations were highly consistent between corFLASH 
and sagDESS using both methodological approaches. The 
mean difference tended to be closer to zero for the manual 
than for the automated segmentations, whereas the limits of 
agreement tended to be narrower for the automated than the 
manual segmentations.

Cartilage volume also was statistically significantly 
greater when determined from automated vs. manual seg-
mentation (range − 3.1–10.1%), except for the cMF and cLF 
in the sagDESS (Table 3). The total area of subchondral 
bone (tAB) was significantly greater when determined from 
automated vs. manual segmentation for the tibial cartilages 
(range 1.7–3.8%), whereas no significant differences were 
observed for the femoral condyles (range 0.0–1.1%, Table 3).

Table 1  Demographic data

SD standard deviation

Training set (n = 50) Validation set (n = 21) Test set (n = 21)

N/Mean %/SD N/Mean %/SD N/Mean %/SD

Sex
 Women 29 58 13 62 13 62
 Men 21 42 8 38 8 38

Age (years) 54.1 7.3 53.9 8.0 56.9 7.5
BMI (kg/m2) 24.1 3.0 24.5 3.2 25.1 3.3
Height (m) 1.68 0.09 1.67 0.09 1.67 0.09
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The DSC and VOE were significantly correlated with 
absolute cartilage thickness differences in the MT, cMF, and 
LT with corFLASH and for the LT with sagDESS (Table 4, 
Fig. 6). No statistically significant correlation was observed 
for the HD, but the ASSD was significantly correlated 
with thickness differences in the MT with corFLASH MRI 
(Table 4, Fig. 6).

Longitudinal test–retest reproducibility

The longitudinal change between year-1 and -2 follow-
up observed in the 21 test set knees was between − 2.0 
and 1.1% for automated and between − 0.9 and 1.6% for 
manual segmentations, with some of these changes reach-
ing statistical significance, in particular with sagDESS 
MRI (Table 5).With corFLASH, the RMS SD for carti-
lage thickness ranged from 0.03 to 0.05 mm for manual, 
and from 0.02 to 0.06 mm for automated segmentations, 
with an RMS CV of 1.2–1.9% for manual and an RMS CV 
of 1.0–2.1% for automated segmentations (Table 5). With 
sagDESS, the RMS SD ranged from 0.03 to 0.05 mm for 
manual and automated segmentations, with an RMS CV 

of 1.2–2.0% for manual, and an RMS CV of 1.3–2.2% for 
automated segmentations (Table 5). Precision errors for 
cartilage volume and the total area of subchondral bone 
are also shown in Table 5.

Test–retest precision errors for evaluating the potential 
effect of network overfitting between year-1 and -2 follow-
up MRIs were computed for 39 of the 41 knees from the 
training set, and for all 19 knees from the validation set that 
had manual year-1 and -2 MRI segmentations. In two of the 
knees from the training set, the computation of morphomet-
ric cartilage measures failed because of invalid segmenta-
tions that could not be corrected by the post-processing steps 
(Fig. 3). The test–retest precision errors observed in the 
training and validation sets were similar to those observed in 
knees from the test set, but tended to be greater for some of 
the parameters when computed from automated segmenta-
tions (data not shown), in particular for knees from the vali-
dation set with corFLASH. This can be attributed to three 
of the knees in the validation set, in which the automated 
segmentation from corFLASH differed notably between 
year-1 and -2 follow-up due to obvious segmentation errors 
(Fig. 3).

Table 2  Agreement between manual and U-Net-based automated segmentations determined from n = 21 knees in the test set in the primary run 
(top) and the repeated run (bottom)

Agreement was assessed from coronal FLASH (corFLASH) and sagittal DESS (sagDESS) MRI acquired at the OAI baseline visit
DSC dice similarity coefficient, VOE volume overlap error, HD Hausdorff distance, ASSD average symmetric surface distance, MT/LT medial/
lateral tibia, cMF/cLF central medial/lateral femoral condyle

DSC VOE (%) HD (mm) ASSD (mm)

corFLASH sagDESS corFLASH sagDESS corFLASH sagDESS corFLASH sagDESS

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

Main run: before post-processing
MT 0.92 0.02 0.91 0.02 15.5 3.0 17.1 2.7 8.27 13.32 2.79 1.08 0.15 0.04 0.13 0.03
cMF 0.88 0.03 0.89 0.03 21.9 4.8 20.0 4.3 5.72 11.02 6.14 11.24 0.28 0.13 0.18 0.07
LT 0.92 0.02 0.92 0.02 14.9 3.3 15.4 2.9 8.06 8.80 5.31 8.46 0.17 0.05 0.17 0.04
cLF 0.88 0.02 0.90 0.02 20.8 3.8 17.8 2.8 3.66 2.33 3.86 5.54 0.26 0.09 0.14 0.03
Main run: after post-processing
MT 0.92 0.02 0.91 0.02 15.5 3.0 17.0 2.7 2.28 0.67 2.39 0.47 0.14 0.03 0.13 0.03
cMF 0.91 0.03 0.89 0.03 16.4 4.6 20.1 4.4 2.60 1.21 3.36 0.72 0.13 0.08 0.17 0.06
LT 0.92 0.02 0.92 0.02 14.9 3.3 15.4 2.9 3.00 1.09 3.21 0.92 0.16 0.04 0.17 0.04
cLF 0.91 0.02 0.90 0.02 15.8 4.0 17.9 2.8 2.08 0.56 2.65 0.55 0.13 0.06 0.14 0.03
Repeated run: before post-processing
MT 0.92 0.02 0.91 0.02 15.3 2.7 16.4 2.8 6.38 8.39 2.52 0.78 0.14 0.03 0.13 0.03
cMF 0.84 0.03 0.89 0.03 26.8 5.2 20.0 4.5 8.70 10.12 8.21 11.86 0.44 0.21 0.18 0.09
LT 0.92 0.02 0.92 0.02 14.8 3.4 15.0 2.8 5.64 7.24 3.00 1.00 0.15 0.04 0.16 0.03
cLF 0.88 0.03 0.91 0.02 21.2 4.7 17.0 2.6 5.63 8.64 7.15 12.77 0.25 0.12 0.14 0.05
Repeated run: after post-processing
MT 0.92 0.02 0.91 0.02 15.2 2.7 16.4 2.8 2.21 0.68 2.30 0.62 0.14 0.03 0.13 0.03
cMF 0.91 0.02 0.89 0.03 17.0 3.9 20.2 4.6 2.50 1.00 3.40 0.75 0.14 0.06 0.18 0.07
LT 0.92 0.02 0.92 0.02 14.7 3.4 15.0 2.8 3.02 0.93 3.00 1.00 0.15 0.04 0.17 0.03
cLF 0.90 0.03 0.91 0.02 17.5 4.8 17.1 2.5 2.18 0.48 2.42 0.49 0.16 0.08 0.13 0.02
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The standard error of the measurement (SEM) and 
the smallest detectable change (SDC) for cartilage thick-
ness were comparable between automated (range SEM 
0.04–0.13 mm; range SDC 0.11–0.36 mm) and manual 
(range SEM 0.05–0.10 mm; range SDC 0.13–0.29 mm) 
segmentations and between corFLASH (range SEM 
0.04–0.13 mm; range SDC 0.11–0.36 mm) and sagDESS 
MRI (range SEM 0.05–0.10 mm; range SDC 0.13–0.29 mm; 
Table 6). SEM and SDC for cartilage volume and total area 
of subchondral bone are shown in Table 6.

Discussion

In this study, we have evaluated the segmentation agreement, 
accuracy, and the longitudinal test–retest reproducibility of 
an automated, 2D U-Net-based method for the segmentation 
and quantitative morphometric analysis of articular carti-
lage, using two MRI acquisition contrasts and orientations 
frequently used in clinical trials. The results demonstrate 
not only a high level of agreement of the segmentations, but 
also a high level of accuracy, and longitudinal test–retest 
reproducibility of morphometric analyses derived from the 
automated method, relative to those obtained from quality-
controlled, manual segmentations as ground truth.

The U-Net architecture was chosen for automated seg-
mentation, because it was designed to provide precise seg-
mentations even when trained with relatively few examples 
[13]. The U-Net was originally intended for segmentation 
of neuronal structures in electron microscopic stacks, but 
previous studies have successfully applied it to segmentation 
of various musculoskeletal structures including cartilage 
[14–21, 23, 34]. The current study extends previous work 
on the relatively good agreement and accuracy demonstrated 
by U-Net-based cartilage segmentation methods [14–21, 23] 
by evaluating the accuracy, and particularly the longitudinal 
test–retest reproducibility of a U-Net-based segmentation 
pipeline for cartilage morphometry from two different MRI 
contrasts and orientations. This is a prerequisite before a 
segmentation technique can be applied to longitudinal 
MRI acquisitions from observational or clinical trials, with 
the main purpose of this technique being to detect small 

longitudinal changes in clinical trials and to measure the 
potential impact of disease-modifying treatment on these 
longitudinal changes. Recent studies also reported that the 
performance of the U-Net architecture for the segmenta-
tion of knee cartilages is on par with that observed for other 
current network architectures such as the V-Net, SegNet, 
and DeepLabV3+ [23, 37]. In contrast to the technique pro-
posed by Ronneberger et al. [13], the current study did not 
employ data augmentation to artificially increase the number 
of examples for the training. This decision was based on 
the observation that data augmentation did not improve the 
agreement with manual segmentation results, when initially 
evaluating the impact of various parameters before the con-
duct of this study (data not shown). This observation was 
likely, because simple data augmentation techniques may not 
fully capture the heterogeneity of real-world data to improve 
the internal representations learned by the network. The 
same was observed when evaluating different loss functions 
(dice vs. weighted cross-entropy) or different weights for the 
weighted cross-entropy loss function, which were found to 
have a negligible impact (data not shown).

Similarly, we observed consistent results when repeat-
ing the training of the model using the same data, dem-
onstrating the repeatability of the model training. Similar 
metrics were also observed when reverting the assignment 
of data to training, validation, and test set. The combina-
tion of features used for training the networks, in contrast, 
had an important impact on segmentation agreement: some 
combinations, such as including both the medial and the 
lateral femoral condyle in one model for sagDESS, did not 
lead to high segmentation agreement, most likely because 
of the similarity of the medial and lateral femoral cartilages. 
We, therefore, trained two separate networks for the seg-
mentation of medial and lateral femorotibial compartment 
cartilages from sagDESS and this combination showed a 
similar performance as the one network trained for the car-
tilage segmentation from corFLASH MRI, despite the dif-
ferences in orientation, resolution, and contrast. A combined 
network trained for the segmentation of both sagDESS and 
corFLASH MRI was also evaluated but showed a worse per-
formance than the chosen combination of separate networks. 
It remains unknown, whether this is due to the different ori-
entation or contrast (or a combination of both), but we con-
clude that sequence- and contrast-specific models may be 
superior to more general models that take greater variability 
of the features into account.

Most previous studies using CNNs for automated femo-
rotibial cartilage segmentation reported DSCs between 0.78 
and 0.92, and VOEs between 17 and 34% [14–16, 18–21, 
23] and only one study using a combined bone and cartilage 
segmentation pipeline reported a higher DSC of 0.98 for 
femoral cartilage [17]. The agreement observed between 
automated and manual segmentations in the current study, 

Fig. 3  Examples of manual and U-Net-based automated segmenta-
tions from coronal FLASH and sagittal DESS illustrating the range 
of agreement observed in this study. Rows 1–3: Examples with high 
agreement, rows 4–6: examples with low agreement or segmentation 
errors taken from the training and validation set. Cartilage plates are 
shown in blue (medial tibia), yellow (central medial femur), turquoise 
(lateral tibia), and green (central lateral femur) in the two middle col-
umns. The right column shows pixel contained in both manual and 
automated segmentations in green, pixel only contained in manual 
segmentations in purple, and pixel only contained in automated seg-
mentations in blue

◂
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therefore, compared favorably to that reported previously, 
both for corFLASH and sagDESS MRI. However, it should 
be noted that DSC comparisons across studies should be 
made with caution due to differences in which subjects the 
automated approaches are tested on.

The main purpose of the post-processing was not to 
improve agreement between both segmentation methods, 
but to correct implausible segmentations that precluded the 
computation of quantitative parameters of cartilage mor-
phology. The post-processing step hence only had a small 

Table 3  Comparison of 
quantitative cartilage measures 
between manual and U-Net-
based automated segmentations 
determined from n = 21 knees 
from the test set

Quantitative measures were calculated from coronal FLASH (corFLASH) and sagittal DESS (sagDESS) 
MRI acquired at the OAI baseline visit
MFTC/LFTC medial/lateral femorotibial compartment, MT/LT medial/lateral tibia, cMF/cLF central 
medial/lateral femoral condyle, P p value from paired t-tests, r Pearson correlation coefficient

Manual U-Net Manual vs. U-Net

Mean SD Mean SD Diff (%) P r

Cartilage thickness (mm)
MFTC corFLASH 3.6 0.4 3.8 0.4 5.1 < 0.001 0.96

sagDESS 3.4 0.5 3.5 0.4 2.8 0.019 0.95
MT corFLASH 1.7 0.2 1.8 0.2 4.7 < 0.001 0.97

sagDESS 1.6 0.2 1.7 0.2 3.7 0.006 0.93
cMF corFLASH 1.8 0.3 1.9 0.2 5.5 < 0.001 0.93

sagDESS 1.8 0.3 1.8 0.2 1.9 0.224 0.92
LFTC corFLASH 3.8 0.5 4.0 0.5 4.4 < 0.001 0.98

sagDESS 3.8 0.5 3.9 0.5 4.1 < 0.001 0.97
LT corFLASH 2.1 0.3 2.2 0.3 4.6 < 0.001 0.97

sagDESS 2.0 0.3 2.1 0.3 3.5 < 0.001 0.97
cLF corFLASH 1.7 0.3 1.8 0.2 4.2 < 0.001 0.97

sagDESS 1.7 0.3 1.8 0.2 4.8 0.001 0.96
Cartilage volume (mm3)
MFTC corFLASH 2947 829 3218 797 9.2 < 0.001 0.99

sagDESS 2801 794 2912 737 4.0 0.005 0.98
MT corFLASH 1945 570 2120 534 9.0 < 0.001 0.99

sagDESS 1703 532 1848 496 8.5 < 0.001 0.98
cMF corFLASH 1003 279 1099 277 9.6 < 0.001 0.96

sagDESS 1098 285 1064 256 -3.1 0.154 0.93
LFTC corFLASH 3123 859 3421 904 9.6 < 0.001 0.99

sagDESS 3291 928 3433 872 4.3 < 0.001 0.99
LT corFLASH 2083 589 2294 622 10.1 < 0.001 0.99

sagDESS 2144 646 2295 618 7.0 < 0.001 0.99
cLF corFLASH 1039 298 1128 302 8.5 < 0.001 0.98

sagDESS 1147 311 1138 264 -0.8 0.623 0.97
Total area of subchondral bone (cm2)
MFTC corFLASH 16.1 2.8 16.3 2.8 1.5 0.040 0.98

sagDESS 15.3 2.7 15.7 2.7 2.5 < 0.001 0.99
MT corFLASH 11.0 1.9 11.2 1.8 1.7 0.027 0.98

sagDESS 10.0 1.7 10.4 1.8 3.8 < 0.001 0.99
cMF corFLASH 5.1 1.0 5.2 1.0 1.1 0.395 0.96

sagDESS 5.3 1.0 5.3 1.0 0.0 0.999 0.95
LFTC corFLASH 15.2 2.6 15.5 2.7 1.9 0.015 0.98

sagDESS 15.6 2.8 15.8 2.7 1.6 0.024 0.99
LT corFLASH 9.4 1.6 9.7 1.7 2.9 0.010 0.96

sagDESS 9.9 1.7 10.1 1.7 2.2 0.018 0.98
cLF corFLASH 5.8 1.1 5.8 1.1 0.1 0.904 0.98

sagDESS 5.7 1.1 5.7 1.0 0.5 0.485 0.99
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impact on overlap-based measures of agreement (DSC 
and VOE), whereas the distance-based measures (HD and 
ASSD) were improved substantially. This can be attributed 
to the higher sensitivity of distance-based metrics to implau-
sible segmentations where the real boundaries of the carti-
lage are missed.

The automated segmentation produced consistently 
greater cartilage thickness of up to 5% than manual segmen-
tation, with this systematic offset being more pronounced 
in corFLASH than sagDESS. Similar offsets were observed 
for cartilage volume, but not for the total area of subchon-
dral bone, indicating that the overestimation is not caused 
at the edges of the cartilage plates but at the bone–cartilage 

interface or the articular cartilage surface. A similar over-
estimation of cartilage thickness and volume has also been 
observed previously for U-Net-based segmentations [14]. 
Yet, because these were consistent longitudinally, and 
because correlations with manual segmentations were high, 
this does not preclude that longitudinal changes in cartilage 
thickness (the main focus in clinical trials investigating the 
efficacy of therapeutic intervention) can be measured with 
the same sensitivity to change as by manual segmentation.

The current study relied on knees from the healthy ref-
erence cohort that were additionally confirmed to be free 
from radiographic OA. Some of these knees already had 
joint abnormalities visible on MRI [38] that did, however, 

Fig. 4  Bland and Altman plots relating the cartilage thickness differ-
ence between U-Net-based automated vs. manual segmentations to 
the cartilage thickness averaged over these two segmentation methods 
for coronal FLASH MRI (corFLASH, top row) and sagittal DESS 

MRI (sagDESS, bottom row). The mean difference (continuous line) 
and the 95% limits of agreement (dotted lines) are shown in red for 
each of the four femorotibial cartilages

Fig. 5  Bland and Altman plots relating the cartilage thickness differ-
ence between coronal FLASH vs sagittal DESS MRI to the cartilage 
thickness averaged over these two imaging protocols for both manual 
(top row) and U-Net-based automated segmentations (bottom row). 

The mean difference (continuous line) and the 95% limits of agree-
ment (dotted lines) are shown in red for each of the four femorotibial 
cartilages
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not translate into a significant, disease-related change in 
medial or lateral femorotibial cartilage thickness over the 
first 2 years after enrollment, the period also included in 
this study [26, 39]. The statistically significant changes 
observed in the knees from the test set between year-1 and 
-2 follow-up for some of the measures can therefore most 
likely be attributed to statistical artifacts induced by meas-
urement error. In addition, the changes were mostly compa-
rable between cartilage measures computed from automated 

and manual segmentations, indicating a similar longitudi-
nal reproducibility for both segmentation methods. This 
was also confirmed by the SEM, which was comparable for 
cartilage thickness computed from manual and automated 
segmentations. The precision errors observed in the current 
study were in the same range as those reported by Brem et al. 
and Tamez-Pena et al. for sagDESS [12, 40] and lower than 
the test–retest precision errors previously reported for cor-
FLASH and sagDESS from unpaired, manual segmentations 
[24]. The low precision errors observed with the automated 
segmentation method is encouraging and advocates further 
application to longitudinal image acquisitions of osteoar-
thritic knees to evaluate its sensitivity to longitudinal change 
in cartilage thickness (cartilage loss). The test–retest preci-
sion errors in the test set were also not observed to be greater 
than those in the training or validation set. Rather, validation 
set test–retest errors of the automated segmentations were 
greater with corFLASH, because of implausible segmenta-
tions in a small number of knees. These findings suggest that 
the U-Net was not affected by overfitting to data used for the 
training process. At the same time, these findings highlight 
the importance of expert quality control, to ensure correct 
and accurate cartilage segmentations, and they highlight the 
challenge of applying fully automated segmentation blindly, 
without thoroughly checking segmentation results.

A limitation of the current study is that it only included 
radiographically normal knees from asymptomatic patients. 
However, approximately 50% of these knees demonstrated 
femorotibial cartilage lesions, along with other structural 
pathologies such as osteophytes, bone marrow lesions, 
meniscus damage and extrusion, effusion-synovitis and 
Hoffa-synovitis that affect either the cartilage appearance 
or that of surrounding tissues [38]. Still, these lesions did not 

Table 4  Correlation between absolute differences in cartilage thick-
ness and measures of agreement between U-Net and manual segmen-
tations

Absolute cartilage thickness differences between U-Net-based, auto-
mated and manual segmentations calculated from coronal FLASH 
(corFLASH) and sagittal DESS (sagDESS) MRI acquired at the OAI 
baseline visit
MT/LT medial/lateral tibia, cMF/cLF central medial/lateral femo-
ral condyle, DSC dice similarity coefficient, HD Hausdorff distance, 
ASSD average symmetric surface distance
Bold face indicates significant correlation coefficients (p < 0.05)

DSC VOE HD ASSD

corFLASH
MT − 0.61 0.61 − 0.15 0.44
cMF − 0.49 0.50 − 0.17 0.26
LT − 0.50 0.50 − 0.29 0.38
cLF − 0.32 0.32 − 0.19 0.14
sagDESS
MT − 0.09 0.10 − 0.02 − 0.01
cMF − 0.42 0.43 0.10 0.33
LT − 0.58 0.58 − 0.35 0.00
cLF − 0.42 0.42 − 0.38 0.05

Fig. 6  Scatter plots relating the agreement to the absolute difference 
in cartilage thickness between U-Net-based automated vs. manual 
segmentations for coronal FLASH MRI (corFLASH, top row) and 
sagittal DESS MRI. sagDESS bottom row, DSC dice similarity coeffi-

cient, VOE volume overlap error, HD Hausdorff distance, ASSD aver-
age symmetric surface distance, MT/LT medial/lateral tibia, cMF/cLF 
central medial/lateral femoral condyle
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Table 5  Longitudinal test–retest reproducibility for manual and U-Net-based segmentations determined from year-1 and -2 follow-up MRIs of 
n = 21 knees from the test set

Longitudinal stability and test–retest precision assessed from coronal FLASH (corFLASH) and sagittal DESS (sagDESS) MRI acquired at the 
OAI year-1 and -2 follow-up visits
MC mean change; SD standard deviation; P p-value from paired t-tests; RMS SD Root mean square standard deviation in mm (cartilage thick-
ness),  mm3 (cartilage volume),  cm2 (total area of subchondral bone); RMS CV root mean square coefficient of variation (in %); MFTC/LFTC 
medial/lateral femorotibial compartment; MT/LT medial/lateral tibia; cMF/cLF central medial/lateral femoral condyle

Manual U-Net

MC ± SD MC (%) P RMS SD RMS CV% MC ± SD MC (%) P RMS SD RMS CV%

corFLASH
Cartilage thickness (mm)
 MFTC 0.00 ± 0.06 0.1 0.76 0.04 1.2 0.00 ± 0.05 0.0 0.93 0.04 1.0
 MT 0.00 ± 0.04 0.0 0.96 0.02 1.5 0.01 ± 0.03 0.3 0.41 0.02 1.1
 cMF 0.00 ± 0.04 0.2 0.67 0.03 1.5 0.00 ± 0.04 − 0.2 0.62 0.03 1.4
 LFTC 0.01 ± 0.07 0.2 0.71 0.05 1.3 0.01 ± 0.09 0.2 0.64 0.06 1.6
 LT 0.00 ± 0.04 − 0.2 0.72 0.03 1.3 0.01 ± 0.07 0.3 0.65 0.05 2.1
 cLF 0.01 ± 0.04 0.5 0.38 0.03 1.9 0.00 ± 0.05 0.2 0.81 0.04 2.1

Cartilage volume  (mm3)
 MFTC 2.6 ± 63.4 0.1 0.85 43.8 1.5 − 0.7 ± 79.3 0.0 0.97 54.7 1.7
 MT − 2.3 ± 51.6 − 0.1 0.84 35.6 1.9 5.5 ± 66.7 0.3 0.71 46.2 2.2
 cMF 4.9 ± 30.2 0.5 0.47 21.1 2.2 − 6.3 ± 39.5 − 0.6 0.47 27.6 2.6
 LFTC − 9.2 ± 69.5 − 0.3 0.55 48.4 1.6 − 41.8 ± 108.1 − 1.2 0.09 80.2 2.4
 LT − 13.5 ± 58.9 − 0.6 0.31 41.8 2.0 − 33.1 ± 80.2 − 1.5 0.07 60.1 2.7
 cLF 4.3 ± 30.4 0.4 0.52 21.2 2.1 − 8.6 ± 55.9 − 0.8 0.49 39.1 3.5

Total area of subchondral bone  (cm2)
 MFTC − 0.01 ± 0.12 − 0.1 0.66 0.08 0.5 − 0.03 ± 0.31 − 0.2 0.66 0.22 1.3
 MT − 0.03 ± 0.10 − 0.3 0.20 0.07 0.6 0.00 ± 0.23 0.0 1.00 0.16 1.4
 cMF 0.02 ± 0.08 0.3 0.37 0.06 1.1 − 0.03 ± 0.17 − 0.6 0.43 0.12 2.4
 LFTC − 0.03 ± 0.12 − 0.2 0.33 0.09 0.6 − 0.17 ± 0.45 − 1.1 0.09 0.33 2.2
 LT − 0.02 ± 0.10 − 0.3 0.30 0.07 0.8 − 0.10 ± 0.38 − 1.0 0.25 0.27 2.8
 cLF 0.00 ± 0.07 − 0.1 0.86 0.05 0.9 − 0.08 ± 0.24 − 1.3 0.16 0.17 3.0

sagDESS
Cartilage thickness (mm)
 MFTC 0.03 ± 0.05 0.8 0.01 0.04 1.2 0.01 ± 0.07 0.3 0.47 0.05 1.4
 MT 0.02 ± 0.03 1.1 0.02 0.03 1.5 0.02 ± 0.04 1.0 0.05 0.03 1.7
 cMF 0.01 ± 0.04 0.6 0.22 0.03 1.7 − 0.01 ± 0.05 − 0.3 0.63 0.04 2.1
 LFTC 0.01 ± 0.07 0.4 0.39 0.05 1.4 − 0.02 ± 0.07 − 0.4 0.33 0.05 1.3
 LT 0.02 ± 0.06 0.8 0.24 0.04 2.0 − 0.01 ± 0.05 − 0.4 0.38 0.03 1.5
 cLF 0.00 ± 0.04 − 0.1 0.90 0.03 1.6 − 0.01 ± 0.06 − 0.4 0.61 0.04 2.2

Cartilage volume  (mm3)
 MFTC 23.9 ± 63.8 0.9 0.10 47.1 1.7 − 4.0 ± 79.5 − 0.1 0.82 54.9 1.9
 MT 22.9 ± 44.5 1.3 0.03 34.7 2.0 3.3 ± 55.6 0.2 0.79 38.4 2.1
 cMF 1.1 ± 34.3 0.1 0.89 23.7 2.2 − 7.3 ± 47.3 − 0.7 0.49 33.0 3.3
 LFTC 34.3 ± 83.2 1.0 0.07 62.3 1.9 − 29.3 ± 123.5 − 0.9 0.29 87.7 2.7
 LT 29.0 ± 70.6 1.4 0.07 52.9 2.5 − 5.4 ± 84.8 − 0.2 0.77 58.7 2.6
 cLF 5.3 ± 28.8 0.5 0.41 20.2 1.7 − 23.9 ± 63.0 − 2.3 0.10 46.6 4.5

Total area of subchondral bone  (cm2)
 MFTC − 0.02 ± 0.24 − 0.1 0.77 0.16 1.1 − 0.13 ± 0.41 − 0.8 0.17 0.30 1.9
 MT 0.04 ± 0.17 0.4 0.36 0.12 1.2 − 0.09 ± 0.30 − 0.8 0.21 0.22 2.1
 cMF − 0.05 ± 0.10 − 1.0 0.03 0.08 1.4 − 0.04 ± 0.27 − 0.8 0.48 0.19 3.6
 LFTC 0.06 ± 0.17 0.4 0.10 0.13 0.8 − 0.12 ± 0.45 − 0.8 0.24 0.32 2.0
 LT 0.05 ± 0.13 0.5 0.08 0.09 0.9 0.00 ± 0.27 0.0 0.96 0.19 1.9
 cLF 0.02 ± 0.12 0.3 0.56 0.08 1.4 − 0.12 ± 0.25 − 2.1 0.04 0.19 3.4
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translate into a detectable pathological change in medial or 
lateral femorotibial cartilage thickness over the first 2 years 
as previously reported [26, 39]. The OAI healthy reference 
cohort was, therefore, not only selected as a starting point 
in testing the U-Net-based segmentation approach, but also 
because the longitudinal reproducibility of the measure-
ment can only be evaluated in the absence of pathological 
cartilage change. Hence, the OAI healthy reference cohort 
was ideally suited for that purpose, and has been previously 
used to establish progressor thresholds of cartilage loss [26]. 
Given that test–retest errors using the U-Net segmentation 
approach were similar to those from manual, quality-con-
trolled segmentations, it can be assumed that the progres-
sor thresholds for cartilage thickness change also apply for 
automated segmentations. Another limitation of the method 
is that, although the U-Net provided accurate segmentation 
for many of the knees, it failed to provide complete cartilage 
segmentations in some of the slices, and produced implausi-
ble segmentations in others. We were able to overcome some 
of these errors using the post-processing steps, but a simple, 
rule-based approach cannot compensate for incomplete seg-
mentations. Such incomplete segmentations are most likely 

explained by the fact that the U-Net has no “real” knowledge 
about the context of the cartilages, and none about valid 
shapes. We, therefore, strongly recommend thorough qual-
ity control of all segmentations by an expert reader, and 
to perform manual corrections of automated segmentations 
where needed. Another limitation of the current study is 
that the femoral ROI marked by the readers in the manually 
segmented data sets was applied to both the manual and the 
automated segmentations to ensure comparability between 
manual and automated measures. This femoral ROI was, 
however, necessary to exclude posterior parts of the femoral 
cartilages from the segmentation, which are affected from 
partial volume effects in coronal MRIs and display a lesser 
amount of longitudinal change than the weight-bearing part 
in knee OA [30]. A strength of the current study is that it 
did not only confine itself to the analysis of DSCs and other 
measures of segmentation similarity, but also directly evalu-
ated the accuracy and longitudinal test–retest reproducibility 
of morphometric cartilage measures, such as thickness, vol-
ume, and surface area derived from the automated segmenta-
tions. Another strength is that the approach was tested in the 
same knees for two different MRI contrasts and orientations, 

Table 6  Standard error of 
measurement (SEM) and 
smallest detectable change 
(SDC) thresholds computed 
from year-1 and -2 follow-up 
MRIs of n = 21 knees from the 
test set

SEM and SDC were computed from coronal FLASH (corFLASH) and sagittal DESS (sagDESS) MRI 
acquired at the OAI year-1 and -2 follow-up visits
MFTC/LFTC medial/lateral femorotibial compartment, MT/LT medial/lateral tibia, cMF/cLF central 
medial/lateral femoral condyle

corFLASH sagDESS

Manual U-Net Manual U-Net

SEM SDC SEM SDC SEM SDC SEM SDC

Cartilage thickness (mm)
MFTC 0.09 0.24 0.07 0.21 0.07 0.20 0.10 0.28
LFTC 0.10 0.27 0.13 0.36 0.10 0.29 0.10 0.28
MT 0.05 0.14 0.04 0.11 0.05 0.13 0.05 0.15
cMF 0.06 0.16 0.05 0.15 0.06 0.16 0.08 0.21
LT 0.06 0.15 0.09 0.26 0.08 0.23 0.06 0.18
cLF 0.06 0.17 0.08 0.21 0.06 0.16 0.08 0.22
Cartilage volume (mm3)
MFTC 90 249 112 311 90 250 112 312
LFTC 98 273 153 424 118 326 175 484
MT 73 202 94 261 63 175 79 218
cMF 43 118 56 155 49 135 67 185
LT 83 231 113 314 100 277 120 332
cLF 43 119 79 219 41 113 89 247
Total area of subchondral bone (cm2)
MFTC 0.17 0.46 0.44 1.22 0.34 0.93 0.59 1.63
LFTC 0.18 0.49 0.64 1.77 0.25 0.68 0.63 1.75
MT 0.13 0.37 0.32 0.89 0.25 0.68 0.42 1.17
cMF 0.12 0.32 0.25 0.68 0.14 0.38 0.38 1.06
LT 0.15 0.41 0.53 1.47 0.18 0.49 0.39 1.08
cLF 0.10 0.29 0.33 0.93 0.16 0.45 0.36 0.99
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which are both frequently applied in clinical trials. Finally, 
the current study provided progression thresholds based on 
the SDC methodology [36], which can be used for classify-
ing knees into those showing progression vs those who do 
not show progression.

In conclusion, this is the first study to test the accuracy 
and longitudinal test–retest reproducibility of quantitative 
cartilage morphometry using an automated, U-Net-based 
segmentation approach, using the two image contrasts and 
orientations that are most frequently used in clinical trials. 
We not only demonstrate a high level of agreement between 
automated vs. manual “ground truth” segmentation, but also 
a high level of accuracy, and longitudinal test–retest repro-
ducibility for morphometric analysis of articular cartilage 
derived from the automated method. Yet, post-processing 
steps and expert quality control are highly recommended. 
Future research will establish with which level of sensitiv-
ity the method is able to detect longitudinal change over 
time in diseased knees, and the efficacy of therapeutic inter-
vention on stopping or reverting articular cartilage loss in 
osteoarthritis.
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