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Antibiotic resistance: inevitable?

When antibiotics first came into use, they

were so effective at curbing bacterial infec-

tions that it seemed the age-old battle of

man vs. microbe would soon be at an end

[1]. Eighty years and dozens of drugs

later, we now know better. Following each

new antibiotic’s launch, reports soon

accumulated that once-treatable infections

were becoming refractory to the drug [2].

Nowadays, many infectious strains are

already resistant to multiple antibiotics [3].

Treating such cases is becoming more

and more difficult, expensive and risky.

Meanwhile, the supply of new antibiotics

hasstalled.All thisaddsuptoamajorglobal

crisis. It is already underway, and it is

worsening every day [3].

The rise of resistance is simply adapta-

tion—evolution in action. Bacteria’s large

populations and their proclivity for

swapping genes mean that mutants arise

regularly, and thereafter, the fittest mutants

spread through natural selection. So is resi-

stance wholly inevitable? Not necessarily!

Evolutionary theory not only explains why

resistance occurs but it also offers clues as

to how we might be able to prevent it—or at

least slow it.

Evolutionary perspectives

First, we can try to reduce the risk of resist-

ance arising in the first place [4]. To resist a

single antibiotic, one mutation might suf-

fice, but to resist a ‘cocktail’ of distinct drug

types, more complex suites of mutations

may be needed—the odds of which should

be lower. We can also narrow the range of

potential ‘routes to resistance’. In bacteria,

resistance most typically involves changes

on or within cells - blocking a drug’s entry,

expelling or degrading it before it can act, or

altering its intracellular target [5]. Drugs

that act outside the cell may thus be less

likely to elicit resistance-conferring muta-

tions [6].

However, resistance can still arise, so we

should try to minimise its spread [4]. One

approach is to use drugs that curb bacterial

virulence but not growth. Mutants resistant

against such drugs, if they arise, should

have no growth advantage over susceptible

types. Another approach would be to target

the secreted virulence factors that are

shared cooperatively among co-infecting

bacteria. Mutants able to maintain produc-

tion of the shared virulence factors would

benefit both resistant and susceptible vari-

ants alike, and so should have no selective

advantage [4, 6].

Future implications

Dothese ideas for ‘evolution-proofing’have

empirical support? Combination therapy

has been used for years, yet data suggests

thatonlycertaindrugmixeswork—andonly

for certain infections [7]. More recent ideas,

however, may hold greater promise.

Examples include: (i) preventing adhesion

to host tissue [8]—a therapy that acts

extracellularly; (ii) inhibiting communica-

tion among bacteria [9]—a therapy inhibit-

ing the collective release of sharable toxins;

and (iii) the extracellular quenching of iron-

binding molecules [6]—another therapy

that, by targeting a social trait, curbs the

growthof resistantandsusceptiblebacteria

alike. ‘Evolution-proof’ therapies may thus

already exist, but more work is needed—

urgently—if they are to make their way into

the clinic.
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