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Abstract: In preparation for division, bacteria replicate their DNA and segregate the newly formed
chromosomes. A division septum then assembles between the chromosomes, and the mother cell
splits into two identical daughters due to septum degradation. A major constituent of bacterial
septa and of the whole cell wall is peptidoglycan (PGN), an essential cell wall polymer, formed by
glycan chains of β−(1-4)-linked-N-acetylglucosamine (GlcNAc) and N-acetylmuramic acid (MurNAc),
cross-linked by short peptide stems. Depending on the amino acid located at the third position
of the peptide stem, PGN is classified as either Lys-type or meso-diaminopimelic acid (DAP)-type.
Hydrolytic enzymes play a crucial role in the degradation of bacterial septa to split the cell wall
material shared by adjacent daughter cells to promote their separation. In mycobacteria, a key PGN
hydrolase, belonging to the NlpC/P60 endopeptidase family and denoted as RipA, is responsible for
the degradation of septa, as the deletion of the gene encoding for this enzyme generates abnormal
bacteria with multiple septa. This review provides an update of structural and functional data
highlighting the central role of RipA in mycobacterial cytokinesis and the fine regulation of its catalytic
activity, which involves multiple molecular partners.
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1. Introduction to Cytokinesis in Bacteria

The bacterial cell division is a complex cell cycle by which a parent cell divides into two
daughter cells. This process is characterized by two main events: chromosome segregation and
cytokinesis (Figure 1) [1,2]. A single, circular chromosome replicates its DNA and, after replication,
the two chromosomes move towards opposite ends of the cell in a process called segregation. After
the completion of chromosome segregation, the division process begins with the formation of the
septal ring, called Z-ring, a polymer of the tubulin-like GTPase FtsZ, which is almost universally
conserved [3–5] (Figure 1). The Z-ring is stabilized by FtsA and ZipA (Z-interacting protein A) [6,7].
Subsequently, other protein factors are recruited to the cytokinetic ring, forming a piece of complex
machinery called the divisome [8,9].

In Mycobacterium tuberculosis, FtsZ has been recognized as one of the major cytoskeletal organizers
of the mycobacterial divisome [10]. Indeed, depletion of FtsZ results in long filamentous cells [4,10].
The mechanisms by which a Z-ring composed of FtsZ subunits contracts remains enigmatic. In
M. tuberculosis, it has been proposed that GTP hydrolysis and/or nucleotide release induces a
conformational change that alters the intersubunit packing of FtsZ polymer, an event which likely
promotes ring contraction [11].
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The ring formed by FtsZ recruits both structural and enzymatic proteins involved in peptidoglycan
(PGN) synthesis and, thus, in the formation of the septum [12,13]. Then, this septal PGN, initially
shared between daughter cells, must be degraded by PGN hydrolases to complete the division process.
However, a central problem is to understand how the events of cell division inside the cell send signals
that trigger PGN hydrolysis by hydrolases outside the cell. A currently accepted model is that FtsE
and FtsX sense the progress of cell division and regulate extracellular PGN hydrolases. Of these, FtsE
links the Z-ring to the transmembrane protein, FtsX, which senses the PGN hydrolases outside the
cell [14]. More specifically, FtsE hydrolyzes ATP to ADP upon sensing an unknown signal from inside
the cell. This hydrolysis causes a conformational change that is transmitted through the membrane via
FtsX. A conformational change of the extracellular part of FtsX results in an interaction with either cell
wall hydrolases or effector proteins and activation of PGN hydrolysis [15].

In Escherichia coli, FtsX controls the activity of the PGN amidases AmiA and AmiB through
interactions with the effector protein EnvC [16], whereas in Streptococcus pneumoniae, FtsX is known
to interact with PcsB, a putative CHAP (Cys, His, Asp peptidase) protein predicted to hydrolyze
PGN cross-links [17]. In mycobacteria, several PGN hydrolases have been discovered in recent years,
including (i) one N-acetylmuramoyl-L-alanine amidase [18,19]; (ii) five homologous endopeptidases of
the NlpC/P60 family, among which RipA plays a central role [20–22]; and (iii) a set of five homologous
glycosidases, named resuscitation-promoting factors, RpfA-E, which are known to be involved in
mycobacterial resuscitation from dormancy [23–25]. This work will review structural and functional
data related to PGN hydrolases involved in cell division and the complex mechanism of regulation of
PGN hydrolysis in mycobacteria.
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2. The Peptidoglycan Nature of The Septal Ring

The cell envelope of the M. tuberculosis plays a key role in bacterial virulence and antibiotic
resistance, although there is still a lot to discover about the molecular mechanisms of regulation of
cell-envelope formation. Since it is unique among prokaryotes, its proteins, carbohydrate, and lipid
components have been the subject of interest for developing new vaccines [26–29]. The molecular and
architectural complexity of the mycobacterial cell wall is strictly related to the pathogenicity of the
bacterium [30,31]. The uncommon impermeable properties of the M. tuberculosis cell wall and the
richness in high molecular weight lipids provide a thick layer involved in M. tuberculosis resistance to
antibiotics and stressful conditions [32].
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M. tuberculosis cell envelope is made up of three parts: the plasma membrane, the cell wall core, and
the capsule. The cell wall core consists of two parts, named as lower and upper segments. The lower
segment is composed of an impermeable layer of mycolic acids (MA) connected to a peptidoglycan
layer through arabinogalactans (AG) (Figure 2A) [26]. This mycolyl-arabinogalactan-peptidoglycan
(mAGP) complex is crucial for the viability of M. tuberculosis and it is important for cell wall integrity
and osmotic stability [26]. The upper segment, also named as outer membrane, contains proteins,
sulfolipids, phosphatidylinositol mannosides (PIMs), phthiocerol-containing lipids, lipomannan
(LM), lipoarabinomannan (LAM), and mycolic acids esters, principally trehalose-6,6-dimycolate
(TDM) and trehalose mono-mycolate (TMM) (Figure 2A) [27–29]. Several studies have shown
that PIMs, LM, and LAM exhibit important and distinct immunomodulatory properties. Indeed,
they regulate the production and secretion of pro-inflammatory cytokines during mycobacterial
phagocytosis by macrophages [26,28,33]. The most cell-surface-exposed material is composed
of capsular polysaccharides, proteins, and small amounts of lipids [34,35]. Surface proteins and
polysaccharides are responsible for adhesion, penetration, infection, and survival of M. tuberculosis in
the host cells [36–40].
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PGN is an essential and dynamic element of the mycobacterial cell wall. Its biosynthesis is
targeted by many potent antibiotics and several enzymes involved in cell division final process,
due to its abundance at the bacterial septal ring [41–43]. It is a polymer composed of alternating
N-acetylglucosamine (GlcNAc) and N-acetylmuramic acid (MurNAc) residues, linked in a β(1→4)
configuration [44]. These glycan strands are cross-linked by short peptides containing peculiar amino
acids, for example d-Ala, d-Glu and meso-diaminopimelic acid (DAP) (Figure 2B).

3. Septal Ring Degradation and Daughter Cell Division

Septal PGN is initially shared between daughter cells and must be degraded by PGN hydrolases
to complete the division process. Bacterial cellular division ends with cell disconnection, a mechanism
needed to disconnect the two new daughter sacculi after the cell division is completed, or at the very
late step of cell division. The process of daughter cell separation requires a delicate balance of cell wall
hydrolases that cleave the septa connecting the daughter cells. Cell-separating enzymes usually contain
endopeptidase domains, like cysteine histidine aminopeptidase (CHAP) or NLPC/P60 domains, and/or
glucosaminidase domains [45–47]. Interestingly, as many as 18 hydrolases are known to be involved in
septum cleavage of E. coli, while only a few hydrolases are known in mycobacteria [41,42,48] (Table 1).

Table 1. Structural data available for septal PGN hydrolases of M. tuberculosis.

Protein Code Fragment PDB code Ref

RipA Rv1477 263−472 3ne0,4q4g, 4q4n,4q4t [20,49]

40−240 6ewy [50]

RipB Rv1478 30−241 3pbi [51]

RipD Rv1566c 38−169 4jxb [52]

38−182 4lj1 [52]

RpfB Rv1009 194−362 3eo5 [25]

282−362 4emn,4kl7,4kpm [23,53]

115−362 5e27 [24]

RpfC Rv1884c 68−159 4ow1 [54]

68−146 2n5z [55]

RpfE Rv2450c 98−172 4cge [56]

As described above, five NlpC/P60 proteins are predicted to be secreted by M. tuberculosis, although
Rv0024 lacks a recognizable signal peptide (SP). RipA (Rv1477), RipB (Rv1478), RipC (Rv2190c), and
Rv0024 show the typical architecture, with the catalytic domain at the C-terminus (Figure 3). Differently,
RipD (Rv1566c) encodes an N-terminal catalytic domain. This domain does not show peptidoglycan
hydrolase activity, which is consistent with the sequence alterations at the catalytic site [52]. RipA
and RipB contain pro-domains just before the catalytic domain, which were shown to inactivate the
enzymes [20,51]. In contrast, the RipC catalytic domain is preceded by a proline-rich linker with no
inactivating function [57]. In addition, both RipA and RipC contain a predicted N-terminal coiled-coil
domain (Figure 3).
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Figure 3. Schematic view of all five NlpC/P60 homologs encoded in the M. tuberculosis genome.

RipA is the largest and more complex endopeptidase. It is a key enzyme for M. tuberculosis cell
division, with remarkable effects on the bacterial phenotype, as shown in M. smegmatis. Indeed, RipA
depletion strains exhibit a decreasing growth and an abnormal phenotype, consisting of branching
and chaining bacteria [58]. Similar to other cell separating endopeptidases, like CwlT from Bacillus
subtilis [59] and Spr from E. coli [60], RipA hydrolyzes peptidoglycan peptide crosslinks [21].

Crystallographic studies of RipA first [20] and then of RipB [51] have yielded new insights into
the functional regulation of these enzymes. The structure of RipA catalytic domain comprises a
central β-sheet of six antiparallel β-strands, a small two-stranded β-sheet, and six helices, arranged
in an αββααββββββ topology (Figure 4). Its putative catalytic cysteine (Cys383) is located at the
N-terminal end of a helix (α2) and is packed against the six-stranded β-sheet core (Figure 4). At this
location, Cys383 facets another conserved residue, His432, belonging to the β-strand β3 (Figure 4).
This histidine is hydrogen bonded to the side chain of Glu444, which is, in turn, tightly anchored to
Arg453 and Arg458 (Figure 4). Notably, the crystal structure suggested a Cys-His-Glu catalytic triad,
which is unusual considering the typical Cys-His-His triad of NlpC/P60 endopeptidases (Figure 4) [20].

Cells 2019, 8, x FOR PEER REVIEW 5 of 15 

 

RipA is the largest and more complex endopeptidase. It is a key enzyme for M. tuberculosis cell 
division, with remarkable effects on the bacterial phenotype, as shown in M. smegmatis. Indeed, RipA 
depletion strains exhibit a decreasing growth and an abnormal phenotype, consisting of branching 
and chaining bacteria [58]. Similar to other cell separating endopeptidases, like CwlT from Bacillus 
subtilis [59] and Spr from E. coli [60], RipA hydrolyzes peptidoglycan peptide crosslinks [21]. 

Crystallographic studies of RipA first [20] and then of RipB [51] have yielded new insights into 
the functional regulation of these enzymes. The structure of RipA catalytic domain comprises a central 
β-sheet of six antiparallel β-strands, a small two-stranded β-sheet, and six helices, arranged in an 
αββααββββββ topology (Figure 4). Its putative catalytic cysteine (Cys383) is located at the N-terminal 
end of a helix (α2) and is packed against the six-stranded β-sheet core (Figure 4). At this location, 
Cys383 facets another conserved residue, His432, belonging to the β-strand β3 (Figure 4). This 
histidine is hydrogen bonded to the side chain of Glu444, which is, in turn, tightly anchored to Arg453 
and Arg458 (Figure 4). Notably, the crystal structure suggested a Cys-His-Glu catalytic triad, which is 
unusual considering the typical Cys-His-His triad of NlpC/P60 endopeptidases (Figure 4) [20].  

 
Figure 4. Cartoon representation of the RipA catalytic domain structure. The inset shows a zoom 
with key residues shown with ball-and-stick. 

The composition of this triad was confirmed by mutational studies, as the mutation of each 
residue of the triad to alanine completely suppresses RipA activity [49]. As shown in Figure 5, the 
catalytic site cleft shape accounts well for the branched nature of peptidoglycan, whose monomer 
has the structure GlcNAc-MurNAc-L-Ala-γ-D-Glu-DAP-D-Ala. Aside from the catalytic triad, 
several residues interact with the muropeptide (D382, S384, S402, V428, Q431, D447) (Figure 5). 
Among these, the most conserved is D382, which directly contacts γ-D-Glu; this indicates a strong 
specificity of RipA towards γ-D-Glu [49]. Differently, scarce conservation characterizes residues 
contacting DAP side chain (e.g., D447), a finding that agrees well with the ability of RipA to 
hydrolyze both Lys-type and DAP-type PGN [20]. 

 
Figure 5. Modeling of a PGN monomer in the catalytic site cleft of RipA (left) and main interactions 
of the PGN monomer with the enzyme [49]. 

Figure 4. Cartoon representation of the RipA catalytic domain structure. The inset shows a zoom with
key residues shown with ball-and-stick.

The composition of this triad was confirmed by mutational studies, as the mutation of each
residue of the triad to alanine completely suppresses RipA activity [49]. As shown in Figure 5, the
catalytic site cleft shape accounts well for the branched nature of peptidoglycan, whose monomer has
the structure GlcNAc-MurNAc-L-Ala-γ-D-Glu-DAP-D-Ala. Aside from the catalytic triad, several
residues interact with the muropeptide (D382, S384, S402, V428, Q431, D447) (Figure 5). Among these,
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the most conserved is D382, which directly contacts γ-D-Glu; this indicates a strong specificity of RipA
towards γ-D-Glu [49]. Differently, scarce conservation characterizes residues contacting DAP side
chain (e.g., D447), a finding that agrees well with the ability of RipA to hydrolyze both Lys-type and
DAP-type PGN [20].
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Structural studies also showed that a tight array of interactions exist between the catalytic domain
and the pro-domain [20]. In particular, the catalytic site cleft of the enzyme is physically blocked by
the pro-domain, which contains a catalytic-cleft-blocking loop region, a β hairpin, and a long α helix,
nearly perpendicular to the β hairpin (Figure 6). A tight interaction is observed between these two
domains, with a total interaction surface area of 1809 Å2 [20]. This finding strongly suggested functional
inactivity of the enzyme in this form and revealed a zymogenic nature for RipA. Consistently, cell wall
degradation assays showed that activation of RipA requires the release of the pro-domain [20]. A strong
structural conservation was observed for the catalytic domains of RipA and RipB, whereas structural
differences characterized the pro-domains. In RipB, the pro-domain is folded in two helices wrapped
around the catalytic domain, suggesting a similar regulatory function as observed for RipA [51].
Compared to RipB, RipA contains an extra N-terminal domain, whose structure has been recently
determined [50] (PDB code 6ewy). This domain is formed by two helices of similar length, connected by
a 6-residue loop, and forms a long-coiled coil structure (Figure 6). Whereas the pro-domain of RipA has
a regulating function, its helical domain does not influence the accessibility of the active site (Figure 6).
Instead, its rigid stalk-like module is typical of scaffold building proteins. Possibly, this non-catalytic
domain is responsible for anchoring the enzyme to the divisome, although interactions of RipA with
the divisome have so far not been demonstrated [50]. Different from RipA, the homologue NlpC/P60
endopeptidase RipC interacts with FtsX [57], and this interaction favors a long-range conformational
change that activates RipC [15,57] (Figure 7). As observed for other bacteria, hydrolysis of ATP by FtsE
is believed to cause a conformational change that is transmitted through the membrane via FtsX to the
extracellular region [15]. In M. tuberculosis, the conformational change of the extracellular part of FtsX
results in interaction with RipC, an event which causes RipC conformational activation [57] (Figure 7).
It should be noted that RipC does not contain an inactivating pro-domain, different than RipA and
RipB (Figure 3). Therefore, it is likely that its mechanism of activation differs from those of RipA and
RipB. In these latter cases, the tight interaction of the catalytic sites with the pro-domains is in line with
an alternative activation mechanism, which requires proteolytic activation [20,22]. Although studies
are still to be undertaken, it is presumable, as demonstrated for RipC, that, in all cases, a coordinated
mechanism exists that regulates Z-ring formation by FtsZ, septation, and septum degradation.
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interaction with either cell wall hydrolases or effector proteins and activation of PGN hydrolysis.

3.1. The Regulation of RipA Through MarP

As previously discussed, structural and biochemical studies have suggested that RipA needs to
be proteolytically processed to achieve hydrolysis activity [20]. A proteolytic activation mechanism
has been successively confirmed in vivo [22]. In addition, it has been shown that overproduction
of activated RipA produces severe growth defects in M. tuberculosis [22]. More recently, RipA has
been demonstrated to be the substrate of MarP (Mycobacterium acid resistance protease, Rv3671c), a
serine protease which has been associated to the resistance of M. tuberculosis to the acidic conditions
of phagolysosomes [61]. MarP is a highly conserved protein in mycobacteria, required for pH
homeostasis and survival in a hostile environment [62,63]. Its N-terminal domain includes four
putative transmembrane helices that likely anchor the protease to the cytoplasmic membrane [64].
The chymotrypsin-like serine protease domain of MarP is located at its C-terminus and contains the
catalytic triad, composed of His235, Asp264, and Ser343, conserved in the serine protease family
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(PDB code 3k6y) [65]. With this topology, the C-terminal protease domain is placed in a periplasmic
localization, essential to exert its hydrolytic function on RipA (Figure 8). Indeed, biochemical studies
have demonstrated that these two proteins interact in vivo in acidic conditions [61].

Interestingly, M. tuberculosis cells that lack MarP are hypersensitive to acidic pH [66] and share
similar phenotypes as cells lacking RipA. Indeed, both mutants display increased cell length and
form chains in acidic conditions [61]. These data indicate that the inability of MarP-deficient cells to
survive acidic stress depends on their inability to activate RipA, and that PGN hydrolysis is essential
for M. tuberculosis survival in acidic conditions [61]. In these conditions, activation of RipA by MarP
assures PGN remodeling, rearrangement, or repair, all steps which are likely vital to the survival of M.
tuberculosis during acidic stress. It should be noted that the identified site of RipA hydrolysis by MarP
is specifically located after Val235, which belongs to the N-terminal domain of RipA (Figure 8). This
cleavage does not unlock the catalytic cleft of RipA, which remains occluded by the regulatory domain
(Figure 8). However, the release of RipA from its stalk N-terminal domain likely exposes the enzyme
to other proteases for the fine processing that activates RipA for PGN degradation. Also, it cannot be
excluded that activation of RipA in non-acidic stress conditions may be regulated by other proteases.
In addition, it is still to be established what the link is between septation through the assembly of
the Z-ring and PGN hydrolysis by RipA, as no interactions between these two processes have yet to
been proven.
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3.2. Regulation of RipA Via Protein-Protein Interactions

RipA was identified as a protein localized in the septum of dividing mycobacteria and was
proposed to be part of the divisome [41]. RipA has a wide pattern of interactors (Figure 9). Besides
being cleaved by MarP, RipA was shown to interact with a pool of PGN modeling enzymes, including
the resuscitation-promoting factors RpfB (Rv1009) and RpfE (Rv2450c), and the penicillin-binding
protein PonA1 (Rv0050) [67,68]. In addition, RipA is able to interact with MoxR1, a member of the
ATPase family that is associated with various cellular activities. MoxR1 protein displays ATP-enhanced
chaperone activity and MoxR1-mediated folding of RipA is critical for its secretion within the TAT
pathway system [69].

Interestingly, a strong connection exists between cell division and resuscitation from the dormant
state, characterized by low metabolic activity and resistance to antibiotics [70–72]. A latent infection,
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due to dormant bacteria, can develop into active disease even decades after initial infection, when
the immune response weakens [73,74]. Since about one-third of the world’s population is infected
with dormant M. tuberculosis, the risk of disease reactivation is troublesome. Resuscitation from the
dormant state is attributed to a set of PGN hydrolases, denoted as resuscitation-promoting factors
(Rpfs) [70,75–80]. RipA co-localizes at bacterial septa with the resuscitation-promoting factor RpfB [67],
which exhibits the highest structural complexity among the five Rpfs. Whereas RpfA, RpfC, RpfD, and
RpfE are mainly composed of a lysozyme-like catalytic domain, RpfB contains a further four domains:
a G5 domain and three DUF348 domains, in addition to the catalytic domain. Structural studies of
RpfB have been crucial to elucidate the functional features of this molecule [24,25,53,81].

Similar to lysozyme, the protein catalytic cleft consists of six carbohydrate-binding sites (A–F),
thus, corroborating the hypothesis that RpfB acts by hydrolyzing the carbohydrate component of
PGN [53]. Crystallographic studies have also evidenced a novel fold of the G5 domain, constituted
by two β-sheets connected by a small triple helix motif, and denominated as β-TH-β [25], which
has been connected to PGN adhesion [25]. Also, the structural description of the DUF348 domain
revealed an unexpected structural similarity to eukaryotic ubiquitin, a small protein that exists in all
eukaryotic cells both to target proteins for rapid degradation by the proteasome [24]. The presence of
an ubiquitin-like domain in RpfB may be responsible for its ability to interact with several proteins, by
sharing a strong feature of ubiquitin: its promiscuity due to its intrinsic high molecular adaptability [82].
PGN hydrolase activities of RipA and RpfB are synergic although the structural basis of this synergistic
action is hitherto not clear [21], as it may either be associated with the allosteric activation of one of
these proteins or to their enhanced ability to release free muropeptides by acting both on the glycan
and peptide moieties [83]. Along this line, it has been shown that the joint action of RpfB and RipA on
PGN produces a reaction product of particular chemical nature, anhydroGMDP, which directly induces
resuscitation of the dormant cell cultures [83]. This finding also agrees well with the previous finding,
showing that resuscitation from dormancy is a complex phenomenon, involving direct interaction of
muropeptides released upon PGN hydrolysis with a set of STPK kinases [40,84–89]. Interestingly, the
synergy between hydrolytic actions RipA and RpfB of PGN can be inhibited by the interaction of RipA
with the penicillin-binding protein PonA1, a key PGN synthase, which also co-localizes at the poles
and septa of dividing cells and is a central determinant of polar growth in mycobacteria [68,90]. This
finding indicates universal molecular mechanisms that coordinate cell wall synthesis and degradation
through protein-protein interactions between enzymes with antagonistic functions.
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4. Concluding Remarks

As discussed in this review, cytokinesis is regulated in M. tuberculosis by a set of endopeptidases
of the NlpC/P60 family. Similar to other cases of proteins responsible for key cell processes, a high
redundancy characterizes these enzymes, since five endopeptidases are encoded in the mycobacterial
genome. However, the reason for the existence of these redundant enzymes, sharing a similar structure,
remains elusive. NlpC/P60 endopeptidases are potentially suicide enzymes since they are able to
hydrolyze the mycobacterial cell wall. Consistently, their catalytic activities are strongly regulated.
Among these NlpC/P60 endopeptidases, RipA plays a central role, as it is essential to cleave the
mycobacterial PGN septum, which is synthesized right after chromosome segregation. The data
accumulated in recent years concerning the main endopeptidases structure and function provided
a more detailed picture of their catalytic and regulatory mechanisms. In RipA, catalytic regulation
proceeds both through proteolytic cleavage and through the interaction with multiple molecular
partners. Differently, activation of its homolog RipC proceeds through a conformational alteration
due to interactions with the divisome protein FtsX. Going forward, it will be important to define
in more detail which mechanisms correlate septal PGN formation following Z-ring formation with
PGN degradation.

Recent studies have shown that the use of hydrolases, such as RipA, alters the physiological
state and induces stress responses in M. smegmatis, but it does not completely inhibit mycobacterial
growth [91]. However, when used in conjugation with common antimicrobial drugs, such as rifabutin
and bacitracin, RipA enhances their cytotoxic activities. This finding brings further advantages for
drug development and antimicrobial treatment, as it highlights the potential for a new strategy that
combines endopeptidases with previously ineffective drugs against drug-resistant bacteria.
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Abbreviations

AG arabinogalactans
AnhydroGMDP N-acetylglucosaminyl-β(1→4)-N-acetyl-1,6-anhydromuramoyl-l-alanyl-d-isoglutamate
CHAP Cys, His, Asp Peptidase
DAP meso-diaminopimelic acid
Fts filamenting temperature-sensitive
GlcNAc β−(1-4)-linked-N-acetylglucosamine
LM lipomannan
LAM lipoarabinomannan
MA mycolic acids
MurNAc N-acetylmuramic acid
PDB Protein Databank
PGN peptidoglycan
PIMs phosphatidylinositol mannosides
Rip resuscitation-promoting factor interacting protein
Rpf resuscitation-promoting factor
SP signal peptide
STPK Serine/Threonine Protein Kinase
TAT Twin-Arginine Translocation
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