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Abstract

Although gene-finding in bacterial genomes is relatively straightforward, the automated assignment of gene function is still 
challenging, resulting in a vast quantity of hypothetical sequences of unknown function. But how prevalent are hypothetical 
sequences across bacteria, what proportion of genes in different bacterial genomes remain unannotated, and what factors 
affect annotation completeness? To address these questions, we surveyed over 27 000 bacterial genomes from the Genome 
Taxonomy Database, and measured genome annotation completeness as a function of annotation method, taxonomy, genome 
size, 'research bias' and publication date. Our analysis revealed that 52 and 79 % of the average bacterial proteome could be 
functionally annotated based on protein and domain-based homology searches, respectively. Annotation coverage using protein 
homology search varied significantly from as low as 14 % in some species to as high as 98 % in others. We found that taxon-
omy is a major factor influencing annotation completeness, with distinct trends observed across the microbial tree (e.g. the 
lowest level of completeness was found in the Patescibacteria lineage). Most lineages showed a significant association between 
genome size and annotation incompleteness, likely reflecting a greater degree of uncharacterized sequences in 'accessory' 
proteomes than in 'core' proteomes. Finally, research bias, as measured by publication volume, was also an important factor 
influencing genome annotation completeness, with early model organisms showing high completeness levels relative to other 
genomes in their own taxonomic lineages. Our work highlights the disparity in annotation coverage across the bacterial tree of 
life and emphasizes a need for more experimental characterization of accessory proteomes as well as understudied lineages.

Data Summary
Bacterial genomes from AnnoTree [1] and their Pfam and 
KEGG (Kyoto Encyclopedia of Genes and Genomes) anno-
tations (​gtdb_​r86_​bac_​genomic_​files.​tar.​gz, ​gtdb_​r86_​bac_​
pfam_​tophits.​tar.​gz and ​gtdb_​r86_​bac_​ko_​tophits.​tar.​gz, 
respectively) were retrieved from https://​data.​ace.​uq.​edu.​au/​
public/​misc_​downloads/​annotree/​r86/. Metadata from the 
Genome Taxonomy Database (GTDB) [2] were retrieved 
from https://​data.​ace.​uq.​edu.​au/​public/​gtdb/​data/​releases/​
release86/​86.​1/​bac120_​metadata_​r86.​1.​tsv. A data table 
listing frequencies of annotated versus unannotated gene 
counts can also be found at: https://​github.​com/​doxeylab/​
geno​meAn​nota​tion​Coverage.

Introduction
Genome annotation relies primarily on the detection of 
homology between newly identified genes/proteins and 
previously annotated sequences. As a general summary of 
this process, genes predicted in newly sequenced genomes or 
metagenomes are translated and compared against reference 
databases to identify homologues, with functional annota-
tions being transferred from those homologues to the query 
proteins [3]. Although complicated by varying definitions 
of ‘function’ and ‘annotation’, homology-based annotation 
transfer has been systematically explored, revealing reason-
able success rates (upwards of 60–70 % accuracy) based on 
assessment of Gene Ontology (GO) term prediction [4, 5]. 
Studies of early model organisms, such as Escherichia coli, 
Bacillus subtilis and Caulobacter crescentus, are a major 
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source of experimentally derived functional annotations. 
Therefore, it is important to note that such limited sources 
can be expected to result in biases in genome annotation, 
with a greater success rate in species that are phylogenetically 
closer to these and other commonly studies species [6].

In the digital and post-genomic age, functional annotations 
can be transferred between sequences faster and more broadly 
than ever before, through a variety of computational methods 
and pipelines. Standard approaches include sequence-to-
sequence searches such as blast or sequence-to-model 
searches (e.g. HMMscan) that scan newly identified sequences 
against models of protein and/or domain families [7]. Profile-
based methods that use position-specific scoring matrices 
(PSSMs) or hidden Markov models (HMMs) such as Pfam 
and the National Center for Biotechnology Information's 
(NCBI’s) Conserved Domain Database [8–10] are among the 
most sensitive approaches for protein classification, as these 
are capable of detecting distant matches to protein and/or 
protein domain families. Domain families are used to find 
matches to building blocks of proteins, such as enzymatic or 
binding domains, sometimes allowing functional information 
transfer even in the absence of a full protein match [9].

Both sequence-to-sequence and profile-based methods 
are implemented in common annotation pipelines such as 
Prokka [11], the Joint Genome Institute Microbial Annota-
tion Pipeline [12] and NCBI’s Prokaryotic Genome Annota-
tion Pipeline [13]. Annotation pipelines may also integrate 
a variety of methods and databases, and/or allow users to 
customize options towards specific reference databases or 
taxonomic lineages. Commonly used reference databases 
include UniProt/SwissProt, as well as the NCBI’s reference 
sequence (RefSeq) database, and its non-redundant protein 
database. Other reference databases of protein and/or domain 
families include TIGRFAMs [8], FIGfams [14], COG [15] and 
Pfam [9].

Even with sequence databases growing at an exponential 
rate and with ongoing expansion of annotation information 
in reference databases, well-studied organisms still have 
significant proportions of their coding sequences (CDSs) 
functionally unannotated [7, 16–18]. When predicted protein 
sequences cannot be functionally annotated, they are typi-
cally classified as ‘hypothetical’ proteins, or sometimes as 
‘conserved hypothetical’ proteins if they are commonly 
detected in the genomes of numerous organisms [19, 20]. 
These hypothetical sequences consist of proteins of unknown 
function as well as potential pseudogenes and even spurious 
gene predictions [18, 21].

An important question in genome-wide functional annotation 
is to what degree a genome (or more specifically, a proteome) 
can be assigned function [22, 23]. Interestingly, across different 
bacterial species/genomes there is considerable variation in 
the completeness of genome annotations reported in the 
literature and in databases [6, 24]. For example, according to 
the Joint Genome Institute database [12], well-studied model 
organisms such as E. coli K12- W3110 and Bacillus subtilis 
strain 168 have ~86 and 81 % of their proteome functionally 

annotated, respectively [12]. However, the proteome of Verru-
comicrobium spinosum DSM 4136 is only 48 % annotated. Ever 
more extreme than this is the feline parasite Mycoplasma 
haemofelis, which has functional annotations for only 19 % 
of its proteome [12, 25]. With such a wide range of annotation 
coverage found among bacteria, we aimed to investigate the 
extent of annotation coverage across the bacterial tree of life, 
as well as to identify factors related to this important property 
of genomes.

Methods
Genome data sources
Bacterial genomes from AnnoTree [1] and their Pfam and 
KEGG (Kyoto Encyclopedia of Genes and Genomes) anno-
tations (​gtdb_​r86_​bac_​genomic_​files.​tar.​gz, ​gtdb_​r86_​bac_​
pfam_​tophits.​tar.​gz and ​gtdb_​r86_​bac_​ko_​tophits.​tar.​gz, 
respectively) were accessed from https://​data.​ace.​uq.​edu.​
au/​public/​misc_​downloads/​annotree/​r86/. Metadata for 
the downloaded genomes were retrieved from the Genome 
Taxonomy Database (GTDB) [2] at https://​data.​ace.​uq.​edu.​
au/​public/​gtdb/​data/​releases/​release86/​86.​1/​bac120_​meta-
data_​r86.​1.​tsv.

Gene annotation
As described elsewhere, Pfam annotations were derived 
from Pfam v27.0 [9] and applied with hmmer v3.1b1 and 
Pfamscan (at ftp://​ftp.​ebi.​ac.​uk/​pub/​databases/​Pfam/​Tools/). 
KEGG [26] annotations were computed based on diamond 
v0.9.22 [27] matches against the UniRef100 dataset, members 
of which were pre-annotated with KEGG orthology (KO) 
annotations. The percentage of unannotated CDSs from the 
Pfam and KEGG approaches for each genome was calculated 
by comparing the number of CDSs in the metadata file with 

Impact Statement

To what extent can bacterial genomes be assigned func-
tion is an important question in automated genome anno-
tation. To investigate this question, we annotated over 
27 000 bacterial genomes from the Genome Taxonomy 
Database using common bioinformatic methods, and 
evaluated the influence of different factors on annota-
tion completeness. Annotation coverage, defined as the 
percentage of predicted protein sequences that could 
be assigned functions, ranged from 14 to 98%, with a 
mean of ~52 %. Mean annotation coverage increased 
to 79 % when using domain-based methods. Additional 
significant factors related to annotation coverage include 
taxa, genome size and 'research bias' (i.e. the increased 
annotation coverage in genomes of model organisms). 
Our work also highlighted the Patescibacteria lineage as 
a group associated with the lowest degree of annotation 
coverage, potentially reflecting a unique gene content 
and biology to be found in these organisms.
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the number of CDSs with Pfam or KEGG matches in the Pfam 
and KO ‘tophits’ files from AnnoTree [1].

Genome annotation was also performed using Prokka v1.13.7 
[11] with its default databases and with the rRNA and tRNA 
search options turned off. Mycoplasmatales (GTDB taxo-
nomic nomenclature that includes Entomoplasmatales and 
Mycoplasmatales from the NCBI taxonomic nomenclature) 
was analysed with translation table 4, while GTDB orders 
Absconditabacterales and BD1-5 (which include candidate 
division SR1 and 'Candidatus Gracilibacteria' from NCBI 
taxonomic nomenclature) were analysed with translation 
table 25. The unannotated class of CDSs were identified as 
those containing ‘hypothetical protein’ product names that 
also lacked Prokka database annotations. To analyse NCBI-
derived protein annotations, we downloaded protein .gpff 
files associated with 113 424 genome IDs in the GTDB meta-
data file from NCBI’s ftp server (ftp://​ftp.​ncbi.​nlm.​nih.​gov/​
genomes/​all/). Any protein annotation in the ‘product’ line of 
the file containing the words ‘hypothetical’, ‘uncharacteri(s/z)
ed protein’ or ‘unknown’ were counted towards the ‘unan-
notated’ fraction for that genome. The number of protein 
CDSs were also counted from the .gpff files for determining 
the percentage of unannotated CDSs. A data table containing 
the genome accession numbers and associated frequencies of 
annotated, unannotated and total gene counts produced by all 
three annotation pipelines is available online (https://​github.​
com/​doxeylab/​geno​meAn​nota​tion​Coverage).

Statistical analyses
Statistical analyses were performed using R v3.2.3. For all 
statistical tests, the logarithm of genome size was used, which 
resulted in distributions closer to normality. The aov() func-
tion within the R base library was used to perform analysis 
of variance (ANOVA) tests and ANOVA [aov(),type=‘III’)] 
from the car v3.0–3 library was used to calculate analysis of 
covariance (ANCOVA) tests. Each ANCOVA identified a 
significant effect of the covariate GTDB taxonomic order on 
the annotation coverage, as well as a significant interference 
of the covariate with the effect of the independent variable. 
Linear regression was performed using the ggplot2 module 
stat_smooth(method=‘lm’).

The PubMed June 6 2019 database was downloaded using 
Entrez Direct. 'Research bias' represented by PubMed 
mentions was determined using Entrez Direct to search 
PubMed for all abstracts or titles that contained a genus name 
(NCBI taxonomic nomenclature).

Protein lengths were derived from the predicted proteins 
generated by Prokka [11].

Results
Annotation analysis
In order to explore patterns of genome annotation across 
bacteria, we analysed 27 372 bacterial genomes included as 
part of the AnnoTree database [1]. AnnoTree uses a phylo-
genetic tree originally derived from the GTDB [2] and allows 

users to visualize pre-computed functional annotations across 
the bacterial tree of life. We then examined three popular 
approaches for functional annotation that utilize different 
tools and databases, in addition to externally computed NCBI 
annotations, which we describe later. (i) Prokka [11] (v1.13.7): 
predicted proteins were annotated by blast+ searches against 
databases of curated proteins, and by hmmscan [28] searches 
against the hamap HMMs library [29]. (ii) KEGG [26]: 
predicted proteins were annotated with KO numbers based 
on diamond [27] searches against the KEGG database. (iii) 
Pfam [9]: predicted proteins were annotated by hmmscan 
searches against the Pfam-A HMM library.

Following annotation with these pipelines, for every genome, 
we then subdivided predicted CDSs into two categories: (i) 
annotated proteins – sequences matched to either function-
ally characterized or unnamed families; and (ii) unannotated 
proteins – sequences without any matches. CDSs matching 
protein families without an annotated molecular function 
were still included in the first group, since these domains may 
still possess limited information that can be transferred to a 
new sequence.

Based on Prokka results, the mean proteome annotation 
coverage was 52 ±9 % (48 % unannotated) (Fig. 1a). This is 
expectedly lower than that reported for model organisms and 
higher than that reported for the low-end cases described 
earlier. It is worth noting that the default Prokka parameters 
for functional annotation are fairly strict, as only reference 
proteins with experimental evidence are considered for 
functional assignments [11], and that annotation coverage 
can potentially be increased by adding custom databases of 
curated annotations. The KEGG-based annotation method 
produced similar results with 55±10 % mean annotation 
coverage (Fig.  1a). The third approach based on Pfam 
domain-based annotation produced a mean of 79±7.1 % 
annotation coverage (Fig. 1a), which is higher than that of 
the other methods. To compare our results against externally 
derived functional annotations, we also examined 113 424 
previously annotated proteomes within the NCBI database. 
We calculated a mean annotation coverage of 79.8±10 % for 
these proteomes (see Methods).

We observed a trend for unannotated protein sequences to 
be shorter in length (Fig. 1b). Shorter proteins can be more 
difficult to annotate due to poor database coverage, lower 
match scores and an increased chance of being pseudogenes 
(one signature of pseudogenization is the accumulation of 
premature stop codons, which leads to shorter CDSs) [30]. 
While it is challenging to uncover pseudogenes at such a large 
scale [31, 32], there was an observable difference in the length 
distribution of the unannotated sequences, consistent with 
an increased proportion of pseudogenes. Despite this, a large 
proportion of the distribution was indistinguishable from that 
of annotated sequences (Fig. 1b).

With all annotation pipelines analysed, we observed extreme 
variation in annotation incompleteness across bacterial 
genomes (Fig. 1a). For example, based on protein homology 
searching using Prokka, annotation incompleteness ranged 
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Fig. 1. Distributions of genome annotation incompleteness across GTDB bacteria and length of annotated versus unannotated CDSs. 
(a) Relative frequency distribution of annotation coverage based on annotation with Prokka, KEGG and Pfam. (b) Relative frequency 
distribution of the length (bp) of CDSs in genomes present in AnnoTree. Annotation status was determined with our binary Prokka 
classification. The lowest length for both annotated and unannotated sequences is 90 bp, due to the length threshold in Prodigal [32].

from 2.3 % ('Candidatus Baumannia cicadellinicola') to 
85.5 % (Mycoplasma haemofelis Ohio2). Similar values were 
obtained using KEGG-based annotation, with incomplete-
ness ranging from 3.1 % ('Candidatus Evansia muelleri') to 
87.9 % (Algoriphagus boritolerans). Next, to further explore 
factors influencing this variation, we explored the relation-
ship between annotation coverage and various features, 
such as taxonomy, genome size and research bias.

Taxonomy
To study the potential taxonomic bias in genome anno-
tations, we mapped annotation completeness onto the 
bacterial phylogeny, and partitioned it according to the 
taxonomic scheme defined by the GTDB (Fig. 2). Differ-
ences in annotation coverage were visually apparent across 
the tree, and a strong degree of clade-specific patterns could 
be observed. This taxonomic annotation bias was supported 
by quantitative measurements at different taxonomic levels 

(Fig. 3). Even at the phylum level, we observed differences in 
genome annotation coverage between taxa (Fig. 3a; ANOVA 
P value <2×10−16), with greater resolution revealed at every 
subsequent taxonomic level (Fig.  3b). This taxonomic 
effect was consistent between Prokka (Fig. 3a, b), KEGG 
(Fig. S1a, available with the online version of this article; 
ANOVA P value <2×10−16) and Pfam (Fig. S1b; ANOVA 
P value <2×10−16) proteome annotations. Patescibacteria, 
a phylum recently formed from the highly underrepre-
sented candidate phyla radiation associated with smaller 
genomes [33, 34], had the highest mean of unannotated 
CDSs across all three annotation systems. Spirochaetota, 
a smaller phylum, and Bacteroidota, found across many 
environments, also had higher unannotated proportions 
(54.8 % mean and 55.7 % mean, respectively). Proteobac-
teria and Firmicutes, the phyla of the majority of bacterial 
model organisms, had better annotation completeness 
across all three annotation systems with mean unannotated 
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Fig. 2. Genome annotation incompleteness across the bacterial tree of life. Annotation incompleteness has been mapped to the outer 
edges of the tree of life obtained from AnnoTree [1], which was originally derived from the GTDB [2]. The height of each bar (and 
colour) depicts traits (annotation incompleteness and genome size), which have been normalized separately for each metric. For 
annotation incompleteness, the gradient goes from 0 % (minimum) to 100 % (maximum). Four metrics are shown, including annotation 
incompleteness as determined using Prokka (outer ring), followed by that determined using Pfam, that determined using KEGG and 
genome size (inner ring).

proportions of 42.6 and 42.3 %, respectively. Thus, the taxo-
nomic bias on genome annotation completeness may be in 
part due to what can be described as research bias or model 
organism bias (a larger scientific community effort towards 
functional characterization), which we explore further in 
a later section.

Genome size
Genome size, a trait related to taxonomy (as evident in 
Fig. 2), also appeared to affect the annotation coverage of 
genomes. Even without accounting for the confounding 
impact of taxonomy, a clear relationship between genome 
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Fig. 3. Distributions of genome annotation coverage subdivided by taxonomic group. Genomes were annotated using Prokka with default 
parameters (see Methods). Only the most common phyla from the GTDB [2] are shown. (a) Taxonomic separation by phyla. (b) Taxonomic 
separation by order. Labelled orders are using GTDB taxonomic nomenclature.

size and genome annotation completeness was visible 
(Fig. 4a). A closer look at this phenomenon within indi-
vidual phyla revealed an even clearer picture of this trend, 
where larger genomes were associated with a larger propor-
tion of unannotated proteins [Fig. 4b, S2a (KEGG) and S2b 
(Pfam)].

An interesting case demonstrating this relationship is the 
phylum Firmicutes. Although at a phylum level, the effect 
of genome size on annotation completeness was not entirely 
clear (Fig. 4), when subdivided into lower taxonomic levels 
(Fig. 5), the trend was readily apparent. That is, different 
taxonomic groups within the Firmicutes possessed distinct 
distributions of genome completeness and each was also 
influenced by genome size. For example, Mycoplasmatales, 
RF39 and RFN20 (GTDB taxonomic nomenclature [2]) 
possess relatively small genomes, but had a high fraction 

of unannotated CDSs. Yet, within these taxonomic groups, 
genome size positively correlated with the level of anno-
tation incompleteness. Thus, these cases illustrate how 
annotation incompleteness is driven by multiple factors.

Consistent with these observations, an ANCOVA test 
controlling for the GTDB taxonomic order revealed a 
significant relationship between genome size and annotation 
incompleteness for Prokka, KEGG and Pfam annotations 
(P value=3.6×10−5, 2.5×10−3 and 1.1×10−4, respectively). The 
protein annotations in the NCBI database also showed a 
significant difference between taxonomic phyla (ANOVA P 
value <2.2×10−16; Fig. S3a) and a relationship with genome 
size (ANCOVA, while controlling for GTDB taxonomic 
orders, P value=2.3×10−10; Fig. S3b). Since the largest factor 
influencing genome size variation in bacteria is the gain 
and loss of 'accessory' genes [35, 36], it can be reasoned 
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Fig. 4. Effect of genome size (bp) on Prokka genome annotation coverage. The log
10

(genome size in bp) is binned into 10 distinct bins to 
better display the trend. Square and open brackets indicate intervals that include and do not include the adjacent number, respectively. 
(a) Only the most common GTDB phyla are shown. (b) The most common GTDB phyla are displayed separately.

that this trend may reflect an increased difficulty in func-
tional annotation of accessory genes versus 'core' genes 
(see Discussion). Since genome size is also related to other 
factors such as G+C content, we also examined the correla-
tion between G+C content and annotation completeness. 
However, this relationship was not as clear (Fig. S4) and was 
non-significant when controlling for taxonomy (ANCOVA 
P values of 0.6, 0.85 and 0.33 for Prokka, KEGG and Pfam, 
respectively).

Research bias
To explore the effects of research bias on annotation coverage, 
we counted the number of times each genus was mentioned 
in abstracts or titles within the PubMed database, and also 
examined genome publication date. Here, we adopted NCBI 
taxonomic nomenclature as it has been used more frequently. 
Genera with over 75 000 mentions (such as Escherichia, 

Staphylococcus and Pseudomonas) generally had a greater 
annotation coverage compared to genera that occurred less 
frequently in publications [Figs S5a (Prokka), S5b (KEGG), 
S5c (Pfam)]. Similarly, genomes released before 2003 tended 
to have a greater proportion of annotated CDSs [Figs S6a 
(Prokka), S6b (KEGG), S6c (Pfam)]. However, these effects 
were only apparent in the extreme cases (i.e. model organisms 
associated with extreme publication volume). Moreover, the 
majority of genera in this uppermost bracket were Proteobac-
teria and Firmicutes, consistent with our earlier analysis of 
taxonomic influence on genome annotation coverage.

To explore this phenomenon further, we examined the distri-
butions of genome annotation completeness while subdi-
viding by taxonomy, mapping only the most heavily studied 
taxa onto their respective lineages. This clarified the effect 
of research bias since model organisms (e.g. E. coli, Bacillus 
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Fig. 5. Prokka genome annotation coverage of Firmicutes (GTDB taxonomy) against genome size. Trend lines are displayed for each 
taxonomic order.

Fig. 6. Influence of research bias on genome incompleteness. The top six most abundant phyla are shown and each is further subdivided 
by taxonomic order. Orders appear as distinct vertical columns. Heavily studied genomes, as measured by PubMed abstract counts per 
species (>15 000), show a marked reduction in unannotated sequences (annotated with Prokka) compared to other moderately studied 
genomes (500–1000) in their taxonomic group. Other heavily studied species include Listeria monocytogenes, Staphylococcus aureus, 
Streptococcus pneumoniae, Helicobacter pylori, Klebsiella pneumoniae, Haemophilus influenzae and Pseudomonas aeruginosa. It must be 
noted that the terms ‘heavily’ and ‘moderately’ studied organisms are relative, are associated only with the frequency of published 
papers, and do not account for the true impact of publications and other work that contribute toward functional annotation.

subtilis, Mycobacterium tuberculosis) stood out as being among 
the best annotated genomes in their respective taxonomic 
groups (Fig. 6). There were, however, some exceptions to this 
phenomenon; within the Proteobacteria, a noticeable group 
of organisms had annotation completeness well exceeding 

that of E. coli. These organisms included endosymbionts 
with highly reduced genomes, such as Buchnera aphidicola, 
an endosymbiont of aphids, 'Candidatus Blochmannia' (an 
ant symbiont), Wigglesworthia (a symbiont of tsetse flies) 
and others. This may be due to multiple factors, including an 
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increased proportion of core or 'essential' functions associ-
ated with ‘minimal genomes’ and, thus, easier-to-annotate 
processes in reduced genomes of parasitic organisms [37–39], 
as well as the close evolutionary relationship of these genomes 
to the heavily studied model organism E. coli [40, 41].

Discussion
As genomes shape our understanding of organism function, 
not only individually but also as a community, it is important 
to assess our ability to annotate genomes across the tree of 
life and understand the factors that influence this important 
property. Here, we used the GTDB [2] and AnnoTree [1] in 
combination with various annotation pipelines to perform a 
comprehensive assessment of genome annotation coverage 
across the bacterial phylogeny. Our analysis revealed extreme 
variation in genome annotation coverage across and within 
taxonomic groups. Numerous factors appear to influence 
levels of annotation completeness across bacterial genomes, 
including annotation method, taxonomy, genome size and 
research bias.

Overall, the mean annotation completeness of bacterial 
genomes varied from ~52 % for methods requiring high-
stringency matches to reference proteins, to 79 % for more 
sensitive domain-based annotation methods. While domain-
based annotation methods produced the highest proportion 
of annotated CDSs, these estimates of annotation coverage 
may be not be realistic, since the mere presence of a domain 
in a predicted protein sequence is not necessarily sufficient 
to assign function, and consideration of domain architecture 
is more informative. Also, although three annotation pipe-
lines were performed separately, a combination of methods 
would have likely resulted in greater annotation coverage, 
as observed in previous studies [6]. However, the goal of 
this study was not to optimize annotation coverage across 
bacteria, but rather to assess it using standard, commonly 
used pipelines.

Taxonomy was an important factor influencing genome anno-
tation completeness. Some of this taxonomic bias may stem 
from research bias, whereby genomes that are more closely 
related to those of model organisms possess a greater chance 
of being successfully annotated based on detectable homology. 
Indeed, phyla containing many model organisms were found 
to have, on average, more annotated CDSs than their under-
studied counterparts. In addition, within broader taxonomic 
groups, specific model organisms (e.g. E. coli) stood out as 
outliers in terms of annotation coverage. This pattern was also 
demonstrated for other highly studied species as determined 
based on publication volume (occurrences of species names 
in PubMed abstracts and titles).

Our analysis also uncovered an interesting, significant anti-
correlation between genome size and annotation coverage, 
which was consistently detected across a range of taxonomic 
groups. Larger genomes showed lower annotation coverage, 
which suggests a relative lack of annotations and functional 
characterization concerning accessory proteomes. One 

interpretation of this finding is that core proteomes contain 
more essential and widely studied processes, resulting in 
increased genome annotation coverage. In contrast, the 
accessory gene content within a pangenome of a species may 
include a more diverse repertoire of genes, including those 
derived from prophages [35] and integrated elements, which 
are known to be particularly challenging for annotation 
[42]. The dynamic accessory genome of a species may also 
possess increased pseudogene content, resulting in shorter 
(truncated) and potentially divergent ORFs that are harder 
to assign function through homology searches. The observed 
difference in the length distribution of annotated versus 
unannotated CDSs is consistent with this idea.

The reduced genomes of symbionts and parasites are extreme 
examples of how factors related to genome size may affect 
annotation completeness. In our analysis, reduced genomes 
were found at both ends of the spectrum of annotation 
completeness. Within the Firmicutes, for example, some 
parasitic genomes in the Mycoplasmatales were poorly anno-
tated. This may be a result of increased pseudogene content, 
which is thought to accumulate in the reduced genomes of 
some organisms due to genetic drift [35, 43–45]. However, 
the reduced genomes of endosymbiotic Proteobacteria such 
as Buchnera aphidicola were extremely well annotated, 
consistent with previous analyses [46], which may be due 
to efficient purging of genes and pseudogenes over a longer 
evolutionary timescale with retention of core processes. These 
core or essential functions are in turn easier to annotate bioin-
formatically [for previous papers on the minimal genome 
concept see references by Mushegian (1999) and Koonin 
(2000) [38, 39]]. Their increased annotation completeness 
may also in part benefit from their close relationship with a 
model organism (E. coli).

Finally, our analysis highlighted certain lineages (e.g. the 
Patescibacteria within the candidate phyla radiation group) 
as possessing a higher level of hypothetical gene content. This 
may reflect the presence of highly divergent gene families 
that escape the detection limits of standard homology-based 
annotation, or this may be indicative of new protein func-
tions, metabolic activities and biological traits. To assign 
function to these sequences, the use of powerful/sensitive 
methods for protein function prediction may be useful; these 
include remote-homology detection and structure prediction 
approaches [18, 47]. Methods for function prediction will 
also benefit from continual expansion of Gene Ontology 
and other controlled vocabularies [48, 49]. In addition to 
sequence-to-function methods, a complementary ‘function-
to-sequence’ type of approach may also be useful, where a 
required parts list of functions is used to guide the search 
for potential gene functions [50]. Finally, our ability to 
assign function computationally to these and other bacte-
rial genomes is inherently tied to the quantity and quality 
of experimentally derived functional information contained 
within references databases. Continued experimental charac-
terization of understudied organisms and hypothetical/novel 
gene families will be critical to widen the net of annotation 
coverage and lead to more accurate genome analyses and 
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functional insights derived from genomic and metagenomic 
studies.
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