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Little is understood of skeletal muscle tissue in terms of oxidative stress and inflammation. Endothelin-1 is an endogenous,
vasoconstrictive peptide which can induce overproduction of reactive oxygen species and proinflammatory cytokines. The aim
of this study was to evaluate whether BQ123, an endothelin-A receptor antagonist, influences the level of TNF-𝛼, IL-6, SOD-1, HO-
1, Nrf2 mRNA, and NF-𝜅B subunit RelA/p65 mRNA in the femoral muscle obtained from endotoxemic rats. MaleWistar rats were
divided into 4 groups (𝑛 = 6) and received iv (1) saline (control), (2) LPS (15mg/kg), (3) BQ123 (1mg/kg), (4) BQ123 (1mg/kg),
and LPS (15mg/kg, resp.) 30min later. Injection of LPS led to significant increase in levels of RelA/p65 mRNA, TNF-𝛼, and IL-6,
while content of SOD-1, HO-1, and Nrf2 mRNA was unchanged. Administration of BQ123 prior to LPS challenge resulted in a
significant reduction in RelA/p65 mRNA, TNF-𝛼, and IL-6 levels, as well as markedly elevated concentrations of SOD-1, HO-1,
and Nrf2 mRNA. BQ123 appears to enhance antioxidant defense and prevent production of TNF-𝛼 and IL-6 in skeletal muscle
of LPS-treated rat. In conclusion, endothelin-A receptor antagonism exerts significant impact on the skeletal muscle favouring
anti-inflammatory effects and protection against oxidative stress.

1. Introduction

Sepsis is a severe systemic inflammation contributing to
excessive generation of reactive oxygen species (ROS), over-
production of numerous inflammatory cytokines, and multi-
ple organ failure, which often results in death [1].This critical
condition is a frequent cause of such neuromuscular disor-
ders as critical illness myopathy (CIM), which may lead to
rhabdomyolysis and muscle atrophy [2]. Lipopolysaccharide
(LPS), the main causative agent inducing sepsis, stimulates
macrophages to excrete large amounts of inflammatory
biomarkers, for example, tumour necrosis factor-𝛼 (TNF-
𝛼), interleukin-1 (IL-1), IL-6, and IL-8. [1, 3]. High serum
levels of TNF-𝛼 and IL-6 accompanying endotoxemia are
believed to induce protein degradation in skeletal muscle
contributing to muscular atrophy [4]. The appearance of

these mediators in blood is in mostly the effect of activation
of the nuclear factor-𝜅B (NF-𝜅B) pathway, a key regulator of
immune system response [1, 3]. NF-𝜅B is present in almost
every mammalian cell, located as a heterodimer consisting of
two subunits, p50 and RelA/p65. Under the influence of such
factors as LPS and TNF-𝛼, NF-𝜅B translocates to the nucleus,
where it initiates expression of inflammatory cytokines and
the adhesion molecules involved in proliferation, apoptosis,
and oxidative stress response [5].

The deleterious participation of ROS in myopathy has
been studied by many authors [6, 7]. ROS accumulation,
especially mitochondrial ROS, has been shown to play a
significant role in muscle atrophy [7]. ROS can cause DNA
damage, lipid peroxidation, and protein modification and
may activate certain nuclear transcription factors such as
NF-𝜅B [8] and nuclear factor (erythroid-derived-2)-like 2
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(Nrf2) [9]. Linke et al. indicated in skeletal muscle reduced
activity ofmajor antioxidant enzymes, that is, superoxide dis-
mutase (SOD), catalases (CAT), and glutathione peroxidase
(GPX) during oxidative stress [10]. Treatment with SOD and
CATor supplementationwith antioxidant vitamin attenuated
oxidative stress and skeletal muscle atrophy [11, 12].

Many authors demonstrated that endothelin-1 (ET-1), a
vasoconstrictive, endothelial peptide, accelerates ROS forma-
tion in vascular smooth muscle cells (VSMC), endothelial
cells, and other tissues [13–15]. Skeletal muscle is one of
the most vascularized tissues [16], but little is known about
ET-1 participation in the development of oxidative stress
in this tissue. What is more, LPS is known to increase
endothelial permeability and intensify production of ET-1
in various tissues [17, 18]. Piechota et al. indicate that ET-1
levels are correlated with other parameters of sepsis such as
C-reactive protein, procalcitonin, or natriuretic propeptide
[19], implying that ET-1 is involved in pathogenesis of sepsis
and blood levels of ET-1 may serve as a biomarker of severity
of sepsis [20, 21]. Endothelin-1 acts through two types of G
protein-coupled receptors, endothelin receptor A (ETA) and
endothelin receptor B (ETB), both of which are present in
multiple various cells and tissues. Under physiological condi-
tions, ET-1 binding to the ETA receptors on VSMC triggers a
potent vascular smoothmuscle contraction [22], while a high
level of ET-1 additionally results in intensified synthesis of
ROS, mainly superoxide anion (O

2

∙−) [23]. Blockage of the
ETA receptor with BQ123, a receptor antagonist, decreases
the content of lipid peroxidation products [24, 25], alleviates
LPS-induced oxidative stress [15, 26, 27], increases reduced
glutathione (GSH) level, and enhances SOD activity [25, 28].
Virtually, no reports describe the influence of BQ123 on the
Nrf2/heme oxygenase-1 (HO-1) signaling pathway.

Nrf2 is a crucial agent regulating the expression of
antioxidant/detoxification genes encoding many cytoprotec-
tive proteins that act in synergy to remove ROS [29]. Under
normal conditions, Nrf2 is found in the cytoplasm, coupled
with the regulatory protein Keap1 [30]. In response to oxida-
tive stress, Nrf2 dissociates from this complex and transfers to
the nucleus, where it binds to the specific ARE sequence and
upregulates the expression of antioxidant genes such as HO-
1, which plays an important role protecting against oxidative
stress and inflammatory processes [31]. Some authors suggest
that potential cross talk may exist between Nrf2 and NF-𝜅B
pathways [30].

The present study investigates the influence of BQ123 on
inflammatory process (RelA/p65 mRNA, TNF-𝛼, and IL-6
levels) and antioxidant response (Nrf2 mRNA, HO-1, and
SOD-1 levels) in the skeletal muscle of endotoxemic rats.

2. Materials and Methods

2.1. Animals. All experiments were carried out on male
Wistar rats aged 3-4 months, weighing 270–330 g: the rats
were weighed directly before the experiment. The animals
were kept under standard laboratory temperature (20 ±
2∘C) and lighting (light from 6:00 a.m. to 6:00 p.m.), with
free access to lab chow and tap water, until being used in

the experiments. All animals were maintained for 1 week in
the laboratory for adaptation. The experimental procedures
followed the guidelines for the care and use of laboratory
animals andwere approved by theMedical University of Lodz
Ethics Committee number 7/ŁB699/2014.

2.2. Experimental Protocol. Animals were randomly divided
into four groups (𝑛 = 6 per group). In group 1 (control),
rats received iv 0.2mL of 0.9% NaCl and 30min later again
0.2mL of 0.9% NaCl. In group 2 (LPS), rats received iv
0.2mL of saline and 30min later 0.2mL of LPS (15mg/kg).
In group 3 (BQ123), rats received iv 0.2mL of saline and
30min later 0.2mL of BQ123 (1mg/kg). In group 4 (BQ123 +
LPS), rats received iv a single dose of BQ123 (1mg/kg) and
a single dose of LPS (0.2mL, 15mg/kg) after 30min. The
animals were anesthetized by an intraperitoneal injection of
urethane solution (1.5 g/kg of b.w.). When a sufficient level of
anesthesia was achieved, the skin and subcutaneous tissues
on the neck were infiltrated with 2% lidocaine hydrochloride
solution (Polfa, Poland) and cut and a 2 cm-long polyethylene
tube (2.00mm O.D.) was inserted into the trachea. The right
femoral vein was catheterized and a polyurethane cannula
was inserted (0.41mm O.D., 0.23mm I.D.). All drugs were
administrated directly into the femoral vein.

2.3. Tissue Preparation and Sample Collection. Five hours
after the last injection, the rats were sacrificed. The femoral
muscle was cut off at the right thigh and rinsed with ice-
cold saline, dried by blotting between two pieces of filter
paper, weighed, and frozen in −75∘C until being used for
measurements.

2.4. Determination of TNF-𝛼, IL-6, and SOD-1 Levels. TNF-
𝛼, IL-6, and SOD-1 concentrations in the skeletal muscle
were assayed by specific enzyme linked immunosorbent assay
using a commercially available ELISA test kit containing
a monoclonal antibody specific for rat TNF-𝛼, IL-6, and
SOD-1 (Cloud-Clone Corp., USA). Firstly, 50mg portions of
skeletal muscle were cut into small pieces and homogenized
in 2mL of ice-cold PBS with a glass homogenizer on ice. The
resulting suspension was subjected to two freeze-thaw cycles
to further break the cell membranes. The homogenates were
centrifuged for 5min at 5000×g in 4∘C, and the supernatants
were collected and assayed immediately according to the
manufacturer’s instructions. Optical density at 450 nm was
read using Victor x3 microplate reader (Perkin Elmer, USA).
All tests were performed in duplicate. Protein concentration
of the samples was determined using the Bio-Rad Protein
Assay (Bio-Rad Laboratories, USA), according to the man-
ufacturer’s instructions. The TNF-𝛼 and IL-6 concentrations
were expressed as pg/mg protein.The concentration of SOD-1
was expressed as ng/mg protein.

2.5. Determination of HO-1 Level. An ELISA kit (Enzo Life
Sciences, Cat. number ADI-EKS-810A) was used to evaluate
the concentration of HO-1. Firstly, 50mg portions of skeletal
muscle were cut into small pieces and homogenized in 1mL
of extraction reagent with the addition of protease inhibitors.
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Tissues were homogenized in glass homogenizer on ice. The
homogenates were centrifuged at 21,000×g in 4∘C for 10min.
Supernatants were removed and assayed immediately accord-
ing to the manufacturer’s instructions. Optical density was
read at 450 nm using a Victor x3 microplate reader (Perkin
Elmer, USA). All tests were performed in duplicate. Protein
concentration of the samples was determined using the Bio-
Rad Protein Assay (Bio-Rad Laboratories, USA), according
to the manufacturer’s instructions. The HO-1 concentration
was expressed as ng/mg protein.

2.6. RNA Isolation. Total RNA was extracted from samples
using RNeasy mini kits (Qiagen). Briefly, frozen samples
of rat femoral muscle were homogenized in 300 𝜇L of RLT
Buffer by Tissue Ruptor homogenizer (Qiagen).Then, 590𝜇L
of Nuclease-Free Water (Ambion) and 10𝜇L of Qiagen Pro-
teinase K solution were added. Homogenates were incubated
at 55∘C for 10min and centrifuged for 3min at 14000 rpm.
The following part of protocol was performed as described
by the manufacturer. RNA was quantified using a Pico Drop
spectrophotometer (Picodrop Limited, UK). The quality of
RNA samples was analyzed by measuring the ratio of absorp-
tions at 260/280 nm.The purified total RNAwas immediately
used for cDNA synthesis or stored at −80∘C. Generation of
cDNAwas performedwithQuantiTect Reverse Transcription
Kit (Qiagen) according to the protocol of the manufacturer,
with 1 𝜇g of total RNA used as starting material. Reverse
transcription was performed in conditions optimized for use
with this kit (25∘C for 10min, 37∘C for 120min, and 85∘C for
5min). The cDNA samples were kept frozen at −20∘C.

2.7. Determination of Nrf2 and p65 mRNA Expressions: Real
Time PCR Analysis. The mRNA quantification was done
using standard TaqMan Gene Expression Assays (Applied
Biosystems), Nfe2l2 (Assay ID: Rn00477784 m1), Rela (Assay
ID: Rn01502266 m1), and Actb (Rn00667869 m1), as a con-
trol. The 20𝜇L qPCR included 50 ng cDNA, 10 𝜇L Taq-
Man Universal PCR Master Mix, and 1 𝜇L TaqMan Gene
Expression Assay (20x). The reactions were incubated in
a 96-well plate at 95∘C for 10min, followed by 40 cycles
of 95∘C for 15 s and 60∘C for 1min. All reactions were
run in triplicate. TaqMan PCR assays were performed on a
7900HT Fast Real-Time PCR System (Applied Biosystems)
and analyzed using Sequence Detection System 2.3 Software.
Fold induction values (RQ) were calculated according to
the equation 2−ΔΔCt, where ΔCt represents the differences in
cycle threshold numbers between the target gene (Nrf2, RelA)
and endogenous control (𝛽-actin) and ΔΔCt represents the
relative change in these differences between examined and
control groups.

2.8. Statistical Analysis. STATISTICA 12 (StatSoft) program
was used to perform statistical calculations. The results
were presented as means ± SEM. Statistical analyses of
the difference between two groups were performed using
independent Student’s t-test. Values of 𝑝 < 0.05 were
accepted as statistically significant.

3. Results

3.1. BQ123 Pretreatment Lessens LPS-Induced Production of
Inflammatory Biomarkers. Skeletal muscle levels of TNF-𝛼
and IL-6 are illustrated in Figures 1(a) and 1(b). LPS treatment
led to increased tissue levels of TNF-𝛼 and IL-6 when com-
pared to the control group (𝑝 < 0.01 and 𝑝 < 0.001, resp.).
Concomitant treatment with BQ123 significantly decreased
the LPS-induced production of these cytokines as compared
to the LPS group (𝑝 < 0.01). Moreover, BQ123 applied alone
resulted in lowered level of TNF-𝛼 as compared to the control
(𝑝 < 0.01).

3.2. BQ123 Administration Alters the Expression of Nrf2
and RelA/p65 mRNA during Endotoxemia. Figures 1(c) and
2(a) present RelA/p65 and Nrf2 mRNA expression levels
in the rat skeletal muscle. RelA/p65 mRNA expression is
significantly increased in LPS group when compared to the
control (𝑝 < 0.01), while Nrf2 mRNA level is slightly and
insignificantly decreased. However, administration of BQ123
alone successfully activated the expression of Nrf2 (𝑝 <
0.001) compared to the control but did not affect RelA/p65
mRNA level. Otherwise, injection of BQ123 followed by LPS
significantly elevated expression of Nrf2 (𝑝 < 0.05) as
compared to the LPS group, whereas RelA/p65 expression in
the same group was substantially declined (𝑝 < 0.001).

3.3. BQ123 Pretreatment Enhanced Antioxidant Defense dur-
ing Endotoxemia. ELISA results showed that concentration
of SOD-1 was unchanged in the LPS groupwhen compared to
the control (Figure 2(b)). However, pretreatment with BQ123
resulted in increased SOD-1 levels compared with the LPS
group (𝑝 < 0.01) and the control (𝑝 < 0.01). Concentration
of HO-1 in LPS and BQ123 groups was slightly different
from the control group and showed no statistical significance
(Figure 2(c)). However, the HO-1 level in BQ123 + LPS group
turned out to be increased (𝑝 < 0.05).

4. Discussion

Our present findings are the first to demonstrate that BQ123,
an ETA receptor blocker, increases expression of Nrf2 in
femoral muscle of LPS-treated rats. The increased expression
of Nrf2 was associated with enhanced levels of SOD-1 and
HO-1 anddecreased production of TNF-𝛼 and IL-6 in skeletal
muscle.

It iswell documented that LPS leads to the development of
inflammation associated with oxidative stress that can cause
tissue damage, including skeletal muscle damage [32–34].
The markedly elevated concentrations of TNF-𝛼 and IL-6 in
muscle tissue found in the present study after LPS challenge
confirm the results of other authors, who demonstrated the
same effect of LPS in rat skeletalmuscle [35] and in L6 skeletal
muscle cells [36]. Moreover, Olesen et al. observe that LPS
injection (0.3 ng/kg b.w.) increased TNF-𝛼 and IL-6 mRNA
content in the skeletal muscle of young, male volunteers [37].
LPS and ROS are well known to induce migration of NF-
𝜅B to the nucleus, where NF-𝜅B stimulates the expression
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Figure 1:The effect of LPS (15mg/kg), BQ123 (1mg/kg), and BQ123 + LPS (1mg/kg and 15mg/kg, resp.) on TNF-𝛼 (a), IL-6 (b), and RelA/p65
mRNA (c) levels in the rat skeletal muscle. Results are expressed as mean ± SEM. 𝑛 = 6 per group. ∗𝑝 < 0.001 versus control; ∗∗𝑝 < 0.01
versus control; ∧𝑝 < 0.001 versus LPS; ∧∧𝑝 < 0.01 versus LPS.

of proinflammatory genes. NF-𝜅B activates TNF-𝛼 and IL-6
production, which in turn stimulates nuclear translocation of
NF-𝜅B, forming a loop feedback mechanism [38]. This was
demonstrated by the substantially higher level of RelA/p65
mRNA observed in the present study in rats receiving LPS
alone.

It was reported that the ETA receptor blockade reduces
levels of oxidative stress parameters [39–41]. Several studies
have shown that BQ123 has a beneficial influence on the
TNF-𝛼 level in the lung tissue of rats treated with cigarette
smoke extract [42], in rat hearts with ischemia-reperfusion
injury [28], and in patients after bypass grafting [43]. This
ETA receptor antagonist also alleviates IL-6 production in
human vascular smooth muscle cells [44]. The beneficial
effects of BQ123 are probably associated with the inhibition
of NF-𝜅B expression observed in our present study through
significant reduction of RelA/p65mRNA, theNF-𝜅B subunit,
in LPS-treated rats. Pretreatment with BQ123 was also found
to decrease LPS-elicited augmentation of TNF-𝛼 and IL-6,
confirming that endothelin-1 mediates the activation of the
NF-𝜅B pathway and blocking ETA receptor exhibits an anti-
inflammatory effect.

To avoid harmful effects triggered by ROS and inflamma-
tory cytokines, the skeletal muscles control the antioxidant
defense system, which includes the enzymatic antioxidants
such as HO-1, SOD, CAT, and GPX and the nonenzymatic

free radical scavengers, that is, glutathione, thioredoxin [45,
46]. The main activity of HO-1 is to metabolize heme
to iron, carbon monoxide (CO), and biliverdin, which is
immediately converted into bilirubin. It is an antioxidative
phase II enzyme since the products of heme degradation have
antiradical, anti-inflammatory, and antiapoptotic properties
[47]. In addition, overexpression of HO-1 can negatively
regulate inflammatory mediators, including TNF-𝛼 and IL-
6 [48, 49]. Our findings indicate that LPS administration
resulted in slightly lower level of HO-1 than control values.
Likewise, Tran et al. report a nonsignificant decrease in HO-1
after LPS stimulation in murine BV2 microglia cell line [50].
On the other hand, Wang et al. indicate a decrease in HO-1
protein expression in the aorta of rats treated ivwith 10mg/kg
LPS [51]. Similar results were presented by Seo et al. following
6 hours of LPS exposure in the RAW 264.7 macrophage cell
line [52]. However, other authors demonstrated increase in
HO-1 level in the diaphragmaticmuscle after LPS stimulation.
Barreiro et al. reported enhanced HO-1 protein expression
within 6–24 h after LPS injection (20mg/kg) [53]. Taillé
et al. observed a similar effect after one day from LPS
administration [54]. These differences in results may stem
from differences in tissue type and location of its collection.
Nevertheless, this is the first study to present enhanced
HO-1 levels following BQ123 administration in endotoxemic
rats.
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Figure 2: The effect of LPS (15mg/kg), BQ123 (1mg/kg), and BQ123 + LPS (1mg/kg and 15mg/kg, resp.) on Nrf2 mRNA (a), HO-1 (b), and
SOD-1 (c) levels in the rat skeletal muscle. Results are expressed as mean ± SEM. 𝑛 = 6 per group. ∗𝑝 < 0.001 versus control; ∗∗𝑝 < 0.01
versus control; ∧∧𝑝 < 0.01 versus LPS; ∧∧∧𝑝 < 0.05 versus LPS.

The second major enzyme defending mammalian cells
against free radicals is SOD, which is known to occur in three
isoforms: cytoplasmic SOD-1 (Cu/ZnSOD), mitochondrial
SOD-2 (MnSOD), and extracellular EcSOD.The SOD family
catalyzes the dismutation of potentially toxic superoxide
anion to hydrogen peroxide (H

2
O
2
) and oxygen (O

2
) [55].

Recent studies indicate that SOD-1 expression is upregulated
by Nrf2 pathway in a similar way to HO-1 [56, 57].

In the present study using rat femoralmuscle, while injec-
tion of LPS or BQ123 alone had no effect on SOD-1 concen-
tration, concomitant LPS and BQ123 administration resulted
in significantly increased SOD-1 level. Such enhanced level of
SOD-1 may increase the capacity of myocytes to diminish the
raised superoxide anion level generated after LPS adminis-
tration. Likewise, other authors also report unaltered SOD-
1 levels after LPS treatment. Visner et al. have shown such
effect in rat pulmonary artery and microvascular endothelial
cells [58]. Liu et al. also report unchanged SOD-1 values 24
hours after treating gingival fibroblasts with 5 to 50mg/mL
of LPS [59]. In other studies, LPS had no influence on SOD-1
mRNA level in rat kidney [60], astrocytes [61], and human
epithelial alveolar and airway cells [62, 63]. On the other
hand, some authors report a reduction [57, 64] or increase
[65, 66] of SOD-1 levels after LPS administration. Therefore,
the SOD-1 results are ambiguous and require further study.

So far, few authors demonstrated protective features of
BQ123. Briyal et al. observed that BQ123 stimulated SOD
production in the brain of amyloid-𝛽-treated rat [25]. More-
over, BQ123 enhanced SOD activity, which was decreased
after endothelin-1 (1-31) stimulation in rat cardiomyocytes
[67]. Likewise, SOD activity was also increased after BQ123
treatment in myocardial ischemia-reperfusion injury [28].
However, Emre et al. indicate that BQ123 administration did
not improve SOD activity in rat liver after renal ischemia-
reperfusion injury [68].

Transcriptional factor Nrf2 is activated in response to
inflammation and ROS. It plays a central role in the defense
against them, since it controls the expression of detoxifying
enzymes such as HO-1 and probably SOD-1. In the current
study, LPS administration did not affect Nrf2 gene expression
in rat skeletal muscle. Some authors have shown that LPS
activates Nrf2 translocation to the nucleus in various tissues
[52, 69], but few reports present Nrf2 gene expression after
LPS stimulation. Hao et al. indicated unaltered level of Nrf2
mRNA in the murine heart after LPS challenge [70]. Yu et al.
demonstrated an elevated level of Nrf2mRNA in the lung of a
rabbit model of endotoxemia [71], while Song et al. presented
decreasedNrf2 expression in the diaphragmof preterm lambs
after 72 h of LPS exposure in utero [72]. Similar research is
needed on muscle tissue to clarify the occurring processes.
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In this study, both pretreatment and treatment with
BQ123 substantially raised Nrf2 mRNA level. What is more,
elevated Nrf2 expression in the BQ123 + LPS group was
associated with higher levels of HO-1 and SOD-1. Nrf2 is
widely known to induce HO-1 production. Our data may
indicate a signal path connecting Nrf2 and SOD-1. These
data also suggest that BQ123 may be able to protect skeletal
muscle cells from inflammation and oxidative stress through
upregulation of Nrf2 expression, enhanced HO-1 and SOD-1
levels, and inhibition of RelA/p65 expression.
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