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Abstract—Inflammatory organ injury and sepsis have profound impacts on the morbidity and
mortality of surgical and critical care patients. MicroRNAs are small RNAs composed of 20–
25 nucleotides that have a significant contribution to gene regulation. MicroRNA-147 (miR-
147), in particular, has been shown to have an emerging role in different physiological
functions such as cell cycle regulation and inflammatory responses. However, animal model
systems to study tissue-specific functions of miR-147 during inflammatory conditions in vivo
are lacking. In the present study, we characterize miR-147 expression in different organs and
cell types. Next, we generated a transgenic mouse line with a floxed miR-147 gene.
Subsequently, we used this mouse line to generate mice with whole-body deletion of miR-
147 (miR-147 −/−) by crossing “floxed” miR-147 mice with transgenic mice expressing Cre
recombinase in all tissues (CMVcre mice). Systematic analysis of miR-147 −/− mice
demonstrates normal growth, development, and off-spring. In addition, deletion of the
target gene in different organs was successful at baseline or during inflammation, including
the heart, intestine, stomach, liver, spleen, bone marrow, lungs, kidneys, or stomach.
Moreover, miR-147 −/− mice have identical baseline inflammatory gene expression
compared to C57BL/6 mice, except elevated IL-6 expression in the spleen (7.5 fold, p <
0.05). Taken together, our data show the successful development of a transgenic animal
model for tissue and cell-specific deletion of miR-147 that can be used to study the functional
roles of miR-147 during inflammatory organ injury.
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INTRODUCTION

Inflammation is commonly observed in organ injuries
including acute respiratory distress syndrome (ARDS) [1–
3], myocardial infarction [4], acute kidney injury [5–7],
and in sepsis and septic shock [8, 9], which contribute
significantly to the mortality and morbidity of surgical or
critical care patients. Sepsis and septic shock alone affect
more than 31.5 million patients globally each year [8].
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Different cell populations play a distinct role in the patho-
genesis of inflammatory organ injuries. For example, in-
nate immune cells such as macrophage and neutrophils are
involved in the acute phase of inflammation in response to
the pathogen-associated molecular patterns (PAMP) and
danger-associated molecular patterns (DAMP) and con-
tribute to the production of early inflammatory cytokines
including tissue necrosis factor (TNF) and interleukin 1
(IL-1) [10]. Endothelial cells and epithelial cells could
further respond to DAMP to promote tissue injury and
organ dysfunction [10]. So far, the treatment option of
inflammatory organ injury involves correcting the
underlining causes and supportive care [11]. Thus, under-
standing the pathogenesis and the search for novel thera-
peutic targets for inflammatory organ injury is at the center
of attention. To this front, several animal models have been
developed to study pathophysiology and therapeutic tar-
gets of systemic inflammation and organ dysfunction [12].
For example, cecal ligation and puncture (CLP) is one of
the most commonly used models to induce systemic in-
flammation and organ injury mainly caused by multi-
microbial infection [13].

MicroRNAs are small RNAs ranging from 20 to 25
nucleotides that are crucial for post-transcriptional gene
regulation. So far, there are more than 2000 microRNAs
identified in the human genome according to the most
recent miRBase database (http://www.mirbase.org/). The
main role of microRNAs is to regulate target gene expres-
sion through interaction with the untranslated region
(UTR) [14]. It is estimated that microRNAs could target
60% of the human genes [15], indicating the critical role of
microRNAs in many physiological and pathological con-
ditions. Previous studies have suggested that microRNAs
play crucial roles in development, cell cycle regulation,
inflammatory responses, and many other physiological
processes [14, 16–18]. For example, miR-223 functions
as a regulator of macrophage and neutrophil differentiation
and activation [19]. A recent study identified the shuttling
of miR-223 from neutrophil to alveolar epithelial cells to
provide tissue protection during acute lung injury [20],
suggesting diverse mechanisms of action for microRNAs.
In the clinic, microRNAs could be therapeutically targeted
via several approaches [21]. Specifically, microRNA over-
expression is achieved by the delivery of microRNA mi-
metics, while microRNA inhibition is achieved by inhibi-
tors such as the locked nucleic acid (LNA) [21]. For
example, miR-122 has been identified as an enhancer for
hepatitis C virus (HCV) replication via binding to the 5′
UTR of the viral genome [22]. MiR-122 LNA has been
developed and studied by phase III clinical trials as HCV

therapy showing promising results [23, 24]. Stemming
from the functional diversity and the ease of therapeutic
targeting, investigations on microRNAs have been inten-
sive. Thus, developing mouse models to pinpoint the spe-
cific contribution of microRNAs in a particular tissue or
cell type is of great importance.

MiR-147 (hsa-miR-147b or mmu-miR-147-3p) is lo-
cated at chromosome 15 in humans and chromosome 2 in
mouse. It has been continuously gaining attention as a key
regulator of cell cycle progression and inflammatory re-
sponses by in vitro and pharmacological studies in vivo
[25–32]. For example, miR-147 has been identified as the
top upregulated microRNA in lung cancer cells that are
tolerant to epidermal growth factor receptor inhibitor, and
it orchestrates the metabolic shift of cancer cells for drug
tolerance [25]. Another earlier study indicated that miR-
147 is induced by toll-like receptor stimulation in macro-
phages and it is involved in the regulation of inflammatory
responses [26]. These studies, along with many others,
support the emerging role of miR-147 in the control of
many biological processes both in homeostasis and in
pathological conditions. Here, we developed a transgenic
mouse line using the Cre-flox system for germline and
conditional targeting of miR-147 in vivo. The generation
of this mouse line will facilitate the study of tissue-/cell-
specific contribution of miR-147 in inflammatory organ
injury.

MATERIALS AND METHODS

Animals. Animal procedures were approved by the
Institutional Animal Care and Use Committee at the Uni-
versity of Texas Health Center (UTHealth) at Houston.
C57BL/6J (wild-type), miR-147loxP/loxP, CMVcre mice
were purchased from Jackson Laboratories (Bar Harbor,
ME). All mice were housed and bred in a specific
pathogen-free facility with a 12-h:12-h light:dark cycle at
the Center for Laboratory AnimalMedicine and Care at the
UTHealth. Both gender mice with age between 8 and 12
weeks were used in this experiment. To produce whole-
body deficiency of miR-147, miR-147loxP/loxP mice were
crossbred with CMVcre+ mice to generate miR-147loxP/
loxPCMVcre+ mice (miR-147-/-).

CLP Model. To establish endotoxin-induced organ in-
jury models, we performed cecal ligation and puncture
(CLP) procedure. Mice were anesthetized with 3–5% in-
haled isoflurane for induction and 1–3% for maintenance.
The cecum was ligated with 4–0 sterile suture at 1 cm from
the end, and was punctured twice with a 20G needle. A
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small amount of feces was extracted with around 2 mm
diameter. Sham operation was conducted in the same way
without ligation and puncture. Buprenorphine SR was
administrated via subcutaneous injection after surgery to
reduce pain, and 500 μl of sterile and prewarmed saline
was injected to protect from dehydration. All procedures
are performed under sterile conditions. The organs were
collected 24 h after the procedure.

Cell Lines. HEK293, HMEC1, T84, A539, Calu3,
HK-2, Caco, HL60, and THP1 cells were purchased from
ATCC and cultured according to ATCC recommended
conditions. Human cardiomyocytes (HCM) and human
pulmonary alveolar epithelial cells (HPAEpiC) were pur-
chased from ScienCell (Catalog #6200 and #3200, respec-
tively) and cultured according to the manufacturer’s in-
struction. Human monocyte-derived macrophages
(MDM) were differentiated from monocytes as previously
described [33], using monocytes isolated from peripheral
blood collected from healthy volunteers.

T Cell Differentiation. Naïve CD4 T cells were isolated
from spleens dissected from 8- to 12-week-old C57BL/6J
mice using the STEMCell Naïve CD4 T cell isolation kit
according to the manufacturer’s instruction. Isolated cells
were cultured in a concentration of 2–2.5 million/ml in
complete RPMI with L-glutamine supplemented with
10% heat inactivated FBS and antimicrobial reagents. T
cell differentiation to Th0/Th1/Th2/Th17/Treg condition
was as previously described [34]. Cells were cultured for
72 h and washed with PBS. After centrifugation, cell pellet
was lysed by Trizol reagent for RNA isolation.

Isolation of Blood Neutrophils, Lymphocytes, and
Monocytes. Neutrophil was isolated from blood from 8-
to 12-week-old C57BL/6J mice as previously described
[20]. Lymphocytes were isolated from blood from 8- to 12-
week-old C57BL/6J mice as previously described [35].
Monocytes were isolated from blood from 8- to 12-week-
old C57BL/6J mice using EasySep™ Mouse Monocyte
Isolation Kit from STEMCELL Technologies according to
the manufacturer’s recommended protocol. After centrifu-
gation, cell pellet was lysed by Trizol reagent for RNA
isolation.

Isolation of Alveolar Epithelial Cells. Alveolar epithelial
cells were isolated as previously described [36]. In brief, 8-
to 12-week-old C57BL/6J mice were euthanized by over-
dose of pentobarbital. After opening up the chest cavity,
lungs were perfused with 10 ml of PBS and a small incision
was made at the trachea for the insertion of 20G blunt ended
catheter. 1.5 ml of 5 unit/ml dispase in DMEM/F12 media
was instilled intratracheally via the catheter and followed by
300μl of 1% lowmelting point agarose in PBS. Lungs were

removed and incubated in 0.5 ml of dispase for 45 min at
room temperature. After the incubation, lung tissues were
cut into small pieces and rotate for 15 min at 4°C. Digested
tissues run through a 70-micron cell strainer and biotinylat-
ed antibodies for CD16/32, TER119, CD 45, and CD90
were added. Alveolar epithelial cells were negatively select-
ed using streptavidin labeled magnetic beads. The resulting
cells were incubated for 2 h to remove fibroblast. The cell
pellet was lysed by Trizol reagent for RNA isolation.

Isolation of Colon Epithelial Cells. Colon epithelium
was isolated from 8- to 12-week-old C57BL/6J mice as
previously described [37]. Cell pellet was lysed by Trizol
reagent for RNA isolation.

Isolation of Renal Tubule Cells. Kidney tubules were
isolated according to a modified protocol described previ-
ously [38]. Mice were euthanized by high dose of pento-
barbital sodium and the kidneys were reperfused with ice-
cold PBS. The kidneys were washed with ice-cold PBS
twice and were chopped into small pieces on ice. The
chopped tissues were enzymatically dissociated with colla-
genase type II (0.25 mg/ml; Worthington) using a
gentleMACS tube (Miltenyi Biotec). The tissue was incu-
bated and dissociated in gentleMACSTM Octo Dissociator
(Miltenyi Biotec) at 37°C for 30 min. After enzymatic
reaction, collagenase activity was inhibited by adding one
volume of Renal Epithelial GrowthMedium 2 (PromoCell).
To collect tubular cells, the dissociated kidney was
centrifuged at 50×g for 5 min. First pellet was
resuspended with Renal Epithelial Growth Medium 2 and
the supernatant was centrifuged again at 50 × g for 5 min.
Second pellet was resuspended in the same medium. First
and second pellets were combined and used for analyses.

Quantitative Real-time Polymerase Chain Reaction. Total
RNA was isolated from cultured cells and mouse tissues
using a Trizol reagent (Ambion, Life Technologies) accord-
ing to the manufacturer’s instructions. Reverse transcription
was carried out from 50 ng of total RNA using a High-
Capacity cDNA RT kit (Applied Biosystems, Thermo Fish-
er Scientific). TaqMan real-time PCR assay was performed
to detect Il-6, Cxcl1, and 18s (internal control). TaqMan™
Gene Expression Assay (FAM): 18s (catalog number:
4351368, Assay ID: Hs99999901_s1); Il-6 (catalog num-
ber: 4351370, Assay ID: Mm00446190_m1); Cxcl1 (cata-
log number: 4351370, Assay ID: Mm04207460_m1). For
miRNA detection, quantitative PCR was conducted in two-
step PCR using TaqMan MicroRNA Assay. First, reverse
transcription (RT) was performed from 10 ng total RNA
usingmiR-147 andU6 snoRNA (internal control) primers on
a Bio-Rad T100 Thermal Cycler. Second, the RT-PCR
product was amplified using TaqMan MicroRNA Assay
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plus the TaqMan Universal PCR Master Mix on Bio-Rad
CFX384 real-time system. The relative expressions of target
genes were calculated using 2−ΔΔCt method after
normalizing by 18s or U6 snoRNA. TaqMan™
MicroRNA Assay: miR-147 (Catalog #: 4440887, Assay
ID: 002262); U6 snoRNA (Catalog #: 4440888, Assay ID:
001973).

Histopathological Analysis. Histological comparison of
major organs including the brain, heart, liver, lung, stomach,
intestine, spleen, and kidney was performed in 8- to 12-
week-old, sex- and age-matched C57BL/6J mice and miR-
147−/− mice as previously described [39]. After harvesting,
tissues were fixed in 10% formaldehyde for 24 – 48 h and
paraffin-embedded. Five-micrometer sections were cut and
stained with hematoxylin and eosin. Pictures were taken
from the slides using a Leica microscope.

Statistical Analysis. All data included were shown as
mean ± standard error (SEM) of the mean. Data following
normal distribution and have equal variances were com-
pared using parametric two-sample unpaired t tests. Data
that are not normally distributed were analyzed using non-
parametric two-sample unpaired t tests using Mann-
Whitney rank-sum tests. Comparison of three or more
groups was achieved by one-way ANOVA and corrected
for multiple comparisons. Detailed information of statisti-
cal analysis for each experiment shown was included in the
figure legend. Statistical analyses were performed using
GraphPad Prism software.

RESULTS

MiR-147 Expression in Different Cell Lines, Primary
Cells, and Organs

Previous studies have suggested the functional role
of miR-147 in many physiological processes including
cell cycle regulation and metabolism [25–32]. Here, the
expression pattern of miR-147 across different cells and
organs is investigated by RT-qPCR. Firstly, we measured
the expression level of miR-147 by RT-qPCR in different
human cell lines (Fig. 1a) and found relatively high
expression levels of miR-147 in T84, A549, and Calu 3
cells. The miR-147 levels in primary cells including
human cardiomyocytes (HCM), human monocyte-
derived macrophages (MDM), and human pulmonary
alveolar epithelial cells (HPAEpiC) are further investigat-
ed (Fig. 1b). To study the miR-147 level across different

organs, we harvested different organ compartments in-
cluding the bone marrow, brain, heart, intestine, kidney,
liver, lung, spleen, and stomach from C57BL/6J
(WT) mice, and measured the miR-147 expression by
RT-qPCR. MiR-147 is mostly enriched in the intestine,
stomach, and heart tissue (Fig. 1c). Subsequently, differ-
ent types of epithelial cells were isolated from C57BL/6J
mice and higher miR-147 levels were observed in the
colon epithelial cells compared to the alveolar epithelial
cells and kidney tubule epithelial cells (Fig. 1d). Further-
more, no significant differences in miR-147 expression
were observed in several types of blood immune cells
including neutrophils, lymphocytes, and monocytes from
the peripheral blood of C57BL/6J mice (Fig. 1e). Finally,
there are no significant changes in the miR-147 levels
across the different T helper differentiation conditions
when naïve CD4 T cells isolated from the spleen of
C57BL/6J mice are differentiated into T helper 0 (Th0),
T helper 1 (Th1), T helper 2 (Th2), T helper17 (Th17),
and regulatory T (Treg) cells in vitro (Fig. 1f).

The Expression Level of MiR-147 After CLP

After having shown the expression level of miR-147
under baseline conditions across different organs, we next
investigated the expression of miR-147 under systemic in-
flammatory conditions. To achieve systemic organ inflam-
mation, CLP or sham procedure was performed in 8- to 10-
week-old C57BL/6J mice and major organs including the
brain, heart, intestine, kidney, liver, lung, spleen, and stom-
ach were harvest 24 h after CLP. Firstly, to understand the
inflammatory conditions in each organ, the expression level
of Cxcl1 in these organs was assessed by RT-qPCR in the
CLP and sham group and significant induction ofCxcl1was
found in all of the organs (Fig. 2a). In addition, previous
studies have indicated an upregulation of Il6 in the CLP
models. Thus, we compared the expression level of Il6 in
these organs by RT-qPCR in the CLP and sham group and
found significant induction of these Il6 in the majority of the
organs except the brain and intestine (Fig. 2b). These results
indicate profound multi-organ inflammation in the CLP
group. Finally, the expression pattern of miR-147 in in-
flamed organs was further measured by RT-qPCR. Surpris-
ingly, miR-147 is induced in the lung, kidney, and stomach
while decreased in the brain following the CLP procedure
when compared to the sham group (Fig. 2c). Taken together,
these studies indicated strong systemic inflammation in all
major organs following CLP, and miR-147 is selectively
upregulated in the lung, kidney, and stomach while down-
regulated in the brain.
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Strategy for the Generation of MiR-147 Floxed Mice

To address the function of miR-147 during organ
injury, we generated a novel transgenic mouse line with a
floxed miR-147 gene. Utilizing the Cre-loxP system, these
mice allow us to generate mice with germline deletion of
miR-147 (miR-147−/−) mice. Gene targeting of miR-147
conditional knockout was first established in Bruce4
C57BL/6 embryonic stem (ES) cells. To generate miR-
147 conditional mice, a 114-bp region encompassing the
miR-147 gene was floxed with loxP sites (Fig. 3a). An
FRT-flanked neo cassette was also inserted within the
floxed region for targeted ES cell selection by neomycin.
Correctly targeted ES cells were confirmed by Southern
blotting with Neo and 3′ probes (Fig. 3b). Subsequently,
one of the clones with correct targeting (I-IC7) was select-
ed for the generation of chimera mice. Breeding of chimera
mice to flipase (flp) mice resulted in flp-mediated

recombination at the FRT sites to delete the neo cassette.
Litter from the mating of chimera and flipase mice was
confirmed by Southern blot (Fig. 3c). These mice have
been crossbred with CMVcre for the generation of miR-
147 −/− mice. miR-147 −/− allele was confirmed by
genotyping on DNA isolated from tail snip. The primer
sequence and PCR protocol are shown in Fig. 3 d and e.
From the representative gel picture shown in Fig. 3f, the
deletion band was successfully detected in the animals.
Heterozygous mice carrying miR-147 deletion allele were
further bred to generate homozygous miR-147−/− mice.

Confirmation of MiR-147 Knockout and Breeding
Characteristics of miR-147 −/− Mice

After the identification of miR-147 −/− mice, we
pursue to further confirm the knockout of miR-147 under
inflammatory conditions and define the breeding
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Fig. 1. MiR-147 expression across different cell lines, tissue, and cells. a Transcript level of miR-147 in various human cell lines (kidney-derived cell lines
including HEK293T and HK2; endothelial cell line, HMEC1; colon-derived cell lines including T84, Caco2, and HL60; lung-derived cell lines including
A549 and Calu3; peripheral blood–derived cell line, THP1). Expression level was normalized to U6 snoRNA. b Transcript level of miR-147 in human
primary cells including human cardiomyocytes (HCM), human pulmonary alveolar epithelial cells (HPAEpiC), and human monocyte-derived macrophages
(MDM). Expression level was normalized to U6 snoRNA. c Screening of miR-147 expression in different organs collected from C57BL/6J mice. Expression
level was normalized to U6 snoRNA. d Transcript level of miR-147 in murine primary epithelial cells derived from airway, colon, and renal tubules.
Expression level was normalized to U6 snoRNA. e Transcript level of miR-147 in immune cells such as lymphocytes, monocytes, and neutrophils isolated
from the peripheral blood of C57BL/6J mice. Expression level was normalized to U6 snoRNA. f Transcript level of miR-147 in Th0, Th1, Th2, Th17, and
Treg cells differentiated from naïve CD4 T cells of C57BL/6J mice. Data was normalized to Th0. All graphs represent mean ± SEM. *P < 0.05, **P < 0.01,
***P < 0.001, ****P < 0.0001 by one-way ANOVA with Bonferroni’s multiple comparisons.

Kim, Guaregua, Chen, Zhao, Yeow, Berg, Eltzschig, and Yuan1430



characteristics. Firstly, to confirm the knockout of miR-
147, several major organs including the brain, heart, intes-
tine, kidney, liver, lung, spleen, and stomach were harvest-
ed fromWT ormiR-147 −/−mice under baseline condition.
The expression level of miR-147 was assessed by RT-
qPCR and the result indicated that miR-147 is successfully
deleted in all major organs (Fig. 4a). To investigate the
knockout efficiency of miR-147 under inflammatory con-
ditions, WT or miR-147 −/− mice were exposed to CLP.
Tissues showing significant upregulation of miR-147 dur-
ing CLP, including the lung, kidney, and stomach, were
harvest 24 h later for the analysis of miR-147 expression.
miR-147 −/− mice showed complete abolishment of miR-
147 levels compared to WT mice (Fig. 4b), indicating
successful knockout of miR-147 during inflammatory con-
ditions. Next, the reproductive performance and growth
curves were assessed in miR-147−/− mice. A total of 30
mice in theWT group and 29mice in themiR-147 −/−were
born in the study period. There are no significant
differences in litter size and gender ratio (Fig. 4c). The
weight of each mouse from the WT and miR-147 −/−

groups was recorded for the generation of weight curve.
There is no significant difference in weight gain comparing
WT and miR-147 as indicated in the growth curve (Fig.

4d). Furthermore, when separated based on gender, the
weight curves are similar between WT and miR-147 −/−

mice (Fig. 4e, f). Overall, the miR-147-/- mice show a
successful knockout of miR-147 under inflammatory con-
ditions and the breeding or growth ofmiR-147 −/−mice has
similar characteristics compared to WT animals.

Baseline Inflammation in miR-147−/− Mice

After confirming the successful knockout of miR-147
in several organs following CLP, we next investigated the
baseline inflammation in major organs and tissues to fur-
ther characterize miR-147 −/− mice. For this purpose, we
harvested organs and tissues including the bone marrow,
brain, heart, intestine, kidney, liver, lung, spleen, and
stomach, from age- and gender-matched WT or miR-
147 −/− mice and measured the expression level of Cxcl1
and Il6 by RT-qPCR. Statistically significant differences
were not detected in the expression level of Cxcl1 in
different organs or tissues when comparing WT and miR-
147 −/− mice (Fig. 5a). However, the Il6 level is upregu-
lated in the spleen frommiR-147 −/−mice compared to that
from WT mice, suggesting potential increases in the
baseline inflammation in the spleen resulted from miR-
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Fig. 2. Organ inflammation and miR-147 levels after CLP. CLP was conducted on 8- to 12-week-old C57BL/6J mice, and the indicating organs were
collected in 24 h. a, b Induction of inflammatory genes including Cxcl1 and Il6 in CLP group. c Relative transcript level of miR-147 in CLP group compared
to sham group. All graphs are presented as mean ± SEM. *P < 0.05, **P < 0.01, ****P < 0.0001 relative to sham, by Mann-Whitney test.
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147 deletion (Fig. 5b). Furthermore, we performed histo-
logical analysis on major organs including the brain, heart,
intestine, kidney, liver, lung, spleen, and stomach, from
age- and gender-matched WT or miR-147 −/− mice by
H&E staining. From the histological analysis, we did not
observe significant abnormality in miR-147 −/− mice when
compared to WT animals (Fig. 5c). Taken together, these
studies suggest that miR-147 −/− mice have comparable
baseline inflammation and histological characteristics in
major organs with WT animals, except for an elevated Il6
expression in the spleen.

DISCUSSION

The present study aimed at establishing transgenic
animal models to study miR-147 in organ injury. Previous
studies had indicated a crucial role of miR-147 in key
biological processes such as cell cycle regulation and in-
flammatory response. Thus, we investigated miR-147 ex-
pression levels in different cell lines, different organs, and
different immune cell populations under baseline condi-
tions. Following organ injury achieved by CLP, we ob-
served systemic inflammation across all examined organs
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and miR-147 upregulation in the lung, stomach, and kid-
ney. Furthermore, to address the function of miR-147
during organ injury, we generated a novel transgenic
mouse line with a floxed miR-147 gene and crossed the
mice with CMVcre for germline deletion of miR-147. The
successful deletion of miR-147 was confirmed as miR-
147−/− mice showed completely abolished miR-147 ex-
pression under inflammatory conditions. Next, we assessed
the reproductive performance and growth curves of the
miR-147−/− mice and observed no significant difference
in weight gain between WT and miR-147−/− mice. After
confirming the successful knockout of miR-147 in several

organs following CLP, we next investigated the baseline
inflammation in major organs and tissues using RT-qPCR
and histological analysis. Results from these analyses sug-
gest that miR-147−/− mice have baseline inflammation and
histological characteristics in major organs comparable
with WT animals, except an elevated Il6 expression in
the spleen. Taken together, these studies confirmed the
successful generation of transgenic animals to study the
role of miR-147 in organ injury.

MicroRNAs are studied in vivo by several different
strategies. First and foremost, pharmacological overexpres-
sion and inhibition of microRNAs are essential tools for the
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therapeutic targeting of microRNAs [21]. For instance, de-
livery of microRNA mimic results in the overexpression of
target microRNA and downregulation of the target genes. On
the other hand, microRNA inhibition could be achieved by
treatment of LNA or antagomirs. Expression of microRNAs
in vivo could be achieved by microRNAScope, which will
localize and visualize mature microRNAs on tissue slides.
Transgenic animal models are instrumental for studying the
functional role ofmicroRNAs in vivo, especiallymodels with
conditional potential for cell- or tissue-specific manipulation
of microRNAs [40]. Transgenic mice could be generated
with the injection of a transgene into the fertilized eggs and
including an exogenous promoter would facilitate the con-
stitutive or tissue-specific overexpression [41]. Constitutive
or conditional knockout of microRNAs could be achieved by
gene-targeting vectors using several systems including Cre-
loxP system [42] and flp-FRT system [43]. Moreover, sev-
eral systems have been established for induciblemodification
of microRNAs that could also have the potential for induc-
ible knockout or overexpression, including the tetracycline
(Tet)-inducible system [44] and the Cre-ER(T) system [45].
Combining the inducible system with the conditional system
results in powerful tools to study the temporal and tissue-
specific functional role of microRNAs.

Inflammation is commonly observed in many patho-
genic conditions including infection, acute organ injury, and
chronic organ dysfunctions [46–54]. Initially intended as a
response to help resolve tissue injury, inflammation could
become excessive and uncontrolled, which leads to further
tissue injury and, occasionally, systemic inflammation [55–
59]. For example, uncontrolled alveolar epithelial inflam-
mation results in ARDS [1, 16, 60, 61], which is the com-
mon and main cause of death in COVID-19 [62, 63].
Several previous studies have suggested the importance of
endogenous anti-inflammatory pathways for the control of
organ inflammation. These pathways include the hypoxia-
inducible factor signaling pathway [61, 64, 65], purinergic
signaling pathway [66–75], microRNAs [19, 20, 76–78],
resolvins [79–81], and many others [82–90]. Along these
lines, those pathways not only facilitate tissue protection
during pulmonary injuries but also contribute to other in-
flammatory organ conditions such as myocardial infarction
[91–98], kidney injury [99–101], and inflammatory bowel
diseases [102–108]. Thus far, the majority of the studies on
miR-147 focuses on the regulation of different biological
processes such as cell proliferation and drug tolerance in
cancer cells [29, 31, 109–112]. Additional studies indicated
that miR-147 is crucial for the mechanical stretch-induced
apoptosis in myoblast [30]. Moreover, a recent study sug-
gested that miR-147 is reduced during rat myocardial

infarction models and overexpression of miR-147 provides
cardiac protection [113]. Taken together, miR-147loxP/loxP

mice could facility the study of miR-147 in different organs
and cell types during inflammatory organ injury by breeding
with different Cre recombinase transgenic mice.

The functional role of miR-147 in inflammation has also
been indicated by several studies. For instance, a study from
Liu et al. demonstrated that miR-147 overexpression in mac-
rophages could dampen TLR activation–induced cytokine
production in vitro [26]. Furthermore, a recent study demon-
strated that virulent factor from theMycobacterium marinum
downregulated miR-147 levels and overexpression of miR-
147 dampened Mycobacterium marinum–induced cytokine
production in murine macrophage cell lines in vitro [28].
These studies imply the functional role of miR-147 during
infection and inflammatory stimulations in macrophages, and
potentially other myeloid cell populations. Our successful
generation of floxed miR-147 transgenic mice will facilitate
the study of cell-specific function in vivo. Several Cre
recombinase mouse lines have been developed to target dif-
ferent populations of macrophages and other myeloid cells
[114, 115]. However, most of these Cre recombinase trans-
genic mice, including LysM-Cre, Csf1r-Cre, CD11b-Cre, F4/
80-Cre, and CX3CR1-Cre, have limited ability in the specific
targeting of a certain myeloid cell population. Recent studies
suggested that hCD68-rtTA transgenic system could facilitate
the selective and inducible targeting of CD11b+ macro-
phages, including pulmonary recruited and interstitial macro-
phages [116–118]. Crossbreeding of miR-147loxP/loxP mice
with hCD68-rtTA and Teto-Cre mice will facilitate the func-
tional study of miR-147 in macrophages in vivo.

CONCLUSION

In this study, we have generated a transgenic mouse
line with a floxed miR-147 gene (miR-147loxP/loxP) and
crossing the miR-147loxP/loxP mice with CMVcre mice
successfully generated mice with germline deletion of
miR-147 (miR-147−/−). Firstly, we demonstrate the
successful deletion of the target gene in different organs
under baseline or inflammatory conditions in organs that
showed induction of miR-147 during inflammation. Fur-
thermore, we show that miR-147 −/− mice experience
normal growth, development, and off-spring. Moreover,
miR-147 −/− mice have identical baseline inflammatory
gene expression compared to C57BL/6 mice, except ele-
vated IL-6 expression in the spleen (7.5 fold, p < 0.05).
Taken together, our data show that we have successfully
developed a transgenic animal model for tissue- and cell-
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specific deletion of miR-147 that can be used to study the
functional role of miR-147 during inflammation.
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