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Abstract

Background: Successful reduction of body weight (BW) is often followed by recidivism to obesity. BW-changes including
BW-loss and -regain is associated with marked alterations in energy expenditure (EE) and adipose tissue (AT) metabolism.
Since these processes are sex-specifically controlled, we investigated sexual dimorphisms in metabolic processes during BW-
dynamics (gain-loss-regain).

Research Design: Obesity was induced in C57BL/6J male (m) and female (f) mice by 15 weeks high-fat diet (HFD) feeding.
Subsequently BW was reduced (-20%) by caloric restriction (CR) followed by adaptive feeding, and a regain-phase.
Measurement of EE, body composition, blood/organ sampling were performed after each feeding period. Lipolysis was
analyzed ex-vivo in gonadal AT.

Results: Male mice exhibited accelerated BW-gain compared to females (relative BW-gain m:140.563.2%; f:103.766.5%;
p,0.001). In consonance, lean mass-specific EE was significantly higher in females compared to males during BW-gain.
Under CR female mice reached their target-BW significantly faster than male mice (m:12.2 days; f:7.6 days; p,0.001)
accompanied by a sustained sex-difference in EE. In addition, female mice predominantly downsized gonadal AT whereas
the relation between gonadal and total body fat was not altered in males. Accordingly, only females exhibited an increased
rate of forskolin-stimulated lipolysis in AT associated with significantly higher glycerol concentrations, lower RER-values, and
increased AT expression of adipose triglyceride lipase (ATGL) and hormone sensitive lipase (HSL). Analysis of AT lipolysis in
estrogen receptor alpha (ERa)–deficient mice revealed a reduced lipolytic rate in the absence of ERa exclusively in females.
Finally, re-feeding caused BW-regain faster in males than in females.

Conclusion: The present study shows sex-specific dynamics during BW-gain-loss-regain. Female mice responded to CR with
an increase in lipolytic activity, and augmented lipid-oxidation leading to more efficient weight loss. These processes likely
involve ERa-dependent signaling in AT and sexual dimorphic regulation of genes involved in lipid metabolism.
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Introduction

Worldwide the occurrence of obesity is dramatically in-

creasing in the last decades. BW reduction ameliorates all

aspects of metabolic alterations, but the benefit appears to

persist only as long as weight reduction is maintained. However,

most therapeutic approaches do not induce a sustained weight

loss and obese dieters fail to maintain their reduced BW. The

metabolic defense against the reduction of BW is reflected in

a decreased EE [1,2]. These compensatory changes in EE

oppose the maintenance of reduced BW and likely cause the

recidivism to obesity. As shown in multiple studies, these

processes are mediated by a coordinated endocrine response

involving leptin, ghrelin, thyroxin, and other hormones modi-

fying food intake, EE and factors that influence BW-regulation

[3–5]. In addition, there is a growing body of evidence from

human and rodent studies for a crucial role of estrogens in the

regulation of BW-loss, -maintenance, and -regain. As shown

previously the systemic loss of ligand-mediated estrogen receptor

(ER)-signaling at menopause is associated with increased

adiposity, in particular in visceral fat depots and body fat

redistribution [6]. The accumulation of visceral fat depots

increases the risk for the development of type 2 diabetes and

other diseases associated with the metabolic syndrome [7]. The

restoration of regular ER-signaling by hormone replacement can

prevent menopause-induced gains in fat mass, and results in fat
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redistribution to subcutaneous fat depots, and improvement of

insulin sensitivity [8]. These studies are further supported by

preclinical studies in female rodents who became obese after

undergoing ovariectomy. Replacement of estrogens in these

ovariectomized animals abrogated the BW-gain [9]. Similar to

the ligand-deficient models the ERa-knock out mice exhibit

increased BW and AT-mass without a concomitant change in

food consumption [10]. EE was significantly reduced in ERa-

deficient mice compared to wild-type animals suggesting an

augmented substrate utilization and metabolism by ERa
activation, underlining the role of ERa in EE [10,11]. In

addition to ERa-regulated EE, other authors have favored

direct actions of ERa in adipocytes including a prominent

inhibition of lipogenesis [12] or direct activation of lipolysis

(reviewed in [13]). Thus, actions of ERa in AT may play an

important role in mediating the effects of receptor-dependent

estrogen actions on BW-regulation. We could previously show

that also ERb-deficient mice develop higher BW and AT-mass

under HFD associated with marked increase of food efficiency

(ratio of BW-gain and food intake) and attenuated fatty acid

oxidation [14]. Taken together, these data suggest an in-

volvement of estrogenic signaling in the regulation of BW and

AT-metabolism likely resulting in sexual dimorphisms during

BW-gain, -loss, and -regain.

During CR a negative energy balance causes the breakdown of

triglycerides in adipocytes, and the AT provides free fatty acids

(FFA) to the skeletal muscle and peripheral tissues as energy

source. Lipolysis is controlled by a multi-enzyme complex of co-

regulators and -activators and is mostly mediated by the activation

of two main lipases ATGL and HSL [15].

Studies focussing on sex-specific differences demonstrated

consistent results with regard to lipolysis and fat oxidation during

exercise. When compared with men, women exhibited an

improved ultra-endurance capacity, and higher rates of fat

oxidation [16]. Along this line, skeletal muscle from women show

higher mRNA expression of genes involved in lipid metabolism

such as fatty acid transporters and enzymes involved in ß-

oxidation, when compared to men [17,18]. In consonance, our

group could recently demonstrate that female mice have

a significantly higher exercised-induced lipolytic rate compared

to male mice undergoing forced treadmill-training [19]. Thus, we

hypothesized that also under other conditions inducing a negative

energy balance such as CR during weight reduction sex-specific

differences in lipolysis may occur.

To investigate further sex-specific differences in BW-regula-

tion and lipolysis we established a model of BW-gain, -loss, and

-regain in which female and male mice were fed a HFD to

induce obesity (DIO = diet-induced obesity). Subsequently BW

was reduced and maintained by adaptive feeding. Regain of

reduced BW was achieved by ad libitum re-feeding. The major

focus of the present study was on the BW-gain and –loss phase.

This model may provide a useful tool to identify sex-specific

differences in the dynamics of BW-gain, -loss and –regain.

Materials and Methods

Ethics Statement
All animal procedures were performed in accordance with the

guidelines of the Charité Medical University Berlin and this study

was specifically approved by the Landesamt für Gesundheit und

Soziales (LaGeSo, Berlin, Germany) for the use of laboratory

animals and followed the current version of the German Law on

the Protection of Animals.

Animals and the Model of BW- changes
Five-week-old female and male C57BL/6J mice were housed in

a temperature controlled facility (25uC) with a 12 h light-dark

cycle. Mice were fed ad libitum with a HFD (Research Diets, 60%

kcal from fat, 20% kcal from carbohydrates, 20% kcal from

protein) for 15 weeks to induce obesity. To assure the investigation

of age-matched groups the initial HFD feeding period was defined

as a stable parameter in our protocol (15 weeks). BW and food

consumption were monitored twice a week. After 15 weeks mice

were randomized into three groups: a diet-induced obesity group

(DIO), a group that underwent caloric restriction (CR) until

reaching a defined target body weight (220% of DIO-BW), and

a group that underwent CR with subsequent regain by ad libitum

re-feeding for 6 weeks (Fig. 1) (n = 10 males and n = 10 females in

each group). Animals undergoing CR were single caged from week

15, and after one week of adaption food intake was daily

quantified including calculation of caloric intake. CR started after

one week, and caloric intake per day was reduced by 50% and

changed to a low-fat diet (LFD, Research Diets 10% kcal from fat,

70% kcal from carbohydrates, 20% kcal from protein). Mice were

fed daily at 5 p.m., and BW was monitored before feeding. After

reaching the target BW of 220%, weight was maintained by

adaptive feeding for 2 weeks. After this period mice were re-fed ad

libitum with HFD to cause a rebound of BW. Mice were sacrificed

in the DIO phase (DIO group), after reaching the target BW

(220% group) and after regaining BW (regain group) (Fig. 1).

Blood samples were collected when sacrificing the animals (DIO,

220%) and during weight loss (day 3 of CR) by retroorbital

venous puncture under short isoflurane anesthesia, and serum was

frozen at 220uC. Organs were frozen in liquid nitrogen, and

gonadal fat pads were partly taken for an ex-vivo lipolysis assay.

Gonadal fat pad mass was quantified before freezing. Tissue from

ERa–deficient mice was provided by S. Mahmoodzadeh.

Metabolic Cage System
Physical activity and EE were monitored using a combined

indirect calorimetry system (TSE Systems GmbH, Bad Homburg,

Germany). After adaptation, physical activity was determined for

23 h using a multi-dimensional infrared light beam system. The

respiratory exchange ratio (RER) was calculated as the ratio

between CO2 produced (VCO2) and O2 consumed (VO2). The EE

was normalized to the lean body mass to avoid the possible

confounding effects from diverged BW and lean mass. Since

weekly BW gain under HFD decreases by time of feeding, 4 weeks

HFD were chosen as a period of maximal BW gain for the first

analysis under HFD. This phenotyping was accompanied by

additional measurements after 15 weeks (DIO) and during CR.

NMR
Body composition was determined by nuclear magnetic

resonance imaging (Echo MRI mouse, Echo Medical Systems,

Houston, USA) before metabolic phenotyping and sacrificing the

animals.

Serum Glycerol
For the determination of free serum glycerol a free glycerol kit

was used (Sigma), and the procedure followed the instruction of

the manufacturer.

Liver Triglycerides
100 mg liver tissue was homogenized in 1 ml of chloroform-

methanol-water-mix (3:1.5:1) with a tissue ruptor followed by

sonification. After addition of 1 ml H2O and 2 ml chloroform
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samples were centrifuged. The supernatant was evaporated at

70uC, and triglycerides were resuspended in isopropanol. The

concentration of triglycerides was determined with a Triglycerides

FS Kit (Diasys, Holzheim, Germany) according to the manufac-

turer’s instructions.

Ex-vivo Lipolysis Assay in Gonadal AT- explants
Gonadal fat pads were surgically removed from female and

male mice (n = 627), and washed with ice-cold PBS. AT excised

pads (, 3 mm63 mm, n = 4/mouse) were preincubated for 2 h in

140 ml DMEM (Life Technologies) containing 2% fatty acid free

serum albumin (Sigma-Aldrich). Subsequently fat pads were

incubated in 140 ml DMEM +2% BSA (fatty acid free) in the

presence of forskolin (10 mM) for 1 h at 37uC. Afterwards, FFA

content was quantified for each sample in the medium using the

HR-NEFA series (Wako Diagnostics). For protein determination,

the fat pads were washed in PBS, and triglycerides were extracted

using chloroform/methanol (2:1) for ,1 h at 45uC under vigorous

shaking. Thereafter, fat free pads were lysed in 0.3 N NaOH/

0.1% SDS overnight at 55uC under vigorous shaking. Next,

protein concentration was measured using the BCA reagent

(Pierce). FFA release from each sample was normalized to protein

content of each fat pad used in the experiment. For statistical

analysis the mean for each mouse was calculated.

RNA Analysis
Total RNA from gonadal AT was isolated using Qiazol and

RNeasy Micro kit (Qiagen), according to the manufacturer’s

instruction. For real-time PCR analysis, RNA samples were

DNAse digested (Qiagen); reverse transcribed using reverse

transcriptase, RNAsin, and dNTPs (Promega), according to the

manufacturer’s instructions; and used in quantitative PCR (qPCR)

reactions in the presence of a fluorescent dye (Sybrgreen, Life

Sciences). Relative abundance of mRNA was calculated after

normalization to 18 S ribosomal. The primer sequences used for

the measurements are available on demand.

Statistical Analysis
Comparison of mean values between groups was evaluated by

two-way ANOVA (Bonferroni posttest), two-way ANOVA with

repeated measures (Bonferroni posttest), or unpaired t-tests, as

appropriate, analyzed with GraphPad Prism Software. Statistical

significance was assumed at p,0.05. Vertical lines in the

histograms indicate means 6SEM. The n-number is indicated

for each experiment.

Results

As described in detail in the method section, a model of BW-

changes including a gain phase, a reduction phase, a maintenance

phase, and a regain phase was established (Figure 1A+B).

Weight Gain Phase
Obesity was induced by feeding a HFD over 15 weeks. Male

mice responded to HFD feeding with an accelerated BW-gain

compared to female mice. As depicted in Figure 2A BW of male

mice was significantly higher compared to females. Accordingly,

relative weight increase calculated as percent of initial weight was

significantly higher in the male mice (Figure 2B). To evaluate

whether this variation in weight gain was caused by differences in

metabolic activity mice were phenotyped with regards to

locomotor activity, EE and the respiratory exchange ratio (RER)

after 4 weeks of HFD feeding. This analysis revealed that females

had a significant higher gross locomotor activity (sum of XY-axis

movements) (Figure 2C) compared to their male counterparts

resulting in higher lean-mass specific EE (Figure 2D). The RER

did not differ between the sexes, indicating that substrate

utilization was the same in both sexes during initial weight gain

(data not shown). To prove the relevance of sexual dimorphic lean-

mass specific EE for the observed differences in weight gain we

estimated the energy balance for female and male mice (calculated

as: energy intake from food – total EE; considering the fecal

excretion rate similar between males and females; fecal energy loss

was not measured) and determined food efficiency (weight gain/

food consumption). As predictable the food consumption was

higher in males than in females during HFD-feeding (f

1.8560.05 g; m 2.3260.04 g; p,0.001; unpaired t-test, mean of

15 weeks HFD) as males had a higher BW and therefore a higher

energy demand. The measurement of total EE (not normalized) in

the metabolic cage in week 4 of HFD feeding revealed that as

expected the total EE was significantly higher in males, as EE

increases as a function of BW [20] (f 9.6160.62 kcal per day; m

11.2860.79 kcal per day) resulting in a positive energy balance in

both sexes (energy balance (total EE [kcal] - energy intake/food

[kcal]): f+0.35 kcal per day; m+0.77 kcal per day). This positive

energy balance results in weight gain over 15 weeks of HFD-

feeding and was slightly higher in male mice; compared to females

providing an explanation for accelerated weight gain. However,

the calculation of food efficiency showed in the first 9 weeks of

HFD-feeding a higher rate of food efficiency in the male mice

(Figure 2E). These data corroborate that the stronger response of

male mice to HFD is mainly due to lower lean-mass specific EE.

We further focused on lean-mass specific EE for an appropriate

Figure 1. Animal model. A: Scheme of the feeding protocol to
induce body weight changes (DIO= diet-induced obesity). B: Original
BW data of female/male mice throughout the feeding protocol.
doi:10.1371/journal.pone.0037794.g001
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comparison of female and male mice, since both sexes strongly

differ in their BW and amount of lean and fat mass.

Weight Reduction Phase
After the successful induction of obesity mice were subjected to

CR to reduce BW by 20%. Metabolic phenotyping experiments

were carried out at two different time points: (1) during the CR-

phase representing the dynamic process of BW loss, and (2) after

reducing BW by 220% (indicated in the figures as ‘‘restriction’’

and ‘‘220%’’, respectively). Mice were sacrificed after reaching

the target weight.

The protocol assured an identical caloric reduction (-50%) in

both sexes. For better comparison of daily weight loss in female

and male mice we calculated the weight reduction as percent of

initial weight (Figure 3A). We observed that female mice lost their

BW faster than males and reached their target weight within less

days compared to male mice (m 12.2 days; f 7.6 days; p,0.001,

unpaired t-test). The total daily reduction of BW was 0.960.2 g in

females and 0.960.1 g in males which corresponds to an average

daily weight loss of 3.361.0% and 2.160.2% accordingly.

A compensatory reaction to weight reduction is a decrease in

EE even higher than would be expected from the decrease in BW.

To determine weight-loss-mediated changes in energy metabolism

independently from loss in BW and/or lean and fat mass reduction

we compared changes in lean-mass specific EE in females and

males and energy substrate utilization. These parameters were

studied before and during weight loss. As described previously by

others [1,2], both sexes significantly reduced their lean-mass

specific EE during weight reduction (Figure 3B), whereas lean-

mass specific EE remained generally higher in females. The

measurement of locomotor activity (sum of XY-axis movements in

23 h) showed that females responded to BW-reduction with

Figure 2. Weight gain phase. A: Body weight development of female/male mice showed a sex-specific difference in 15 weeks of HFD-feeding.
Shown are the means6SEM of body weight, measured weekly [n = 20 mice/group, two-way ANOVA with repeated measures] (factor interaction: psex/
time,0.001). B: Relative weight gain in female/male mice after 15 weeks of HFD feeding expressed as percent change from initial weight [n = 10 mice/
group, unpaired t-test]. C: Total locomotor activity of female/male mice in 23 h, measured in a metabolic cage system (TSE Systems) at week 4 of HFD
feeding [n = 10 mice/group, unpaired t-test]. D: EE of female/male mice normalized to lean body mass, measured at week 4 of HFD feeding,
expressed as means 6SEM per hour [n = 10 mice/group, two-way ANOVA with repeated measures] (factor interaction: psex/time,0.001). E: Food
efficiency (weight gain[g]/[g]food intake) calculated over 15 weeks of HFD-feeding [n = 10 mice/group, two-way ANOVA with repeated measures]
(factor interaction: psex/time,0.001). Black columns and symbols represent male mice, white = female. *p#0.05, **p#0.01, # p#0.001 vs. other sex.
doi:10.1371/journal.pone.0037794.g002
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a significant decrease in total activity whereas males did not alter

their activity at any time point of measurement (Figure 3C).

Analysis of body composition before and after weight loss

revealed that in both sexes reduction of BW was mainly mediated

by a loss of fat mass with a significant stronger relative reduction in

females than in males (absolute fat mass before and after weight

reduction: f fat mass DIO: 9.561.3 g; 220%: 4.360.9 g; m fat

mass DIO: 17.260.5 g; 220%: 9.760.5 g). In addition, a slight

and significant reduction of lean mass could be documented in

both sexes but we could not observe any significant difference

between male and female mice (Figure 3C, relative reduction of fat

and lean mass, delta DIO weight); (absolute lean mass before and

after weight reduction: f lean mass DIO: 18.260.2 g; 220%:

16.460.3 g; m lean mass DIO:24.860.5 g; 220%: 22.960,4 g).

To identify the fat depot responsible for fat mass reduction,

gonadal fat pad mass was quantified relative to total fat mass.

Females reduced their gonadal fat mass in a disproportionately

manner with an augmented loss of gonadal fat relative to total

body fat, a process absent in male mice (Figure 3E).

It is well described that under HFD ectopic fat storage e.g. in

the liver, skeletal muscle and heart occurs, and is closely related to

insulin resistance [21]. Parallel to weight loss these fat stores are

reduced, and metabolic alterations improve. As shown in Figure 3F

hepatic triglyceride storage was reduced in both sexes.

Lipolytic Activity
CR resulted in a greater relative reduction of total and gonadal

fat mass in female mice compared to male mice suggesting sexual

dimorphisms in AT-metabolism. To further investigate sex-specific

differences in AT-metabolism, lipolytic rates were assessed in

gonadal fat pads before weight reduction (DIO), and after the loss

of 20% BW. As outlined in Figure 4A, increased lipolytic capacity

during CR was only detectable in AT from female mice. In

addition, serum levels of free glycerol, as an indicator of in-vivo

lipolysis, was measured. In accordance with the ex-vivo lipolysis

assay, serum glycerol exclusively increased in female mice whereas

it remained unaffected in male mice (Figure 4B). To evaluate

Figure 3. Weight reduction phase. A: Loss of BW in female/male mice during restricted feeding, expressed as percent of DIO-BW. Body weight
target: 220% of DIO-BW, for details see method section [n = 10 mice/group, two-way ANOVA with repeated measures] (factor interaction: psex/
time,0.001). B: Change of lean-mass specific EE measured in female/male mice before weight loss and during caloric restriction. Shown is the mean
over 23 h measurement [n = 10 mice/group, two-way ANOVA] (factor interaction: psex/weight loss,0.001). C: Total locomotor activity of female/male
mice before weight loss and during CR. Shown is total activity during 23 h monitoring [n = 10 mice/group, two-way ANOVA]. D: Analysis of body
composition (lean and fat mass) in female/male mice calculated as percent reduction (delta: DIO-mass and mass after weight reduction). Lean and fat
mass were analyzed separately [n = 10 mice/group, unpaired t-test]. E: Gonadal fat mass as percent of total fat mass in female/male mice before/after
weight reduction [n = 10 mice/group, two-way ANOVA] (factor interaction: psex/weight loss,0.05). F: Liver triglycerides measured in female/male mice
before/after weight reduction [n = 8 mice/group, two-way ANOVA]. Black and dark grey columns/symbols represent male mice; white and light
grey = female mice. DIO=diet-induced obesity or before weight reduction; restriction: during restrictive feeding phase; 220%: after weight
reduction, at target weight. *p#0.05; **p#0.01; # p#0.001 DIO vs. 220% or vs. other sex.
doi:10.1371/journal.pone.0037794.g003
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whether these differences in substrate mobilization translate into

sexual dimorphic changes in substrate utilization the RER was

calculated during CR. At night time (6 p.m.–6 a.m.) a mixed

oxidation of carbohydrates, lipids and proteins was measured,

equally in both sexes (RER: f 0.8460.04; m 0.8360.03; p = 0.75).

In contrast, a significant difference between female and male mice

was detected during day time as outlined in Figure 4C, suggesting

that enhanced lipolytic activity in female mice is associated with

a stronger shift in substrate utilization towards lipid oxidation.

To identify underlying mechanisms for the sex-specific re-

sponses to CR and regulation of lipolysis we studied mRNA

expression of ATGL, HSL, and lipoprotein lipase (LPL) in gonadal

fat after weight reduction. ATGL and HSL expression were

significantly higher in AT from female mice compared to male

mice (calculated relative to the expression level of females). No

significant difference between female and male mice could be

detected in LPL expression (Figure 4D).

Figure 4. Lipolytic activity. A: Ex-vivo lipolysis assay in murine gonadal adipose tissue explants as a marker of fat-tissue specific lipolytic activity,
measured as release of FFA after stimulation with forskolin. Shown is the release of FFA in female/male mice before/after weight reduction [n = 7
mice/group, two-way ANOVA] B: Serum concentration of free glycerol in female/male mice before/during weight loss (day 3 of CR) [n = 10 mice/
group, two-way ANOVA] ] (factor interaction: psex/weight loss,0.05). C: Mean RER during day time (6 a.m.–6 p.m.) in females/males measured during
weight loss [n = 10 mice/group, unpaired t-test]. D: Analysis of ATGL, HSL, and LPL mRNA expression in gonadal-AT from female/male mice after
weight reduction. Data are presented as x-fold expression of females [n = 8210 mice/group, unpaired t-test, genes were analyzed separately]. Black
columns and symbols represent male mice; white: females. DIO: before weight reduction; restriction: during restrictive feeding phase; -20%: after
weight reduction, at target weight. *p#0.05; **p#0.01 DIO vs. 220% or vs. other sex.
doi:10.1371/journal.pone.0037794.g004
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Estrogen signaling plays a crucial role in weight regulation and

lipolytic activity as well as fat distribution. Since we identified sex-

specific differences in our model we next tested the importance of

estrogen receptors. For this, an ex-vivo lipolysis assay in AT from

mice lacking the estrogen receptor alpha (ERaKO) was carried

out. Comparing female ERaKO and wild-type animals a signifi-

cant lower FFA-release was detected in the absence of ERa
(Figure 5A). This difference was absent in male mice (Figure 5A).

To evaluate whether this observation is related to different

expression levels of ERa in female and male mice, we quantified

ERa-expression in AT by qPCR before and after weight

reduction. As depicted in Figure 5B, CR induced adipose ERa
expression in both sexes reaching statistical significance only in

females. As expected, female mice had an overall higher

expression level of ERa independent of BW suggesting that the

sex-dependent impact of ERa on AT-lipolysis results, at least in

part, also from the sexual dimorphic expression of the receptor.

Weight Maintenance and Regain
During the adaptive feeding period of 2 weeks we aimed to

maintain the BW as stable as possible (Figure 6A). Therefore, the

given food amount was adapted daily to BW-development.

Figure 6B shows the corresponding food amount for BW-

maintenance in female and male mice. When food intake was

normalized to BW, female mice could consume more food than

male mice to maintain their BW which may also involve sexual

dimorphisms in EE. The food intake in males could be increased

continuously reaching the female level at the end of the adaptive

feeding period.

To induce weight regain mice were re-fed ad libitum with HFD.

At the start of this period, both sexes became hyperphagic and

consumed significantly more food than before CR (data not

shown). This was similar in male and female mice. Within 6 weeks

mice recovered the lost BW, while males regained BW faster than

females and in a higher magnitude (Fig. 6C) suggesting that the

metabolic sex-differences during weight reduction seem to be

preserved in situations of unrestricted energy access.

Discussion

The present study demonstrates a sex-dependent regulation of

weight-gain, -loss, and -regain associated with significant differ-

ences in AT lipolytic activity, and substrate utilization/oxidation

probably involving ERa-signaling. Under CR female mice

reached their target weight faster, predominantly downsized

gonadal AT, exhibited an increased rate of ex-vivo lipolysis in

gonadal AT associated with significantly increasing glycerol

concentrations, lower RER-values, and higher AT expression of

the two main lipases ATGL and HSL compared to male animals.

Inititial sexual dimorphisms occurred during the weight gain

phase. HFD-induced relative weight gain was significantly higher

in male compared to female mice. These data are consistent with

previously published results [22], and are likely explained by

sexual dimorphic differences in EE. Despite a tendency towards

higher (non-normalized) total EE in male mice during weight gain,

reversed differences were detected when EE was normalized to

lean mass. Female mice exhibited a significant higher EE/g lean

mass than males associated with higher locomotor activity and

lower food efficiency. In accordance with these results, Xu and

colleagues recently demonstrated that deletion of ERa in

hypothalamic steroidogenic factor-1 (SF-1) neurons resulted in

decreased EE suggesting that sexual dimorphisms during weight

gain likely result from central ERa-mediated actions on EE [23].

These authors also demonstrated that floxed-ERa mice crossed

with Nestin-Cre transgenic mice resulting in a loss ERa in most

brain regions exhibit decreased locomotor activity [23]. In line

with our data showing that female locomotor activity during

weight gain is higher than male activity, these results support the

hypothesis that sex-dependent differences in EE are likely based on

sexual dimorphic regulation of locomotor activity in the central

nervous system.

Figure 5. ERa and lipolysis. A: Ex-vivo lipolysis assay in murine gonadal-AT explants from wild-type (WT) and estrogen receptor alpha knock out
mice (KO) expressed as percent of WT FFA-release after stimulation with forskolin. Bonferroni posttest showed a significant difference between WT
and KO in females [n = 425 mice/group, two-way ANOVA]. B: Analysis of ERa mRNA expression in gonadal-AT from female/male mice before/after
weight reduction. Data are presented as x-fold of females (DIO) [n = 9210 mice/group, two-way ANOVA]. The black/dark grey columns and symbols
represent male mice; white/light grey: females. DIO: before weight reduction, –20%: after weight reduction. *p#0.05 DIO vs. -20% or WT vs. KO.
doi:10.1371/journal.pone.0037794.g005
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During the weight reduction phase sex-specific differences were

sustained. Female mice reached their target-BW significantly

faster, showed a stronger decrease of total fat mass, and an

augmented relative reduction of visceral fat compared to male

mice.

To identify the underlying mechanism of these sex-specific

differences we firstly investigated energy homeostasis during

weight loss. It is well known that under CR humans and rodents

reduce their EE for energy conservation, a process responsible for

the often observed failure of dieters in maintaining reduced BW

[1,2,24]. In consonance with previously published reports, female

mice had a more pronounced decline in EE than male mice [24].

Despite the stronger decrease female mice still remained on

a higher lean-mass specific EE-level than males providing

a possible explanation for the sexual dimorphic time dynamics

during CR. These data suggest that the sex-dependent CR

phenotype is closely linked to the sexual dimorphic phenotype

observed during BW gain. However, since EE related sex

differences during CR were less pronounced than during BW

gain, the presence of additional mechanisms explaining the CR

phenotype are likely.

Notably, female mice responded to CR with enhanced re-

duction of fat mass, in particular of visceral fat mass, when

compared to males. Previously, Shi and colleagues demonstrated

similar observations in female and male FVBN mice under CR

(260% of daily food consumption). They also showed that female

mice predominantly reduced their visceral fat depot in contrast to

male mice. In a follow-up study, the authors suggested that regular

central leptin signaling via leptin receptors in proopiomelanocortin

(POMC) neurons might be involved in sex-specific regulation of fat

distribution [25]. Here we identify for the first time sexual

dimorphisms in peripheral AT metabolism during CR. Visceral

AT-lipolysis during CR vs. the obese DIO state was predomi-

nantly induced in female mice whereas this induction was absent

in males. This increase in female lipolysis was associated with

a significantly higher expression of genes involved in the hydrolysis

of triglycerides, ATGL and HSL, when female AT was compared

to male AT after CR. ATGL is the rate limiting enzyme involved

in AT-lipolysis catalyzing the initial step of triglyceride hydrolysis

[26]. Furthermore HSL is a lipase catalyzing the hydrolysis of di-

acylglycerol to mono-acylglycerol during the breakdown of

triglycerides. Both lipases are important for total breakdown of

triglycerides and release of FFAs and glycerol from fat cells. A sex-

specific regulation of ATGL has been previously identified by our

group were we could show that female mice exhibited higher

lipolytic rates during exercise when compared to males [19]. In

contrast to the present data, a sexual dimorphic regulation of HSL

was not observed in exercise-induced lipolysis suggesting different

sex-dependent mechanisms regulating lipolysis during CR and

exercise [19]. Future experiments are required to identify sexual

dimorphic pathways under varying lipolytic conditions. In

summary, our data suggest that both lipases may be involved in

the described sex-specific effect on lipolysis during CR.

Together these data could be corroborated in humans

demonstrating a greater systemic lipolysis in women during

a catecholamine infusion [27]. A number of mechanisms seem

to be involved in sex-dependent regulation of AT-lipolysis. The

response to different stimuli inducing AT-lipolysis such as

catecholamines may vary between the sexes [27]. Here we showed

that ATGL and HSL are regulated in a sexual dimorphic manner.

A general higher expression level of genes/enzymes involved in ß-

oxidation and lipid metabolism in females/women has been

described by other groups [18,28]. We further demonstrated that

ERa signaling in AT mediates the female lipolytic phenotype.

Since, ERa is also expressed in human AT, and has been

identified as an important regulator of adipocyte lipid metabolism

[12,29], one may hypothesize that modulation of ATGL and HSL

under the control of ERa translates into sexual dimorphic lipolytic

rates. Further studies are required to determine in detail ERa-

dependent regulation of AT-lipase expression.

LPL expression and enzyme activity is present in a variety of

organs, including AT, heart, skeletal muscle, lung, and others. For

most of the organs LPL is regulated in a posttranslational rather

than a transcriptional manner, however, a number of cis-acting

elements in the LPL gene could cause tissue-specific regulation. In

AT, the expression of LPL is increased by insulin and food intake

Figure 6. Weight maintenance and regain. A: Stability of body weight of female/male mice during 16 days of adaptive feeding. Shown are the
means 6SEM of body weight, measured daily. [n = 10 mice/group] B: During adaptive feeding the amount of food was individually adapted to
maintain the target weight over 16 days. Shown are the mean amount of given food 6SEM normalized to the BW of female/male mice [n = 10 mice/
group, two-way ANOVA with repeated measures] (factor interaction: psex/time,0.001). C: Sex-specific differences during weight regain expressed as
percent change of body weight before re-feeding. Shown is the BW-development in female and male mice during 6 weeks ad libitum re-feeding.
[n = 10 mice/group, two-way ANOVA with repeated measures] (factor interaction: psex/time,0.05). Black symbols represent male mice; white: females.
*p#0.05; **p#0.01; # p,0.001 vs. other sex.
doi:10.1371/journal.pone.0037794.g006
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and decreased by fasting. LPL-enzymatic activity is dependent on

energy requirements and hormonal changes [30] and the main

role remains the cleavage of FFA from lipoproteins and their

uptake into different tissues. In our study the difference in LPL

expression between female and male mice during CR did not

reach significance. This was in accordance with our expectations,

as LPL expression and activity in AT does not play a major role in

times of negative energy balance and lipolysis.

In a model of weight loss, lipolysis is a forced process to reduce

fat mass; by triggering a negative energy balance lipolysis is

increased to provide FFAs that will be transported from the AT to

the skeletal muscle to be used as energy substrate [31]. To

investigate these processes in the present study, we measured the

RER for analysis of substrate utilization and oxidation. As

reviewed from Speakman and Mitchell a key metabolic change

in CR is the shift from carbohydrate metabolism to fat

metabolism. During the first days of CR mice showed fatty acid

oxidation during day time and predominant carbohydrate

oxidation after daily feeding [32]. In the present study, higher

preference in female mice to use lipids as energy substrate during

day time is indicated by significant lower RER-values compared to

male mice. This implies that enhanced female lipolysis with

increased release of FFAs is paralleled by enhanced rates of

systemic FA oxidation.

We mainly focused on sex-specific differences during BW-gain

and BW-reduction, however, the present study also demonstrates

that sexual dimorphisms continue during the BW-maintenance

and –regain phase. During the BW-maintenance phase female

mice could consume more food to maintain their BW compared to

male mice. Furthermore, female mice exhibited an attenuated

BW-response to ad-libitum re-feeding than males during the

regain phase. These sex-specific differences are in line with the

increased level of female EE compared to males during BW-gain

and -loss. In consonance, a recent clinical study in obese/

overweight individuals demonstrated a sex-dependent regulation

of leptin and ghrelin levels during BW-regain after a hypocaloric

diet [33]. Women showed significantly higher levels of leptin

during BW-loss and –regain. In addition to its impact on food

intake leptin also has profound effects on EE inducing thermo-

genesis and increasing EE [34]. Thus, sexual dimorphisms in

leptin may contribute to sex differences in EE.

The present result may translate into future therapeutic

consequences for patients undergoing weight reducing therapy.

Increased lipolytic rates in females have been previously described

in humans [27]. More importantly, in situations of stimulated

lipolysis e.g. exercise or CR, women tend to utilize/oxidize

preferentially more lipids than men [35]. In the present study, we

could demonstrate that sex-dependent regulation of adipose

lipolysis, and FA-oxidation is associated with a faster response to

CR in female mice, characterized by a stronger decrease of

visceral adiposity, and an attenuation of weight regain. These

processes are likely under the control of estrogenic signaling in AT,

in particular through ERa. Against the background of an intense

research effort on the development of new selective ER-ligands or

modulators [36] one may speculate that future pharmacological

intervention with tissue-specific, selective ERa-ligands during

defined phases of weight reduction (e.g. during early CR or

during weight maintenance) may help to support even male dieters

in a successful performance of weight loss programs.
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