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ABSTRACT A general means of viral attenuation involves the extensive recoding of synonymous codons
in the viral genome. The mechanistic underpinnings of this approach remain unclear, however. Using
quantitative proteomics and RNA sequencing, we explore the molecular basis of attenuation in a strain of
bacteriophage T7 whose major capsid gene was engineered to carry 182 suboptimal codons. We do not
detect transcriptional effects from recoding. Proteomic observations reveal that translation is halved for the
recoded major capsid gene, and a more modest reduction applies to several coexpressed downstream
genes. We observe no changes in protein abundances of other coexpressed genes that are encoded
upstream. Viral burst size, like capsid protein abundance, is also decreased by half. Together, these
observations suggest that, in this virus, reduced translation of an essential polycistronic transcript and
diminished virion assembly form the molecular basis of attenuation.
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A recentmethodological advance in the development of attenuated viral
vaccines has been the design of genomes with hundreds of synonymous
codon changes that are collectively suboptimal (Burns et al. 2006, 2009;
Mueller et al. 2006, 2010; Coleman et al. 2008;Wimmer et al. 2009; Bull
et al. 2012; Nougairede et al. 2013; Shen et al. 2015). The nature of the
design varies from the replacement of common codons with rare co-
dons to merely shuffling existing codons to create uncommon codon
pairs. By maintaining wild-type protein sequences, the recoding
method retains the antigenic profile of the wild type while reducing
viral growth rate and virulence. Based on the premise that silent codon
changes have individually small effects, the method should not only
allow the tunable crippling of viral growth to an arbitrary degree but
also profoundly retard the reevolution of high viral fitness. Both pre-
dictions have been supported empirically. Thus, poliovirus, influenza,
several arboviruses, and a bacteriophage all exhibit quantitative fitness
declines after synonymous codon changes (Burns et al. 2006; Mueller

et al. 2006, 2010; Coleman et al. 2008; Nougairede et al. 2013; Shen et al.
2015; Bull et al. 2012), and fitness recovery during viral growth over
hundreds of generations is at best slow (Burns et al. 2006; Coleman
et al. 2008; Bull et al. 2012; Nougairede et al. 2013).

The broad success of attenuation from synonymous codon changes
in different viruses and with different designs could arise from a
common underlying mechanism. Yet, there is ongoing debate about
how synonymous codon changes affect fitness and thus what that
mechanism could be. One popular hypothesis is that codon usage
controls translational efficiency, in turn affecting the rate of protein
synthesis (Fredrick and Ibba 2010; Plotkin and Kudla 2010; Tuller et al.
2010; Shah and Gilchrist 2011; Zur and Tuller 2016). Under this hy-
pothesis, highly expressed and functionally important genes are
encoded by optimal codons to increase translational efficiency. How-
ever, a simple codon “optimality”model cannot explain the attenuation
attained by merely shuffling codons; since the abundance of the differ-
ent codons is not being changed by shuffling, the suboptimalitymust be
due to something besides codon abundance. Likewise, some highly
expressed genes in cyanobacteria and Neurospora have nonoptimal
encodings (Xu et al. 2013; Zhou et al. 2013). In other cases, codon
usage determines expression through transcription, not translation
(Zhou et al. 2016). In the face of so many seemingly contradictory
observations, further advances in this research program would benefit
from the identification of a common mechanism for viral attenuation,
or at least benefit from the demonstration that different mechanisms
are involved.
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Resolving the basis of attenuation in viral systems is partly hampered
by the sequence of life-history steps between the initial effects of codon
changes and the final emergence of assembled virions. The initial impact
may lie in transcription or translation of one ormore genes, but the effect
onthenumberofvirionswilldependonwhichproteinsare limitingduring
assembly. The same modification of an early life-history stage may have
different fitness effects in different viruses. Ultimately, itmay be necessary
to interpret the genome engineering in the context of a system-wide,
comprehensive model of the viral life cycle. Such is our motivation.

In the bacterial virus T7, recoding the major capsid protein (gene
10A) with synonymous codons reduced the fitness of the phage (Bull
et al. 2012). To engineer T7, codons in gene 10A that were highly
utilized in Escherichia coli (the T7 host) were replaced with codons that
were underutilized in the host. The major capsid protein, which forms
the head of the T7 phage particle, is the most abundant and highly
expressed phage protein (Dunn and Studier 1983). In the phage genome
with the most extensive set of gene 10A synonymous codon replace-
ments, the fitness was 35.7 doublings/hr compared to 43.2 doublings/
hr in the wild type (Bull et al. 2012). This difference translates to a
180-fold decline in descendants produced per hour. In total, 182 co-
dons were changed, just over half the number of codons in the major
capsid gene; in addition, the first 20 codons were not altered to avoid
disrupting translation initiation processes.

After adapting the recoded phage for 1000 generations, fitness
increased to 38.7, a recovery of almost half the initial deficit (on a log
scale). Thus, recoding gene 10A induced a moderately stable fitness
reduction. A mere nine nucleotide changes were responsible for the
fitness recovery, and seven fell outside the recoded region, shedding
little light on the underlying mechanism of fitness reduction.

Here, we apply new methods to continue exploration of the T7
attenuation. Using the same strains and designs as the prior study (Bull
et al. 2012), our purpose is to develop a comprehensive model of the way
silent codon changes cause reduced fitness. As part of this effort, we pro-
pose and test three mechanistic models that could explain the fitness
reduction in recoded T7. In testing those models, we apply proteomic
methods, RNA sequencing, and various phenotypicmeasures in a systems
approach to understanding the basis of attenuation.We find that recoding
gene 10A reduces protein abundances of gene 10 and also of several
downstream genes. From there, we address the impact of protein abun-
dances on viral fitness components (burst size and lysis time), ultimately
connecting these measurements to a model that describes actual fitness.

MATERIALS AND METHODS

Gene 10 nomenclature
Gene 10 is translated in two forms, A and B. FormA is 344 amino acids
and is formally denoted the major capsid protein. Form B (the minor
capsid protein) is not essential and results from a ribosomal frameshift
at the end of A and is 397 amino acids. In the engineering, all codon
changes were within 10A and thus also within 10B. Moreover, since
most peptide fragments coming from the minor and major capsid
proteins ambiguously mapped to both proteins, abundances of 10A
and 10B were not differentiated using our proteomicmethods andwere
combined. We followed a similar procedure for our RNA-sequencing
analyses. To simplify notation, we merely refer to the recoded gene as
10 and the affected A and B proteins as capsid protein.

Bacteriophage T7 strains and E. coli hosts
The host for all experiments was IJ1133 [E. coli K-12, F-DlacX74 thiD
(mcrC-mrr)102::Tn10]. T7 strains used in this study come from pre-
vious work (Bull et al. 2012). An isolate of T761 (a population adapted

to grow optimally on IJ1133 specifically through serial passage) was
first deleted of its gene 10, then recombined over a plasmid carrying a
different gene 10 engineered to contain a low fraction (0.1) of pre-
ferred codons, with 182 codon changes. The recombinant, denoted here
as the recoded strain, could be identified by its ability to grow without
complementation. The evolved strain was initiated from the recoded
phage and adapted over 800–1000 generations [strain L1 from Bull
et al. (2012)]. The wild-type strain in this study was derived from the
recoded strain after recombination over a plasmid containing wild-type
gene 10, then grown out for 6 hr of serial transfer on IJ1133. Fitness of
this “wild-type” strain was approximately the same as that of the an-
cestral population (T761).

Burst size and lysis time
Lysis time and burst size assays were performed as previously described
(Heineman and Bull 2007; Bull et al. 2011). The initial infection steps
were identical for both assays. Briefly, 108 phage (MOI = 0.1) were added
to a 10 ml culture of exponentially growing cells (37� with agitation),
incubated for 3min, and subsequently diluted 104-fold to prevent further
adsorption. For lysis times, phage were plated at various time points
between 4 and 18 min (after initial infection) to monitor changes in titer;
lysis time was taken as the time of the first significant increase in titer.

To determine burst size, initial density of phage-infected cells was
determinedbyplatingphagebefore and after treatmentwithchloroform
5 and6min after initial infection.Cells infectedwithphage at the timeof
chloroform treatment do not produce viable phage, so only free phage
will formplaques, allowing for the determination of phage-infected cells
at these times. Final phage titers were obtained at 15, 16, and 17min by
platingchloroform-treated samples.Burst sizewas thencalculated as the
phage titer at the end timepoints divided by the number of initial phage-
infected cells.

RNA sequencing
E. coli was grown in LB broth to a concentration of 108 cells/ml at 37�
with agitation, then infected with phage at an MOI of 2.5. At 1, 5, and
9 min postinfection, 2 ml of bacterial suspension were removed from
the phage-infected cultures and pelleted in a microcentrifuge. Pellets
were either flash frozen in liquid nitrogen or immediately used for
downstream processes (RNA extraction or protein preparation for
proteomics). RNA was isolated using Trizol reagent, following the
manufacturer’s protocol. Library preparation and sequencing was per-
formed by the University of Texas Genome Sequencing and Analysis
Facility using Illumina NextSequation 500 (SR75).

Since gene 10B is a readthrough product of gene 10A, we excluded the
gene 10B transcript from the reference transcriptome. RNA-sequencing
reads were quantified using Kallisto (Bray et al. 2016) and E. coli K-12
(NCBI: U00096.3) and T7 (NCBI: NC_001604.1) reference genomes. For
analyses of the recoded and evolved T7 strains, the gene 10 sequence was
replaced with the recoded sequence (supplementary file S1 in Bull et al.
2012,) in the reference genome. A population of T7-infected E. coli has no
core set of stably expressed genes with which to normalize during differ-
ential expression analysis. Therefore, all transcript abundance estimates
(transcripts per million) were normalized to the total cellular transcript
abundance (including both T7 and E. coli transcripts). Differential expres-
sion analysis was only possible within genes across treatments, but not
between genes in the same treatment.

Proteomics
Proteomicswasperformed as previously described inHouser et al. (2015).
In brief, T7-infected E. coli cell pellets (prepared as described in the RNA
sequencing section above) were resuspended in 50mMTris-HCl, pH 8.0,
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10 mM DTT. 2,2,2-trifluoroethanol (Sigma-Aldrich) was added to 50%
(v/v) final concentration and samples were incubated at 56� for 45 min.
Following incubation, iodoacetamide was added to a concentration of
25 mM and samples were incubated at room temperature in the dark for
30 min. Samples were diluted 10-fold with 2 mM CaCl2, 50 mM Tris-
HCl, pH 8.0. Samples were digested with trypsin (Pierce) at 37� for 5 hr.
Digestion was quenched by adding formic acid to 1% (v/v). Tryptic
peptides were bound, washed, and eluted from HyperSep C18 SpinTips
(Thermo Fisher Scientific). Eluted peptides were dried by speed-vac and
resuspended in Buffer C (5% acetonitrile, 0.1% formic acid) for analysis
by LC-MS/MS.

For LC-MS/MS analysis, peptideswere subjected to separation byC18
reverse phase chromatography on a Dionex Ultimate 3000 RSLCnano
UHPLC system (Thermo Fisher Scientific). Peptides were loaded onto an
Acclaim C18 PepMap RSLC column (Dionex; Thermo Fisher Scientific)
and elutedusing a 5–40%acetonitrile gradient over 250min at 300nl/min
flow rate. Eluted peptides were directly injected into an Orbitrap
Elite mass spectrometer (Thermo Fisher Scientific) by nano-electrospray
and subjected to data-dependent tandemmass spectrometry, with full
precursor ion scans (MS1) collected at 60,000 resolution.Monoisotopic
precursor selection and charge-state screening were enabled, with
ions of charge.+1 selected for collision-induced dissociation. Up to
20 fragmentation scans (MS2) were collected per MS1. Dynamic
exclusion was active with 45-sec exclusion for ions selected twice
within a 30-sec window.

Weassigned eachpeptide to a protein or protein group (in the case of
ambiguous peptides which map to multiple proteins) using Proteome
Discoverer (Thermo Fisher Scientific) and REL606 and T7 reference
proteomes (NCBI: NC_012967, NC_001604.1) concatenated with a
database of contaminant proteins (http://www.biochem.mpg.de/5111795/
maxquant). We selected the top three most-abundant peptides by peak
area for each protein. We averaged these peptide peak areas across
technical replicates to obtain a protein-abundance estimate (Silva
et al. 2006). All protein-abundance estimates were normalized to the
total E. coli protein content of the sample.

To determine if gene 10 C-terminal peptides were more common
than N-terminal peptides in the recoded T7 strain compared to the
wild-type strain, we compared the fit of the following twomodels [given
here in notation from the lme4 R package (Bates et al. 2015)]:

count � strainþ locationþ ð1jpeptideÞ (1)

count � strainþ locationþ strain:locationþ ð1jpeptideÞ; (2)

where count is thenumberofpeptidesof typepeptide, strain is the strainof
T7, and location is the location of peptide within gene 10. We assume
peptide to be a random effect, given by the (1|peptide) term. The term
strain:location indicates interaction between strain and location. Thus, we
compare a model in which the location of a peptide and the strain in-
teract, and a model in which there is no such interaction. If N-terminal
peptides were less prevalent than C-terminal peptides in the recoded T7
strain, wewould expect Equation 2 to provide a better fit than Equation 1.

Models of translational coupling

Biophysical model: Secondary structure near the ribosome binding site
(RBS) can inhibit translation initiation.Onpolycistronic transcripts, this
secondary structure can be disrupted by ribosomes completing trans-
lation of an upstream gene, thus increasing translation initiation rates.
Estimates of this relative increase in translation initiation of gene 11 due
to translation of gene 10 was predicted using the Operon Calculator
(Tian and Salis 2015).

Mathematical model: Tomodel the effects of translational coupling on
protein production, wefirst assume a polycistronic transcript with three
genes a, b, and c. We write the effective initiation rate ai of gene a as

ain ¼ minfia; tag; (3)

where ia is the aggregate initiation rate of a and ta is the translation
elongation rate of gene a.We assume that if the initiation rate ever exceeds
the elongation rate, ribosomes will quickly back up on the transcript and
make elongation the rate-limiting step of translation. Thus, in our model,
the elongation rate can never be exceeded by the aggregate translation
initiation rate. For gene a, the aggregate initiation rate ia is simply the de
novo initiation rate because there are no genes upstream of a.

The rate at which ribosomes complete translation of gene a, equiv-
alent to the production rate of protein A, is defined as

_A ¼ ain (4)

at steady state. In this context, the steady state assumption means that
all three protein products are being produced continuously at the
equilibrium rate.

For the effective translation initiation rate bin of gene b, we similarly
write

bin ¼ minfib; tbg; (5)

where ib is the aggregate translation initiation rate due to upstream-
dependent reinitiation and de novo initiation, and tb is the translation
elongation rate of b. We define the aggregate translation initiation rate

ib ¼ breinit þ bde  novo; (6)

where breinit is the rate of upstream translating ribosomes reinitiating on
gene b, and bde  novo is the rate of ribosomes initiating de novo on gene b.

Lastly we define reinitiation and de novo initiation rates on gene b as
follows:

breinit ¼ qb _A; (7)

bde novo ¼ zb _Aþ wb; (8)

where _A is the rate of ribosomes flowing from upstream translation of
gene a, and qb represents the proportion of that ribosome flow reinitiat-
ing on gene b. We assume that the rate of de novo initiation depends, in
part, on upstream ribosomes relaxing secondary structure around the
RBS of gene b. Thus, the rate of de novo initiation is given by the upstream
ribosome flow _A scaled by some constant zb (facilitated binding), and by
a constant rate wb that does not depend on upstream ribosome flow.

We can simplify the effective initiation rate to

bin ¼ min
�
_A
�
qb þ zb

�þ wb; tb
�
: (9)

We simplify the effective initiation rate further by defining a coupling
constant,

yb ¼ qb þ zb; (10)

which accounts for both the effects of facilitated binding and ribosome
reinitiation. The final effective initiation rate of b is defined as

bin ¼ min
�
yb _Aþ wb; tb

�
: (11)

Similar to the protein production rate of gene a, we define the protein
production of gene b
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_B ¼ bin (12)

at steady state.
The effective initiation rate of gene c is similar to that of gene b

cin ¼ min
�
yc _Bþ wc; tc

�
; (13)

yc ¼ qc þ zc; (14)

where _B is the rate of ribosomes flowing from the end of upstream
gene b, and qc represents the proportion of that ribosome flow
reinitiating on gene c. The rate of de novo initiation dependent on
upstream ribosome flow (facilitated binding) is given by zc; and wc is
the de novo initiation rate independent of upstream ribosome flow.
Again, yc is a coupling constant that incorporates the effects of both
facilitated binding and ribosome reinitiation.

Statistical software and plots
All statistical tests were conducted using the R language (R Core Team
2014). All plots were generated using the ggplot2 package (Wickham
2009).

Data availability
Raw RNA reads are available at NCBI GEO (ID: GSE96573) (Barrett
et al. 2013). The mass spectrometry proteomics data have been deposited
to the ProteomeXchange Consortium via the PRIDE (Vizcaíno et al. 2016)
partner repository with the data set identifier PXD006502. All processed
data and scripts are available at https://github.com/benjaminjack/
phage_attenuation.

RESULTS

Codon deoptimization reduces capsid
protein abundances
As codon deoptimization is thought to affect translational efficiency, we
propose threemodels in which recoding gene 10 (capsid protein) affects
protein abundances in T7. In model 1, codon deoptimization slows

translation of gene 10 and reduces the abundance of the capsid protein
only. Inmodel 2, deoptimization depletes the ribosome pool by creating
high ribosomal densities on capsid protein transcripts, thus reducing
translation of all viral proteins late in the infection cycle (Vind et al.
1993; Birch et al. 2012; Raveh et al. 2016). In model 3, codon deoptim-
ization has intermediate effects between models 1 and 2: translation is
impaired for gene 10 and downstream genes but not for upstream
genes. The expectation in model 3 arises because T7 produces many
polycistronic transcripts, leading to translational coupling of gene 10
and genes immediately downstream. Translational coupling has been
observed in bacterial operons but has not been considered in the context
of codon deoptimization (Oppenheim and Yanofsky 1980; Schümperli
et al. 1982; Aksoy et al. 1984; Tian and Salis 2015). All three models
assume that deoptimizing gene 10 will reduce the abundance of at least
the capsid protein.

To differentiate betweenour three proposedmodels, we compared the
T7 proteome during infection among wild-type, attenuated, and evolved
phagesusingmass spectrometry-basedproteinquantitation.T7 is thought
to encode 58–60 proteins, but only 19 are essential, and many have no
known function (Dunn and Studier 1983; Molineux 2006) (e.g., some
are thought to be homing endonucleases, selfish elements). All genes are
encoded on the same strand, and expression order is linear; genes are
numbered in order with essential genes having integral numbers (1–19)
and nonessential genes having fractional numbers. The genome is di-
vided into three expression groups. Class-I genes are the first to enter and
are expressed from promoters at the entering end of the genome, tran-
scribed by the host RNA polymerase (RNAP). The phage RNAP gene
(numbered gene 1) is the last of the class-I genes and the first essential
gene. All other genes are expressed from phage promoters, but nearly all
transcripts are polycistronic as there is only one terminator for phage
RNAP (immediately after gene 10), and there are only 17 phage pro-
moters (Figure 1). Gene 1.1 is the first class-II gene (Dunn and Studier
1983). [Note that genes 1.1–1.3 are sometimes also considered to be part
of class I, because they are transcribed by both E. coli and T7 RNAP
(Molineux 2006).] Gene 6.5 is the first class-III gene.

Because the wild-type phage lyses the cell at�11min after infection
(Heineman and Bull 2007; Bull et al. 2011), the proteome of infected

Figure 1 T7 produces many polycistronic transcripts. The bar across the top shows the T7 genome, and each class is shown in a different color.
Horizontal lines represent transcripts. Dashed vertical lines represent RNase cleavage sites, where R3.8, R4.7, R6.5, and R18.5 are strong cleavage
sites. R13 is a weak RNase cleavage site. The solid vertical line represents the terminator Tu. Genes 11 and 12 are only ever expressed as a
product of readthrough of Tu, indicated by the readthrough transcript. Only transcripts containing class-III genes are shown. Not all read-through
products are shown. Redrawn from Dunn and Studier (1983).
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hosts was sampled at 1, 5, and 9min after phage addition to the culture;
infection of cells is neither immediate nor synchronous upon phage
addition to the culture, so these times are approximate postinfection
values. By 9 min after infection, �50 of the known or predicted T7
proteins were detected. All samples recovered �4000 E. coli proteins.
Since proteins have a much longer half-life than transcripts, and T7 has
no known mechanism of degrading E. coli proteins (Molineux 2006),
we assumed that E. coli protein abundances remained constant over the
9 min infection, and normalized the phage protein abundances to that
of E. coli (Houser et al. 2015). Thus, we report all phage protein abun-
dances as a proportion of E. coli protein content.

Abundances of themajor capsid protein (a product of gene 10) were
of primary interest, as gene 10 is the most highly expressed phage gene
and is also the one deoptimized. Gene 10 comprises two protein
products: the major capsid protein (gp10A) and the much less
abundant minor capsid protein (gp10B). The minor capsid protein is
produced after a frameshift and stop codon readthrough of 10A and,
except for the C-terminal�53 amino acids, is identical in sequence to
the major capsid protein. Thus, our proteomic methods have limited
ability to distinguish between the two protein products, so we com-
bine abundance estimates into a single capsid protein measurement
(see Materials and Methods). By 9 min after infection, capsid protein
abundances in the attenuated strain were about half of those in the
wild type (p, 0:05; paired t-test; Figure 2). The capsid protein abun-
dance for the evolved strain was intermediate.

Recoding of gene 10 could have reduced capsid protein abundance
by reducing rates of translation elongation, thereby increasing the like-
lihood of ribosome stalling and fall-off. If ribosome fall-off were the
dominant mechanism by which protein abundance was reduced, at-
tenuation should have been accompanied by an excess of short peptides
from the N-terminal end. Alternatively, if translation was slowed down
without ribosome fall-off, a uniform distribution of peptides should be
observed across the capsid protein. When mapping individual peptides
recovered from themass spectrometry proteomics, no systematic change
was observed in the distribution of peptides across the protein (Figure 3).
Thus, the recoded phage strains produced complete capsid protein, but
in smaller quantities than that of the wild type.

Codon deoptimization reduced some other class-III
protein abundances
If recoding a highly expressed gene saturates the pool of ribosomes by
slowing translation of the recoded gene, the rate of translation of all T7

genes could ultimately decline (model 2, above). Models of T7 replica-
tion in E. coli, and limited experimental data, are consistent with pro-
tein synthesis being the rate-limiting step of T7 replication (although
the evidence is at best weak and indirect) (Endy et al. 1997; You et al.
2002). Moreover, depletion of free ribosomes is common in E. coli
transformed with highly expressed heterologous genes (Vind et al.
1993; Scott et al. 2010; Reuveni et al. 2011; Raveh et al. 2016).

Thedata allowus tomeasureotherT7protein abundancesover time.
9 min postinfection, abundances of class-III proteins gp11, gp12, gp13,
gp14, andgp15 in the recodedstrainwere lower than that of thewild type

Figure 3 Peptide abundances are uniformly distributed across the
capsid protein in the recoded T7 strain. Shown are the abundances of
individual peptides within the capsid protein of the recoded strain,
relative to the wild type. Data are from 9 min after infection. If
translation consistently terminated before the stop codon in recoded
gene 10, we would expect the relative peptide abundance to system-
atically vary with the location of the peptide. Therefore, we tested a
model that includes an interaction between strain and peptide loca-
tion, and a model that includes no interaction (seeMaterials and Meth-
ods). We found that a model in which an interaction is included
between the strain and peptide location fits the peptide count data
no better than a model without interaction (log-likelihood ¼ 21682:2;
log-likelihood ¼ 21682:4; respectively). Thus, in the recoded strain,
there is no evidence of early translation termination.

Figure 2 Recoding gene 10 reduces cap-
sid protein abundances. We measured pro-
tein abundance at 1, 5, and 9 min after
infection. In the recoded (attenuated) strain,
protein abundance for capsid protein after
9 min of infection is half of that of the wild
type (p,0:05; paired t-test). The evolved
strain also has significantly lower levels of
capsid protein after 9 min. Each point rep-
resents a single measurement, and lines
connect biological replicates.
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[false discovery rate (FDR) , 0.1, FDR-corrected t-test] (Figure 4
and Table 1). These proteins are mostly or all structural: tail tubular
proteins (gp11 and gp12), two internal virion proteins (gp14 and
gp15), and a protein of unknown function but required for incor-
poration of other essential proteins in the virion (gp13). The T7
endonuclease (gp3), encoded by a class-II gene, also showed reduced
abundance in the recoded strain. Abundances of these class-III pro-
teins in the evolved strain again fall somewhere between that of the
wild-type and recoded strains. Together, these results demonstrate
that recoding gene 10 reduced the protein abundances of the capsid
protein and several proteins encoded downstream of the capsid pro-
tein. The false discovery threshold we employed allows for one or
two of those downstream proteins identified to be false positives, but
the majority are likely real.

Whereas proteins encoded downstream of the recoded gene 10
showed decreased abundances, those encoded immediately upstream
of gene 10 were not obviously affected. Gene 9, immediately upstream
of 10, encodes the highly expressed scaffold protein but this protein
showed no difference in abundance between wild-type and recoded

strains (Figure 5). Under the ribosome-depletion hypothesis (model
2), we expected all genes expressed at the same time as gene 10 to be
suppressed, thus including gene 9. Indeed, because of the high levels of
expression of 9 and the consequent ease of measuring it with our
proteomics methods, we reject the ribosome-depletion model as the
basis of attenuation.

E. coli mRNA transcripts declined after bacteriophage
T7 infection
A reduction in capsid protein abundance in the attenuated virus could
be explained by fewer transcripts from the gene. Of course, a reduction
in transcription is not expected from a change in codon usage, and
indeed, the design left the 59 end of the gene unaltered specifically to
keep transcription and translation initiation unchanged. Nonetheless,
RNA sequences were obtained from phage-infected E. coli at 1, 5, and
9min after infection to see if the decline in protein was accompanied by
a decline in transcripts. Transcript abundances were normalized to the
total RNA abundance within a sample, excluding rRNA and tRNA.
Both phage and E. coli transcripts were included.

Figure 4 Recoding of gene 10 reduces abun-
dances of capsid protein (gp10), of five other
proteins encoded immediately downstream of
10 (gp11–15), and of T7 endonuclease (gp3).
The bacteriophage T7 genome contains many
polycistronic transcripts. Genes 11 and 12 are
always transcribed with gene 10, following a
read through of the Tu terminator. Genes 13,
14, and 15 may also share the same transcript
as gene 10, although these will be less common
because of an RNase cleavage site between
genes 12 and 13, and a promoter before gene
13. The panels show the relative protein abun-
dances corresponding to these genes, in addi-
tion to gene 3, for all wild-type, recoded, and
evolved strains at the 9-min time point. All of
these genes, with the exception of gene 3, are
class-III genes, expressed late in the T7 life cycle.
In addition to lower abundance of capsid protein
(gp10), all protein products from the five genes
immediately downstream of 10 are also sup-
pressed (FDR,0:1; FDR-corrected paired t-test).
These proteins are tail tubular proteins (gp11
and gp12), probable virion-associated protein
(gp13), and two internal virion proteins (gp14
and gp15). Gene 3, which codes for the T7 en-
donuclease, also has a reduced abundance in
the recoded strain. Protein abundances for the
evolved strain fall somewhere between that of
the wild-type and the recoded strains. Each
point represents a single measurement, and
lines connect biological replicates.
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Gene 10 transcript abundance increased over time, being highest
at the final 9-min time point. Yet no significant heterogeneity was
observed among the wild-type, recoded, and evolved strain tran-
scripts of gene 10 (Figure 6A). This observation seems to rule out
a transcriptional cause of capsid protein reduction.

As validation of the RNA-sequencing methods, transcription
analyses were extended to other properties of the T7 and E. coli
transcriptomes. Gene 1 (T7 RNAP) transcript abundance de-
creased over time as a proportion of total transcripts (Figure
6B), consistent with previously observed class-I gene expression
timing (Molineux 2006). Likewise, the relative abundance of
T7 transcripts to E. coli increased sharply, consistent with estab-
lished mechanisms by which T7 shuts off host transcription and
degrades the host genome (Molineux 2006). At 1 min after in-
fection, T7 transcripts comprised ,1% of the transcript pool of
infected E. coli (Figure 7). By 5 min after infection, T7 transcripts
made up.75% of the transcript pool. By 9 min postinfection, this
proportion reached �95%. Although it is not possible to assess
changes in absolute transcript abundances (see Materials and
Methods), the data require some combination of host-cell tran-
scripts being degraded rapidly, or T7 synthesizing transcripts so
rapidly that they quickly dwarf the pool of E. coli transcripts. No
strain-specific trends were detected.

Downstream effects of recoding support a model of
translational coupling
The proteomics suggest that translation of some downstream genes are
specifically depressed by the recoding of 10. This effect on downstream
genes might involve translational coupling, in which a stalling of trans-
lation over 10 delays translation of genes further down on the same
transcript. Translational coupling often occurs whenmultiple genes are
encoded on a single transcript with little intergenic space, such as in
bacterial operons and viruses (Lesage et al. 1992; Hellmuth et al. 1991;
Schümperli et al. 1982; Oppenheim and Yanofsky 1980; Aksoy et al.
1984; Torgov et al. 1998). Translational coupling is a plausible process
for sets of T7 genes because most transcripts include multiple genes
(Dunn and Studier 1983). The T7 class-III promoters precede genes 6.5
(the first class-III gene), 9, 10, 13, and 17; some transcripts with 9 and 10
will thus include earlier genes, but many will not (Figure 1). Although a
phage-specific terminator between 10 and 11 aborts most (but clearly
not all) 10 transcripts before 11, all transcripts with 11 and 12 neces-
sarily include 10. Thus, translational coupling would operate for 11 and
12 if many of the ribosomes on those genes first translated 10. Trans-
lational coupling beyond 12 is less plausible, however. The combination
of an RNAse-III site between 12 and 13 and a promoter before 13 will
mean that many or most transcripts with 13 do not include 12. So we
expect substantially higher levels of translational coupling of 11 and 12
with 10, but far less between 10 and 13.

Polycistronic transcripts are necessary for translational coupling, but
not sufficient. It must also be the case that downstream genes contain
structured, inaccessibleRBSs thatonly initiate translation in thepresence
of upstream translating ribosomes (Tian and Salis 2015; Rex et al. 1994;
Qu et al. 2011). Ribosomes that reach the stop codon of one gene often
expose the RBS of the next gene on the transcript and then reinitiate
translation on that downstream gene (Spanjaard and van Duin 1989).
Moreover, this exposure of the RBS also facilitates binding from the free
ribosome pool (Rex et al. 1994). Support for the coupling model was
evaluated from secondary structure predictions and in silico predictions
of ribosome binding (Tian and Salis 2015). Due to limitations of soft-
ware-based methods, we only tested the coupling of genes 10 and 11.
With translational coupling, translation initiation rates are predicted to
be�6 times greater for gene 11 than they would if gene 11 occurred on
a single-gene transcript. This supports a model in which at least genes
10 and 11 are translationally coupled.

Figure 5 Gene 9, encoding the highly
expressed scaffold protein, shows no
detectable difference in protein abun-
dance between wild-type and recoded
strains. Genes 9 (left) and 10 (right) are
both class-III genes that are expressed
at approximately the same time in the
T7 life cycle. All abundances are from
9 min postinfection. Each point repre-
sents a single measurement, and lines
connect biological replicates.

n Table 1 Proteins in which abundance differs significantly (FDR
< 0:1; FDR-corrected paired t-test) between the wild-type and
recoded strains of T7

Protein Mean Difference p-Value False Discovery Rate

gp3 2.7·1024 0.00014 0.0061
gp10 2.2·1022 0.00051 0.0110
gp13 8.4·1025 0.00180 0.0260
gp12 3.2·1024 0.00590 0.0510
gp14 2.3·1024 0.00560 0.0510
gp11 3.3·1024 0.00740 0.0530
gp15 2.9·1024 0.01400 0.0880
gp18 3.2·1024 0.01600 0.0880

Most differentially expressed genes are class-III genes, with the exception of
gp3, a class-II gene. The mean differences in abundance, unadjusted p-values,
and FDRs are shown. Since eight genes fall below a FDR of 0.1, we expect
approximately one of these genes to be a false positive.
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As the inference of translational coupling here is indirect and
tentative, additional insightwas sought fromamathematicalmodel.
Themodel assumed three genes on a single transcript in the order a,
b, and c (Figure 8A, Equations 3–14 inMaterials and Methods). All
genes were assumed to be the same length. In the model, protein
production rates (i.e., the rate at which ribosomes complete trans-
lation) depended on translation initiation and translation elonga-
tion rates. The model allowed varying degrees of coupling, with a
coupling constant y, which accounts for both ribosome reinitiation
and facilitated binding. The model also allowed for translation
initiation independent of any coupling effects, given by w. (In
the results presented here, y ¼ yb ¼ yc and w ¼ wb ¼ wc: See Table
2 and Materials and Methods for all parameters). In a system with
no coupling, translation initiation of gene b did not depend on

translation of gene a, and likewise between genes b and c. In a
strongly coupled system, translation initiation of gene b depended
almost entirely on the rate at which ribosomes complete transla-
tion of gene a. Translation of gene c similarly depended on gene b
in a strongly coupled system. Thus, we explored how relative rates
of protein production depend on both coupling between genes and
elongation rates within genes.

To simulate codon deoptimization of one gene in the transcript, we
varied the translation elongation rate of gene b only (Figure 8). We
considered reductions in translation rate within a two- to threefold
range. This reduction in translation elongation is compatible with prior
studies of codon deoptimization in E. coli (Kudla et al. 2009). We also
varied the coupling constant y. Under strong translational coupling
(y ¼ 1:2), the translation initiation rates of a gene depended mostly

Figure 6 Transcript abundances of indi-
vidual T7 genes change over time. Three
biological replicates each are shown for
wild-type, attenuated, and evolved strains.
Transcript abundances are presented rel-
ative to the total mRNA content in the
sample. Each column represents a differ-
ent time point after infection. Both gene
10 and gene 1 follow the expected ex-
pression patterns of class-I and class-III
genes, respectively. Each point represents
a single measurement, and lines connect
biological replicates. (A) Transcripts of
gene 10 increase over time. There are
no detectable differences in gene 10
mRNA abundances between the atten-
uated and wild-type T7 strains. (B)
Transcripts of gene 1 increase from
1 to 5 min, then decrease from 5 to
9 min. Again, there are no detectable
differences in gene 1mRNA abundances
between the attenuated and wild-type
T7 strains.

Figure 7 T7 transcripts increase relative to
E. coli transcripts over time. T7 transcripts ulti-
mately constitute most of the mRNA content of
infected E. coli. The top row shows total E. coli
transcript abundances, and the bottom row
shows total T7 abundances. Points show individ-
ual experiments, while lines connect measure-
ments from the same biological replicate. Each
bar represents the mean relative mRNA abun-
dance for a given strain and time point. Tran-
script abundances are shown relative to the
total mRNA content of the sample. Wild-type,
recoded, and evolved strains are shown, and
there are no detectable differences between
the three strains.
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on the rate of ribosomes moving through the stop codon of an up-
stream gene. Thus, the relative rate of protein A, B, and C production
(assuming that initiation is slower than elongation in each gene)
depended on the translation initiation rate of gene a. In turn, when
the translation elongation rate was less than the initiation rate for gene
b, translation elongation became rate limiting. Under these elongation
rate-limited conditions, the production rates of proteins B and C only
increased as the elongation rate of b increased, while A production rates
remained unaffected (Figure 8C, right panels). Conversely, in a weakly
coupled model (y ¼ 0:1), even if elongation rates were slower than
initiation rates in gene b, production of protein C was only weakly
affected by recoding of gene b (Figure 8C, left panels). In partially
coupled models (y ¼ 0:7; Figure 8B, middle panels), the production
rate of protein C also increased as elongation rates increased until
surpassing initiation rates for gene b. However, this increase in the rate
of C protein production was smaller than the increase observed on a
strongly coupled model. Increasing the independent translation initiation
rate w decreases the dependence of protein-C production on gene b elon-
gation rates (Figure 8C, top row to bottom row). Thismodel demonstrated
that recoding a gene in a translationally coupled set of genes affects the
protein production rates of downstream, but not upstream, genes.

Connecting proteomics to fitness
In previous work, the T7 with a recoded capsid gene had been found
to have a fitness of 35.7 doublings/hr, compared to a value of 43.2 for
the wild type. Here we consider whether and how the altered

proteomics might lead to this fitness reduction. The connection from
proteomics to fitness spans two steps: (i) identify the phage life-history
components affected by the recoding and evaluate whether that change is
compatible with the proteomics, and then (ii) assess whether the mag-
nitude of altered fitness components is compatible with overall fitness.

In the growth conditions used for our assays, fitness is determined
by cell density and three phage properties: burst size, lysis time, and
adsorption rate (Wang et al. 1996; Guyader and Burch 2008; Shao
and Wang 2008; Bull 2006; Patwa and Wahl 2009; Bull et al. 2011).
Burst size refers to the average number of viral particles released
from each infected cell. Burst sizes and lysis times were estimated
here for the wild-type and recoded phages (there was no expectation
that adsorption rate would be affected, which depends on the pres-
ence of tail fibers, the product of gene 17). Although the same cell
line was used here as in previous studies (IJ1133), new cell prepa-
rations were used, so quantitative agreement with past estimates of
burst size and lysis time is not expected, but proportional differences
should scale across different cell preparations. No difference in lysis
time was observed between strains, but burst size was reduced al-
most 50% with the recoding (Figure 9).

The proportional reduction in burst size is nearly the same as that
for the reduction in capsid protein abundance at 9 min. This re-
duction in burst size is no doubt caused by the reduction in capsid
protein. There is perhaps little basis for arguing that the reductions
should match quantitatively, but the agreement between the two
numbers poses no dilemma.

Figure 8 When genes are translationally coupled, the
translation rate of upstream genes can affect translation
rates of downstream genes. (A) Model of translational
coupling. We assume three genes (a, b, and c) are
expressed in a polycistronic transcript and are translation-
ally coupled, such that the translation initiation rates of one
gene depend partially on the rate of ribosomes reaching
the stop codon of the previous gene. Typically, translation
initiation is the rate-limiting step in translation. All genes
are assumed to be the same length. Translation initiation of
gene a is given as ia; and the translation elongation rates of
genes a, b, and c, are given by ta; tb; and tc , respectively.
The proportion of ribosomes initiating due to upstream
translation activity (coupling constant) is given as yb and
yc for genes b and c, respectively. The rate of de novo
initiation is given by wb and wc : (B) Recoding gene b
decreases the rate of translation elongation. Upon recod-
ing gene b, we hypothesize that ribosomes will accumulate
on the gene b transcript and downstream ribosomal den-
sities will decrease. (C) As translation elongation rates in-
crease, the rate of translation of downstream genes also
increases. The translation rate of b and c both increase as
the translation elongation rate of gene b increases. When
the elongation rate exceeds the initiation rate, initiation
becomes rate limiting and protein production no longer
increases. The left, middle, and right panels show models
with coupling constants (y, where y ¼ yb ¼ yc ) of 0.1, 0.5,
and 1.2, respectively. A larger coupling constant indicates
that downstream genes are less likely to initiate translation
in the absence of upstream translating ribosomes. As cou-
pling increases, production of protein C becomes more
sensitive to translation elongation rates of gene b. The
rows show different rates of independent translation initia-
tion (w, where wb ¼ wc ). The greater the independent
initiation rate, the lower the sensitivity of protein-C pro-
duction to changes in translation elongation of gene b.
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The second step in connecting proteomics with fitness is to consider
whether a 50% reduction in burst size (with no change in lysis time) is
compatible with the observed fitness reduction of 7.5 doublings/hr. The
mapping of phage fitness components onto total fitness has been
addressed in detail (Bull et al. 2011). From numerical trials in that
study, a 50% reduction in burst size is compatible with a fitness re-
duction of themagnitude observed here (table 1, lines L1 and L5, in Bull
et al. 2011).

DISCUSSION
In the decade since the first proposals to attenuate viruses by synon-
ymous codon substitutions, it has been established that the method
works inmany viruses and offersmany advantages over earliermethods
of attenuation. Yet the mechanism by which silent codon changes
attenuate not only remains elusive but seems less clear now than it
did at the start. Nor is it clear that a single mechanism underlies the

attenuation in different systems. Here, we extended previous work on a
bacteriophage system inwhich the encoding of rare codons in themajor
capsid gene reduced fitness. Our goal was to refine an understanding of
the molecular basis of the attenuation.

The capsid protein (encoded by gene 10) is the most abundant
protein produced during the infection cycle of bacteriophage T7. Deop-
timizing 50% of gene 10 codons reduced fitness (Bull et al. 2012). In
exploring the underlying molecular mechanism by which the recoding
has this effect, our primary result is that the protein product of gene 10
is reduced almost 50% by the end of the infection cycle, but protein
abundance of genes immediately downstream of gene 10 are also de-
pressed. The differences in protein abundance are not reflected in
transcript levels, so it appears that the suppression of protein levels lies
in translation. The evidence thus supports a simple interpretation of the
fitness impact of recoding the major capsid gene:

1. Capsid protein is expressed at a reduced level, as are a few down-
stream genes.

2. Burst size is correspondingly reduced �50% with no change in
lysis time, compatible with the observed reduction in total fitness.

Taken together, these two observations indicate that the reduction of
capsid protein abundance is a consequence of recoding and that this
reduction is a plausible intracellular cause of viral attenuation.

Onemechanismwe entertained to explain the altered proteomics of
the recoded phage is saturation of the ribosomes with gene 10 tran-
scripts. Such a model requires that the production of all T7 proteins
would decline late in the infection cycle for the recoded phage. Within
the limits of resolution, the proteomics rule out an overall reduction in
T7 protein production, indicating that reductions are limited to the
recoded 10 and a few downstream genes. This study may provide the
first indication that translational effects of the recoding extend beyond
the recoded genes. There was also no evidence for aborted gene 10
polypeptides in the recoded strains, as might occur from ribosomes
stalled on gene 10 transcripts. An obvious next step is to extend these
analyses to ribosome profiling, which would directly indicate whether
the recoding does tie up ribosomes on gene 10 (Li et al. 2014).

The means by which synonymous codon replacement attenuates
may be more straightforward for phage T7 than for eukaryotic viruses.

n Table 2 Parameters for three-gene model of translational
coupling

Name Description

ia Translation initiation rate of gene a
ib Aggregate translation initiation rate of gene b
ic Aggregate translation initiation rate of gene c
yb Coupling constant between genes a and b
yc Coupling constant between genes b and c
wb Rate of translation initiation independent of upstream

translation rates on gene b
wc Rate of translation initiation independent of upstream

translation rates on gene c
ain Effective initiation rate of ribosomes on gene a
_A Rate of protein-A production
bin Effective initiation rate of ribosomes on gene b
_B Rate of protein-B production
cin Effective initiation rate of ribosomes on gene c
_C Rate of protein-C production
ta Translation elongation rate of gene a
tb Translation elongation rate of gene b
tc Translation elongation rate of gene c

Figure 9 Recoding affects burst size,
but not lysis time. Burst size in recoded
T7 strain is lower than that of the wild-
type and evolved strains, while lysis
time is indistinguishable for all three
strains. (A) Five replicates each of burst-
size measurements are shown for the
wild-type, recoded, and evolved T7
strains. Points represent individual mea-
surements in plaque forming units (PFUs),
and each set of measurements in a rep-
licate are connected by a line. Bars show
the mean burst size for each strain. Burst
size of the recoded strain is smaller than
that of the evolved (p ¼ 0:02; paired
t-test) and wild-type (p ¼ 0:002; paired
t-test) strains. (B) Lysis time for the three
different strains is shown. Points represent
individual measurements, and bars repre-
sent the mean lysis time for each strain.
There were no significant differences
between the lysis times of each strain
(p ¼ 0:4; ANOVA).
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Several lines of evidence suggest that the eukaryotic virus attenuation by
synonymous codon changes is from the creation of CpG dinucleotides
(Burns et al. 2009; Atkinson et al. 2014; Tulloch et al. 2014); indeed,
especially powerful evidence to support this interpretation is that evo-
lutionary reversions of attenuated viruses disproportionately reverse
CpGs (Burns et al. 2006). In contrast, T7 evolutionary reversions did
not exhibit any signature suggestive of a dinucleotide basis for attenu-
ation (Bull et al. 2012). Nonetheless, we expect that the mechanism of
attenuation in T7 will apply across other viruses, even if it is not the
only mechanism operating in those viruses.

If our interpretation is correct for themechanismunderlying the effect
of the recoding, an evolutionary response to overcome the effectmight be
duplication of the promoter immediately upstream of gene 10. Such a
duplication would increase the number of 10 transcripts and, in the
absence of ribosome saturation, would increase the amount of capsid
protein. A duplication of a class-II promoter was observed during adap-
tation of a different phage (Springman et al. 2005), adding credence to the
possibility of such an outcome. Yet the mutational origin of a promoter
duplication may be highly dependent on surrounding sequences, so per-
haps not feasible for all promoters.

We propose that translational couplingmay explain why expression
of genes downstream of 10 is suppressed by the recoding. Part of that
inference is based on a mathematical model of translation. That model
is necessarily simplified, however, and there are some obvious improve-
ments needed to increase its realism. First, it assumes a fixed quantity of
transcripts, when we know from our RNA-sequencing results that T7
transcripts increase rapidly during infection. Second, the model as-
sumes a per-gene translation elongation rate, but does not model indi-
vidual codons. A more sophisticated model that includes codon-level
detail and the T7 life cycle would be needed to predict the fitness effects
of codon deoptimization. Several life-cycle andmolecular models of T7
have achieved limited success in predicting the phenotypic effects of
genome manipulations (Endy et al. 1997; You et al. 2002; Kosuri et al.
2007; Birch et al. 2012), but none enable codon modifications or com-
plex translation mechanisms such as coupling. The proteomics and
RNA-sequencing data generated in this study should be useful in future
high-resolution modeling studies that scale from the molecular level to
that of viral fitness.

Although it is tempting to interpret the slowed translation as a
consequence of using rare codons, which then use rare tRNAs, some
recoding strategies used in other genomes suggest alternative possibil-
ities. Codon deoptimization of GFP in E. coli initially yielded a range of
protein expression effects, but these effects were eventually attributed to
changes inmRNA secondary structure in the first 28 codons of the GFP
sequence (Kudla et al. 2009). Codon changes beyond these first 28 co-
dons had a weak effect on protein expression (Kudla et al. 2009). In our
designs, we explicitly excluded these 59-end codons from modification.
Moreover, some attenuation designs with influenza virus, poliovirus,
and arboviruses have achieved attenuation by merely shuffling codons
within a gene or genome to create rare codon pairs (Coleman et al.
2008; Burns et al. 2009;Mueller et al. 2010; Nougairede et al. 2013; Shen
et al. 2015). Since the numbers of each codon are not changed in those
designs, themechanism cannot be one of simple tRNAabundance. One
possibility is suggested by recent work in yeast and Salmonella, whereby
the degree of codon clustering is important to rapid translation
(Cannarozzi et al. 2010; Gamble et al. 2016; Chevance and Hughes
2017).We did not attempt to control for codon-pair bias in our recoded
T7 constructs. Further experiments will be needed to determine if the
E. coli translation machinery is sensitive to changes in codon-pair bias.

The approach developed here should help elucidate other mecha-
nisms of viral attenuation. For example, the timing of gene expression

appears important to fitness: a reciprocal exchange of somemiddle and
late genes had some major fitness effects, and those effects were not
recovered on long-term adaptation (Cecchini et al. 2013). Ultimately,
we envision a future in which an understanding of viral life history at
the molecular level enables facile engineering of arbitrary fitness and
alternative vaccine designs.
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