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Background: Lumbar drainage is widely used in the clinic; however, forecasting lumbar

drainage-related meningitis (LDRM) is limited. We aimed to establish prediction models

using supervised machine learning (ML) algorithms.

Methods: We utilized a cohort of 273 eligible lumbar drainage cases. Data were

preprocessed and split into training and testing sets. Optimal hyper-parameters were

archived by 10-fold cross-validation and grid search. The support vector machine

(SVM), random forest (RF), and artificial neural network (ANN) were adopted for model

training. The area under the operating characteristic curve (AUROC) and precision-recall

curve (AUPRC), true positive ratio (TPR), true negative ratio (TNR), specificity, sensitivity,

accuracy, and kappa coefficient were used for model evaluation. All trained models were

internally validated. The importance of features was also analyzed.

Results: In the training set, all the models had AUROC exceeding 0.8. SVM and the

RF models had an AUPRC of more than 0.6, but the ANN model had an unexpectedly

low AUPRC (0.380). The RF and ANN models revealed similar TPR, whereas the ANN

model had a higher TNR and demonstrated better specificity, sensitivity, accuracy, and

kappa efficiency. In the testing set, most performance indicators of established models

decreased. However, the RF and AVM models maintained adequate AUROC (0.828 vs.

0.719) and AUPRC (0.413 vs. 0.520), and the RF model also had better TPR, specificity,

sensitivity, accuracy, and kappa efficiency. Site leakage showed the most considerable

mean decrease in accuracy.

Conclusions: The RF and SVM models could predict LDRM, in which the RF model

owned the best performance, and site leakage was the most meaningful predictor.
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HIGHLIGHTS

- The supervised machine learning algorithm has value in
developing the LDRMmodel.

- The RF and SVMmodels had acceptable performance.
- Site leakage was the most meaningful predictor.
- Our proposed model may serve as a decision-making tool in

the clinic.

INTRODUCTION

Lumbar drainage (LD) is a temporary technique for
neurologically disease patients with the purpose of
therapeutically or prophylactically releasing cerebrospinal
fluid (CSF) and modulating CSF pressure (1, 2). This technique
is conducted in isolation from the environment through a closed
medical instrument with the catheter tip placed into the lumbar
cistern. As a routine operation, it is widely used in clinical
practice and manipulated by multiple specialists, including
neurosurgeons, neurocritical care physicians, interventional
radiologists, anesthesiologists, and otolaryngologists (3).
The common LD indications consist of intraventricular or
subarachnoid hemorrhage, CSF leakage, communicating
hydrocephalus, and drainage of CSF during operation to increase
anatomical exposure (4–8).

Previous studies reveal that LD can bring obvious
clinical benefits to patients, such as reducing angiographic
and symptomatic vasospasm, preventing permanent shunt
dependency, accelerating CSF leakage healing, and predicting
the outcome of hydrocephalus shunt (9–12). In addition,
LD may be a safe and effective method to lower intracranial
pressure in traumatic brain injury patients with refractory
intracranial hypertension (13). However, the risks from
LD are frequent and need to be noticed, although LD
placement is often viewed as benign (2). One of the most
common complications is lumbar drainage-related meningitis
(LDRM), which has diverse incidence in different reports,
usually as 3–20%, and a few may be as high as 40% (14).
This complication can prolong the hospital stay, increase
medical expenses, and even lead to catastrophic outcomes
(15, 16).

Several risk factors have been identified to promote the
occurrence of LDRM. These factors include duration days,
drain opening, site leakage, admission to intensive care
unit (ICU), diabetes, and accompanied craniotomy (15–
18). In our earlier study, we proposed a prediction model
by screening the risk factors of LDRM and established a
nomogram as a simple tool to estimate the infection risk
(19). However, this model was built based on a traditional
logistic regression method, which is challenging to fit

Abbreviations: LD, Lumbar drainage; CSF, Cerebrospinal fluid; LDRM, Lumbar

drainage-relatedmeningitis; ICU, Intensive care unit; ML,Machine learning; SVM,

Support vector machine; RF, Random forest; ANN, Artificial neural network;

SICU, Surgery intensive care unit; ROC, Receiver operating characteristic curve;

PRC, Precision-recall curve; AUROC, Area under receiver operating characteristic

curve; AUPRC, Area under precision-recall curve; TPR, True positive ratio; TNR,

True negative ratio.

the actual distribution of data and deal with the problem
of collinearity.

Novel supervised machine learning (ML) algorithms have
become widely accepted in recent decades, and have emerged
as a popular method of clinical infection research (20). The
algorithms can build complex non-linear models that associate
the independent features with dependent corresponds in large
data sets, with high efficiency and accuracy (21). In this work, we
used three frequent ML algorithms, the support vector machine
(SVM), random forest (RF), and artificial neural network (ANN),
to build prediction models of LDRM. We also evaluated the
model performance and conducted internal validation to assess
possible clinical application value.

METHODS

Program Environment
The data preprocessing and model development in this research
were implemented within the environment of R (4.1.2).

Study Population
We used a cohort of 273 eligible cases, as described in our
previous report (19). All the enrolled patients received LD
treatment during a research period from January 2012 to
December 2018 in the Chengdu Fifth People’s Hospital
(Chengdu, China). The original clinical features were extracted
from the hospital electronic medical records, including sex,
age, admission diagnosis, admission to surgery intensive
care unit (SICU), initial Glasgow coma scale score, blood
CSF, malignancy, immunosuppression, diabetes, duration
days, site leakage of CSF, accompanied craniotomy, and
antibiotic treatment for other types of infection (before or
after LD initiation). LDRM was identified as the response
variable, in which meningitis was the positive response,
and the contrary situation (without meningitis) was the
negative response. After univariate analysis, we only collected
statistically significant features related to the occurrence of
LDRM to form the original set (Figure 1A). All procedures
in this study were following the ethical standards of
the institutional ethical committee of the Chengdu Fifth
People’s Hospital (ref. no. 2019–074), and with the 1964
Helsinki Declaration and its later amendments or comparable
ethical standards.

Data Pre-processing
All data had normalization (range “0–1”) to eliminate the
dimensional influence between features and make different
predictors comparable. We conducted stratified sampling
according to the response, taking 70% of the original set
as the training set and 30% as the testing set (Figure 1A).
Compared with random sampling, stratified sampling can help
achieve a consistent distribution of response in training and
testing sets. Features were modified to categorical variables
using as.factor function if they were automatically identified as
numeric in R.
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FIGURE 1 | Schematic diagrams of data processing and model development.

(A) The data from electronic medical records (EMR) were selected by

univariate analysis to form an original set, which was divided into training and

test sets by stratified sampling. (B) Models were developed through a

procedure with four steps. (C) Three machine learning algorithms, the support

vector machine (SVM), random forest (RF), and artificial neural network (ANN),

were used for model training.

Model Development
We selected three supervised ML algorithms, SVM, RF, and
ANN, to construct binary LDRM prediction models following a
procedure with four steps (Figure 1B).

(1) Hyper-parameter tuning. We adopted a 10-fold cross-
validation and grid search to achieve the best parameters
with minimal classification error for each algorithm. The tune
function in R implemented this process.

(2) Model training. We trained models via three ML
algorithms using the determined hyper-parameters. The SVM,
RF, and ANN algorithms were proceeded by R packages of e1071
(22), randomForest (23), and nnet (24), respectively (Figure 1C).
We also analyzed the importance of features in the RF model.

(3) Model evaluation. We drew the receiver operating
characteristic curve (ROC) and precision-recall curve (PRC)
and calculated the area under the two curves (AUROC and
AUPRC) to evaluate the performance of different models. We
also constructed the confusion matrix and calculated other
performance indicators for evaluation, such as true positive
ratio (TPR), true negative ratio (TNR), specificity, sensitivity,
accuracy, and kappa coefficient.

TABLE 1 | Distribution of lumbar drainage patients with and without meningitis in

different data sets.

Data Sets Meningitis Non-meningitis Total

Original set 37 (13.6%) 236 (86.4%) 273 (100%)

Training set 25 (13.0%) 167 (87.0%) 192 (100%)

Testing set 12 (14.8%) 69 (85.2%) 81 (100%)

(4) Model validation. We verified the trained models in the
testing set for internal validation to determine whether the
models were generalizable. Similarly, we computed performance
indicators of the model in the testing set as the method in
step three.

RESULTS

The original set of this study enrolled 273 LD patients, including
37 (13.6%) cases with meningitis and 236 (86.4%) without
meningitis. The demographic information and univariate
analysis of the data set are demonstrated in our previous
report (19). Five features (admission to SICU, diabetes, duration
days, site leakage, and associated craniotomy) had significant
differences between infected and non-infected cases. See
reference 19 for further details. We adopted stratified random
sampling to divide the original set into training and testing sets.
The former has 192 patients (70.3%) and the latter has 81 (29.7%).
The distribution of LD patients with and without meningitis in
different data sets is shown in Table 1.

We used the 10-fold cross-validation and grid search to obtain
optimal hyper-parameters (Figure 2). The optimal constraints
violation cost (cost) and gamma parameter (gamma) of the SVM
model were 31 and 0.01, with a minimal error of 0.109. The
optimal number of trees to grow (ntree) of the RF model was
500, and the number of variables randomly sampled as candidates
at each split (mtry) was 2, with a minimal error of 0.110. As for
the ANNmodel, the optimal number of units in the hidden layer
(size) was 8, and the best maximum number of iterations (maxit)
was 170, with a minimal error of 0.111.

We established threeMLmodels in the training set. The kernel
used in the SVM model was radial. The AUROC of all three
models exceeded 0.8; the ANN model had a maximal under
curve area of 0.925 (Figure 3A). The SVM and RF models had
acceptable AUPRC, both of which were more than 0.6. However,
the ANN model had a low AUPRC, and the value was only
0.380 (Figure 3B). The RF and ANN models revealed similar
TPR, while ANN had a higher TNR (Figure 4). And the ANN
model showed better specificity, sensitivity, accuracy, and kappa
efficiency (Table 2).

Ulteriorly, we internally validated the established models in
the testing set. The RF and SVM models maintained adequate
AUROC (0.828 vs. 0.719), whereas the ANN models decreased
by a prodigious degree (0.574) (Figure 3C). All three models
had different levels of decrements in AUPRC, in which the
RF and SVM models comparatively performed better (0.413 vs.
0.520) (Figure 3D). The RF model had better TPR, although
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FIGURE 2 | Perspective view of the outcomes in hyper-parameter tuning. The 10-fold cross-validation and grid search were used to obtain optimal hyper-parameters

for three machine learning models. (A) The constraints violation cost (cost) and gamma parameter (gamma) in the support vector machine (SVM) model. (B) The

number of trees to grow (ntree) and variables randomly sampled as candidates at each split (mtry) in the random forest (RF) model. (C) The number of hidden units

(size) and the maximum number of iterations (maxit) in the artificial neural network (ANN) model.

the indicator of all models decreased comprehensively. And the
TNR of SVM and RF models changed slightly, compared with a
notable decline in the ANN model (Figure 4). RF showed better
specificity, sensitivity, accuracy, and kappa efficiency than the
other models (Table 2).

In addition, the importance of features was analyzed in the
RF model, in which site leakage had a significant impact on the
prediction accuracy, with the most meaningful mean decrease
accuracy (Figure 5).

DISCUSSION

At present, scholars have an increasing enthusiasm for utilizing
supervised ML to predict the occurrence of infection, including
iatrogenic and non-iatrogenic (21, 25–33). Nonetheless, the
study that forecasts the risk of LDRM in an early stage before
the clinical diagnosis is limited, although we have proposed
a prediction model using the traditional logistic regression
algorithm (19). To search for potential ML models and improve
the prediction accuracy, we used three prevalent ML algorithms
to establish the LDRM prediction models in this research. The
main findings are the RF and SVM models showed the ability to
predict LDRM, in which the RF model had the best performance
among all established models, and site leakage was the most
meaningful predictor.

Data preprocessing is an important preceding step to
initiating machine learning (34). The features included in the
model often have different dimensions and units, which will affect
the results of data analysis and cause bias (35).We normalized the
values (range “0–1”) between included features to eliminate the
overrepresentation or underrepresentation between predictors.
In addition, we conducted feature selection to delete redundant
or useless characteristics and retain the contributing variables
in the prediction (29, 35). We used the univariate analysis
consistent with our previous studies to make the included
variables concordant so that the models are comparable.

We included five features as model predictor variables, which
were significantly different in infected and non-infected groups
in the this study. Duration days and site leakage are two
features directly related to LD. Although the relationship between
drainage time and infection is non-linear (36), it is difficult to
obtain an infection cutoff as the risk increases gradually and
progressively (16). Site leakage is another significant predictor
variable, regarded as a critical driving factor causing retrograde
infection (19). Diabetes is usually a risk factor for surgical site
infection because diabetic patients are prone to hyperglycemia,
vascular changes, and white blood cell dysfunction (37).
Furthermore, admission to SICU and associated craniotomy are
predictors included in this work, with the possible reason these
LD patients are more severe and susceptible to bacteria.

Typically, the original set is divided into a large set (training
set) for model training and a small set (testing set) for model
validation. Some studies that predict infection use random
sampling to split the original data (25, 27). Considering that
this method may cause a disproportionate distribution between
different data sets, we used stratified sampling in the this study.
We also recommend this hierarchical data segmentation method,
of which the utilization can contribute to balancing the class
distributions within the splits. Data imbalance in ML algorithms
may be an obstacle to obtaining excellent results (38). Some data
resampling methods, such as oversampling or under sampling,
are likely to help solve this problem. However, we did not
resample data because the benefit of data balance is limited in
infection prediction, given the low rate of positive events (25).

Hyper-parameter has a considerable influence on the model
performance in ML. These parameters are predetermined but
not obtained through the training process (39). It is needed to
optimize the hyper-parameters for the ML models to improve
their performance. Improper selection of hyper-parameters in
some models, such as SVM and ANN, can significantly affect
the outcome (35). In ML, a validation set is usually established,
with the role of adjusting hyper-parameters. Nevertheless, we did
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FIGURE 3 | The area under the receiver operating characteristic curve (AUROC) and precision-recall curve (AUPRC) of three machine learning models, which were

trained using the support vector machine (SVM), random forest (RF), and artificial neural network (ANN) algorithms. (A) AUROC of the training set. (B) AUPRC of the

training set. (C) AUROC of the testing set. (D) AUPRC of the testing set.

not divide a validation set separately in the this study due to the
limited data. We, instead, adopted a 10-fold cross-validation to
achieve the optimal hyper-parameter in the training set, using
the tune function of R. This general function uses grid search
to adjust the hyper-parameter of the ML methods within the
provided parameter range.

We established prediction models of LDRM using three ML
algorithms. The model evaluation in the training set showed

that the ANN model had excellent AUROC and additional
performance indicators, including TNR, specificity, sensitivity,
accuracy, and kappa efficiency. However, this model had a
minimal area under the PRC, suggesting that it may not be
satisfying because the PRC is more informative than ROC when
dealing with imbalanced data sets (40). This conclusion is further
confirmed when using the testing set for model verification.
The performance of the ANN model decreased notably, which
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FIGURE 4 | The confusion matrix of three machine learning models, constructed by the support vector machine (SVM), random forest (RF), and artificial neural

network (ANN), respectively. The value in the upper-right grid represents the true positive ratio, and the value in the lower-left grid means the true negative ratio.

TABLE 2 | Performance indicators of confusion matrix in training and testing sets.

Models Training set Testing set

Specificity Sensitivity Accuracy Kappa coefficient Specificity Sensitivity Accuracy Kappa coefficient

SVM 0.665 0.880 0.693 0.287 0.783 0.750 0.679 0.247

RF 0.689 0.920 0.719 0.329 0.826 0.833 0.691 0.290

ANN 0.790 0.920 0.807 0.455 0.696 0.500 0.667 0.129

SVM, support vector machine; RF, random forest; ANN, artificial neural network.

reveals there might be overfitting during training. Some previous
studies also support our viewpoint, in which the ANN model
does not achieve the best performance in infection prediction
(27, 32).

On the contrary, the RF model in this study showed
encouraging performance both in the training and testing sets.
This model also outperforms our earlier logistic regression
model (AUROC 0.888 vs. 0.837), and it consequently may
be the most promising ML model for predicting LDRM. In
addition, the strongest predictor of LDMR in the RF model
was site leakage, which coincides with our previous studies.
We have proposed a possible reason that the site leakage
of LD is usually inconspicuous to be found, resulting in
retrograde infection through CSF or infected soft tissue (19).
Another model based on the SVM algorithm also had acceptable
performance, although indicators were not superior to the
RF model except AUPRC in the testing set. With further
optimization, this model may become an alternative candidate
for predicting LDMR.

Although the effective prevention of LDRM needs additional
research, the ML models in this study, for example, may play
a meaningful role. These prediction models can help clinicians
and nurses judge the possibility of LDRM and identify high-
risk patients when multiple risk factors coexist, to strengthen
monitoring or adjust treatment strategy (30). Some procedures
that increase the infection risk, such as CSF sampling, can be
accurately enhanced or diminished as appropriate. Moreover,
early prediction of LDRM may improve clinical outcomes and
reduce medical costs, as the infection is closely related to disease
deterioration and extra drug use (15, 17). It is worth noting
that optimizing the model according to the target population is
encouraged, given that the patient population, clinical scheme,
and possible risk factors are diverse among institutions (26).

This study is the first to predict LDRM using supervised
ML algorithms, in which we constructed and evaluated three
prevalent models. However, there were several limitations. (1)
Our study included retrospective data from a single research
center to establish ML models, which may result in selection
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FIGURE 5 | The importance of features in the random forest (RF) model. Site

leakage showed the most considerable mean decrease in accuracy.

bias and introduce uncontrollable confounding factors. (2) We
only used three ML algorithms, and other unused algorithms
may help achieve models with better prediction performance.
We also did not use unstructured data, which may contain
extra prediction information (31). Furthermore, the modeling
method we used entirely depends on supervised ML, which
requires a lot of expensive and time-consuming tag data and
may not extend well to related but non-identical tasks. (3)
We did not conduct external verification of the established
models, although some of them had a good performance
during internal verification. It is necessary to update the model
and verify the generalization in other clinical environments.
In addition, whether these models can improve the clinical
prognosis of LD patients and reduce medical costs remains to
be explored.

CONCLUSION

In summary, this study constructed and verified three supervised
ML prediction models to predict LDRM. The results suggest that
RF and SVM models had the predictive power, in which the RF

model owned the best performance, and site leakage was themost
meaningful predictor. Our research highlights that the prediction
model based on the ML algorithm, with further optimization,
may become an important decision-making tool for clinical staff
in the future, supplementing the existing schemes to identify
high-risk patients.
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