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Abstract: Motor fluctuations in Parkinson’s disease are characterized by unpredictability in the
timing and duration of dopaminergic therapeutic benefits on symptoms, including bradykinesia
and rigidity. These fluctuations significantly impair the quality of life of many Parkinson’s patients.
However, current clinical evaluation tools are not designed for the continuous, naturalistic (real-
world) symptom monitoring needed to optimize clinical therapy to treat fluctuations. Although
commercially available wearable motor monitoring, used over multiple days, can augment neu-
rological decision making, the feasibility of rapid and dynamic detection of motor fluctuations is
unclear. So far, applied wearable monitoring algorithms are trained on group data. In this study,
we investigated the influence of individual model training on short timescale classification of nat-
uralistic bradykinesia fluctuations in Parkinson’s patients using a single-wrist accelerometer. As
part of the Parkinson@Home study protocol, 20 Parkinson patients were recorded with bilateral
wrist accelerometers for a one hour OFF medication session and a one hour ON medication session
during unconstrained activities in their own homes. Kinematic metrics were extracted from the
accelerometer data from the bodyside with the largest unilateral bradykinesia fluctuations across
medication states. The kinematic accelerometer features were compared over the 1 h duration of
recording, and medication-state classification analyses were performed on 1 min segments of data.
Then, we analyzed the influence of individual versus group model training, data window length,
and total number of training patients included in group model training, on classification. Statistically
significant areas under the curves (AUCs) for medication induced bradykinesia fluctuation classi-
fication were seen in 85% of the Parkinson patients at the single minute timescale using the group
models. Individually trained models performed at the same level as the group trained models (mean
AUC both 0.70, standard deviation respectively 0.18 and 0.10) despite the small individual training
dataset. AUCs of the group models improved as the length of the feature windows was increased to
300 s, and with additional training patient datasets. We were able to show that medication-induced
fluctuations in bradykinesia can be classified using wrist-worn accelerometry at the time scale of a
single minute. Rapid, naturalistic Parkinson motor monitoring has the clinical potential to evaluate
dynamic symptomatic and therapeutic fluctuations and help tailor treatments on a fast timescale.

Keywords: Parkinson’s disease; bradykinesia; real-life; naturalistic monitoring; wearable sensors;
accelerometer; motor fluctuation

Sensors 2021, 21, 7876. https://doi.org/10.3390/s21237876 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-8241-5087
https://orcid.org/0000-0003-2733-4003
https://doi.org/10.3390/s21237876
https://doi.org/10.3390/s21237876
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21237876
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21237876?type=check_update&version=1


Sensors 2021, 21, 7876 2 of 16

1. Introduction

Parkinson’s disease (PD) is a disabling neurodegenerative disorder characterized by
motor and non-motor symptoms that affect patients’ motor performance and quality of life
(QoL) [1–3]. Symptomatic PD management often initially focuses on dopamine replacement
therapies [4]. However, half of PD patients develop wearing-off motor fluctuations during
the first decade after diagnosis [5,6]. Wearing-off motor fluctuations are defined as incon-
sistent therapeutic benefits on symptoms such as bradykinesia and rigidity, despite regular
dopaminergic delivery [6]. These motor fluctuations and other dopaminergic-related side
effects can markedly impair patients’ QoL [7]. Motor fluctuations are therefore a primary
indication for consideration of deep brain stimulation (DBS) [1,8]. Adequate monitoring of
motor fluctuations is essential for treatment evaluation, both in the presence and absence
of DBS, and wearable motion sensing represents an appealing approach to support this
quantification [9,10], although several challenges remain to be addressed [11,12].

Ideally, objective motor fluctuation monitoring should accurately measure and decode
movement, during real world (naturalistic) activities, and be simple to implement for pa-
tients [10,13]. Currently used Parkinson’s evaluation tools, such as the Movement Disorders
Society Unified Parkinson Disease Rating Scale (MDS-UPDRS) and the Parkinson Disease
QoL questionnaire (PDQ-39), are not designed for chronic dynamic naturalistic symptom
monitoring [14,15]. They contain questionnaires which capture subjective estimates of
retrospective symptoms over a week (MDS-UPDRS II and IV) or a month (PDQ-39). They
are also dependent on patient recall, which is often imperfect, particularly in patients with
cognitive dysfunction. Observing and scoring motor fluctuations requires trained health
providers to perform single time point evaluations (MDS-UPDRS III). Motor diaries, often
used as the gold standard for 24-h naturalistic monitoring, require self-reporting every
30 min [16]. This burden causes recall bias and diary fatigue over long-term use [17].

The strong clinical need for continuous symptom tracking, together with the wide
availability and presence of affordable accelerometer-based sensors, has led to several aca-
demic and commercially available wearable sensor PD monitoring systems [18–22]. Motor
fluctuation monitoring with commercially available devices is currently based primarily
on summary metrics derived from multiple days of sensor data. Incorporation of these
metrics during neurological consultation has led to promising augmentation of clinical
decision making [21,23–26]. However, these sensor monitoring systems have thus far been
found to be better correlated with PD clinical metrics on a time scale of days rather than
hours [21,27], which is a notably longer time window than used in the original develop-
ment studies [19,21,28–30]. Successful motor fluctuation classification over shorter time
periods (minutes or hours) would enable dynamic therapeutic motor response monitoring.
Thus, we have suggested individual model training as a methodological improvement
to pursue this. To date, motor monitoring algorithms have typically been trained on
group data; individual model training is suggested due to inter-subject heterogeneity of
PD symptomatology [11,18,20,31]. This hypothesis is strengthened by a recent successful
algorithm innovation combining short- and long-time epochs in a deep learning model
correlating wrist and ankle-worn accelerometer metrics with total UPDRS III scores on
5 min epochs [32].

In the present work, we investigated the performance of machine learning classifi-
cation models identifying rapid (single minute resolution), medication-induced motor
fluctuations in PD patients. The classification models were trained on unconstrained
naturalistic (at home) motion data derived from a unilateral wrist-worn accelerometer.
Classification models based on individual data were compared with models based on
group data. Further, we analyzed the influence of the number of individuals included in
the group model training data, and the length of analyzed accelerometer data epochs (time
window lengths), on classification results. We focused symptom decoding on bradykinesia
since this cardinal feature of PD has been found to be more challenging to detect with
motion sensors than tremor or dyskinesia [1,33]. This is likely due to higher distribu-
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tional kinematic overlap of bradykinesia fluctuations with normal movements and normal
periods of rest [18,34–36].

We hypothesized that single-minute bradykinesia classification would be achievable
using machine learning and that individualized motion classification models in PD would
demonstrate more reliable short-term classification of naturalistic bradykinesia fluctuations
compared to group models.

2. Material and Methods
2.1. Study Sample

For our analysis, we used data from 20 participants of the Parkinson@Home validation
study [37]. Detailed descriptions of the study’s protocol and feasibility have been described
previously [38,39]. In brief, the Parkinson@Home study recruited 25 patients diagnosed
with PD by a movement disorders neurologist. All patients underwent dopaminergic
replacement treatment with oral levodopa therapy, experienced wearing-off periods (MDS-
UPDRS part IV item 4.3 ≥ 1) and had at least slight Parkinson-related gait impairments
(MDS-UPDRS part II item 2.12 ≥ 1 and/or item 2.13 ≥ 1). Participants who were treated
with advanced therapies (DBS or infusion therapies) or who suffered significant psychiatric
or cognitive impairments which hindered completion of the study protocol were excluded.

For the current subset of PD patients, we included 20 patients who showed a levodopa-
induced improvement in unilateral upper extremity bradykinesia at least at one side (equal
or less than zero points). Unilateral upper extremity bradykinesia was defined as the sum
of MDS-UPDRS part III items 3c, 4b, 5b, and 6b for the left side, and items 3b, 4a, 5a, and 6a
for the right side. Sum scores from medication on-states were compared with sum scores
from medication off-states. For each included participant, only data from the side with the
largest clinical change in upper extremity bradykinesia sub items were included. Patients’
activities were recorded on video and annotated as described in the validation study [37].

For our current analysis, only unilateral wrist tri-axial accelerometer data from the
side with the largest fluctuation in unilateral upper extremity bradykinesia were included
(Gait Up Physilog 4, Gait Up SA, CH). Recordings consisted of two sessions which took
place on the same day. First, the pre-medication recording was performed in the morning
after overnight withdrawal of dopaminergic medication. Second, the post-medication
recording was performed when the participants experienced the full clinical effect after
intake of their regular dopaminergic medication. During both recordings, participants
performed an hour of unconstrained activities within and around their houses. At the start
of both recordings, a formal MDS-UPDRS III and Abnormal Involuntary Movement Scale
(AIMS) was conducted by a trained clinician.

2.2. Data Pre-Processing and Feature Extraction

Accelerometer data were sampled at 200 Hz and downsampled to a uniform sampling
rate of 120 Hertz (Hz) using piecewise cubic interpolation. The effect of gravity was
removed from each of the three time series (x-, y-, and z-axes) separately, by applying
an l1-trend filter designed to analyze time series with an underlying piecewise linear
trend [40]. Time series were low-pass filtered at 3.5 Hz to attenuate frequencies typically
associated with Parkinsonian tremor in accelerometer time series [41]. In addition to the
three individual accelerometer time series, we computed a composite time series containing
the vector magnitude of the three individual accelerometer axes (x2 + y2 + z2).

Multiple features previously shown to correlate with bradykinesia were extracted
from the four time series (in total 103 features from four time series: x, y, z, and vector
magnitude) (see extensive overview including references in Table S1). The features included
characteristics from the temporal domain (such as extreme values, variances, jerkiness,
number of peaks, and root mean squares), the spectral domain (such as spectral power
in specific frequency ranges), and dominant frequencies. The standard window length of
analysis for each extracted feature was set at 60 s, meaning one mean value per feature
was extracted per time series over every 60 s of data. To explore the influence of varying
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window lengths (3, 10, 30, 90, 120, 150, and 300 s), separate feature sets were extracted
for each sub analysis. All individual feature sets were balanced for medication-status by
discarding the surplus of available data in the longest recording (pre- or post-medication).
Features were standardized by calculating individual z-scores per feature. To not average
out pre- and post-medication differences, the mean of only the pre-medication recordings
was extracted from a value, and the result was divided by the standard deviation of only
the pre-medication recordings [42]. To test the influence of an activity filter, data windows
without motion activity were identified. For this, different methodologies of activity
filtering are described in PD monitoring literature [9,43,44]. We applied an activity filter
which classified every 60 s window with a coefficient of variation of the vector magnitude
less than 0.3 as no activity and discarded them from the analysis. The choice of selected
feature was based on previous work [43], and the threshold was chosen pragmatically by
group-level observations of video-annotated sections identified as non-active [37]. The
activity-filtered data sets were individually balanced for medication-states. For example,
if a participant’s data set resulted in 50 active minutes of pre-medication data, and only
45 active minutes of post-medication data, the surplus of features from 5 active minutes of
pre-medication data was discarded at the end of the data set.

2.3. Descriptive Statistics and Analysis of Variance

The demographic and disease characteristics of the included participants are described
in Table 1. Unilateral scores are provided only for the side on which accelerometer data
was analyzed.

Table 1. Demographic and disease specific characteristics of patient population. AIMS: Abnormal
Involuntary Movement Scale. MDS-UPDRS: Movement Disorders Society Unified Parkinson Disease
Rating Scale. Sd: standard deviation.

Characteristics

Total number (% female) 20 (60%)
Age (years, mean (sd)) 63.4 (6.4)

Accelerometer data per medication state (minutes, mean (sd)) 59.5 (14.3)
Accelerometer data per medication state, after activity filtering

(minutes, mean (sd)) 44.5 (13.9)

PD duration (years, mean (sd)) 8.1 (3.5)
Levodopa equivalent daily dosage (milligrams, mean (sd)) 959 (314)

MDS-UPDRS III pre-medication 43.8 (11.6)
MDS-UPDRS III post-medication 27.1 (9.6)

AIMS pre-medication 0.5 (1.8)
AIMS post-medication 3.7 (4.2)

To test the statistical distinguishability of the pre- and post-medication recordings
at the group level before using the entire dataset as an input, four main accelerometer
features were chosen a priori. These four features covered the most often used domains of
motion metrics applied for naturalistic bradykinesia monitoring (maximum acceleration,
coefficient of variation of acceleration over time, root mean square of acceleration over
time, and the total spectral power below 4 Hz) [18,43] and were extracted from the vector
magnitude time series. Individual averages of each of the four features over the entire
dataset (~60 min per condition) were analyzed for statistically significant differences
between the medication states with a multivariate analysis of variance (M-ANOVA). Post-
hoc repeated measures ANOVA were performed to explore which feature(s) contributed
to the pre- versus post-medication difference. An alpha-level of 0.05 was implemented
and multiple comparison correction was performed using the false discovery rate (FDR)
method described by Benjamini and Hochberg [45].
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2.4. Classification of Medication States
2.4.1. Individually Trained and Group Trained Models

Supervised classification analyses were performed to test whether differentiation
between short-term pre- and post-medication was feasible, based on 60 s accelerometer
features (Figure 1). First, this was tested using the four previously mentioned features
extracted from the vector magnitude signal. Afterward, the feature set was expanded
to include all described features, as well as the x, y, z time series (Table S1). Analyses
were performed using a support vector machine (SV) and a random forest (RF) classifier.
Classification models trained on individual data and models trained on group data were
then compared (Figure 1B).

For individually trained models, 80% of a participant’s total balanced data was used
as training data, and 20% as test data (Figure S1). Small blocks (2%) of training data which
neighbored the test data were discarded (Figure S1) to decrease the temporal dependence
between training and test data. To prevent bias caused by the selected block of test data,
a 41-fold cross-validation was performed. Each fold (out of 41) included two continual
blocks of 10% of total data, one block from the pre- and one block from the post-medication
recording as test data (percentiles 0 to 10 and 50–60, percentiles 1 to 11 and 51 to 61, . . . ,
and percentiles 40 to 50 and 90 to 100, see visualization in Figure S2).

For group-trained models, a leave one out cross-validation was performed. For every
participant, a model was trained based on all data (balanced for medication status) from
the remaining 19 participants and tested on all data (balanced for medication status) of the
specific participant (Figure 1B). To assess all models, the area under the receiver operator
curve (AUC) and the classification accuracy were calculated as predictive metrics. For the
individual models, individual classification outcomes were averaged over the 41 folds. All
parameters and details related to the implemented classifiers are available through the
GitHub codebase [46].

To test the statistical significance of each individual and group model performance,
5000 permutation tests were performed in which medication state labels were shuffled. The
95th percentile of permutation scores was taken as significance threshold (alpha = 0.05),
and FDR multiple comparison corrections were performed [45].

2.4.2. The Influence of Training Data Size, and Feature Window Lengths

To test the impact of the size of the training set on the group models, the training
phases were repeated with varying numbers of participants included in the training data.
As in the original group model analysis, the test data consisted of all data from one
participant. The number of training data participants varied between 1 and 19. To prevent
selection bias in the selection of the training participants, the analyses were repeated five
times per number of included training participants, with different random selections of
training participants. Individual classification models were excluded from this analysis by
definition.

To analyze the influence of feature window lengths, we repeated the group model
analysis with features extracted from data windows of 3, 10, 30, 90, 120, 150, and 300 s
duration. For every analysis, one participant was selected as a test participant, and the
other 19 were training participants. This was repeated for all participants and the averages
over 20 test participants were reported. This was performed at the group level modelling
only, as individual models were limited by total available data size.

2.4.3. Comparing Two Models’ Predictive Performance

Equality plots were drawn to compare the AUC scores and accuracies between two
models, for example a model using 4 features versus 103 features, a model using an SV
classifier versus an RF classifier, a model with versus without activity filtering (Figure S3).
All comparisons were performed separately for the individual and group models. For
example, model A led to a higher AUC score than model B in 14 out of 20 participants
(14 dots above the equality line). Permutation tests plotted 20 random dots on an equality
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plot and tested whether the permuted distribution generated 14 or more dots (out of
20) above the equality line. This was repeated 5000 times, and the probability that the
distribution 14 out of 20 was the result of chance was determined.
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Figure 1. Accelerometer-based Parkinsonian motor fluctuation detection workflows. (A) Left: A
wrist-worn motion sensor (Physilog 4, Gait Up SA, CH; green circled) is used to collect unilateral
tri-axial accelerometer data. X, Y, and Z represent acceleration (meters/second per second) in three
axes over time (seconds). Temporal windows are determined for data analysis and are indicated
in different colors over time (win1, win2, . . . ). Center: Signal preprocessing and feature extraction
convert the raw tri-axial signal into a dataset containing M features (Table S1), calculated for every
temporal window (in total M columns and N rows). For the training phase of the machine learning
classification models, the true labels representing medication states (*) are used. Right: In the testing
phase, inserting the feature set (M × N) in the trained classification model leads to N medication
state predictions. (B) Workflow to train and test individual and group models. Identical features
are extracted from the raw accelerometer data of the twenty included participants (grey symbols).
For the individually trained models (blue), the features from 80% of a participant’s epochs are used
in the training phase (y-axis). The trained individual model is tested with the remaining, unused,
20% of epochs during the test phase. The arrows (*) from test phase to training phase represent the
multiple cross-validation folds applied to train and test the individual models on different selections
of training and test data. For the group models (yellow), each participant is tested in turn, with data
from the other 19 participants used in the training phase.
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2.4.4. Predictive Performance and Clinical Assessed Symptom Fluctuations

The influence of clinical bradykinesia, tremor, and abnormal involuntary movement
fluctuations on predictive performance was tested at a group level by Spearman R cor-
relations between the fluctuation in individual bradykinesia and tremor sub scores and
AIMS scores, and the predictive performance (Table S3). Individual participants were
visualized according to descending tremor and AIMS fluctuation ratings to enable visual
comparison of predictive performance with and without co-occurring tremor and abnormal
involuntary movement fluctuation (respectively Figure S4A,B). The tremor scores consisted
of the MDS-UPDRS III items representing unilateral upper extremity tremor (items 15b,
16b, and 17b for the left side, and items 15a, 16a, and 17a for the right side).

2.4.5. Software

Raw acceleration time series were down sampled and filtered (for gravity effects)
in Matlab. All further preprocessing, feature extraction, and analysis was performed in
Jupyter Notebook (Python 3.7). The code used to extract features and analyze data is made
publically available [46].

2.4.6. Code and Data Availability

The code used to extract features and analyze data is publicly available [46]. The
de-identified open source dataset will be made available to the scientific community by the
Michael J. Fox Foundation.

3. Results
3.1. Study Population and Recorded Data

Twenty PD patients from the Parkinson@Home data repository [37] were included
in this study. We excluded three participants who did not show a levodopa-induced
improvement in unilateral upper extremity bradykinesia and two participants were further
excluded because there was less than 40 min of accelerometer data available from their pre-
or post-medication recording, resulting in a dataset of 20 patients.

Demographic and disease-specific characteristics are presented in Table 1. In total,
3138 min of accelerometer data were recorded in the 20 included patients. After balancing
the data sets for medication status, 2380 min of accelerometer data were included. On
average, 59.5 (±14.3) min of accelerometer data from both pre- and post-medication record-
ings were included per participant. On average, 44.5 min (±13.9 min) of features were
included after applying the activity filter and balancing the individual data to include
equal individual features per medication state.

We extracted multiple features which are described in the current literature to index
naturalistic bradykinesia with a wrist accelerometer (see Table S1 for details and references).
In total, 103 motion accelerometer features were extracted for every feature window,
including both time domain and spectral features from the accelerometer.

3.2. Group Level Statistical Analysis of Cardinal Motion Features across Medication States

At the group level, the pre- and post-medication recordings differed significantly
regarding the individual means of the four main motion features (maximum accelera-
tion magnitude, coefficient of variation of acceleration magnitude, root mean square of
acceleration, and spectral power (below 4 Hz) [18,43]) (MANOVA, Wilk’s lamba = 0.389,
F-value = 14.2, p < 0.001). Post-hoc repeated measures ANOVAs demonstrated that only
the individual coefficient of variation averages significantly differed between pre- and
post-medication states (p = 0.0042) (Figure 2).
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Figure 2. Distributions of individual means for four main movement features. Colored dots repre-
sent the mean feature values during the whole post-medication recording per participant (n = 20).
Individual post-medication mean values are standardized as z-scores (individual pre-medication
recordings are used as references, and therefore the pre-medication mean values equal 0). The red
asterisk indicates a significant difference on group level between mean coefficient of variations of pre-
and post-medication means (alpha = 0.05, MANOVA and post-hoc analysis, FDR corrected). † = one
positive outlier (1.7) not visualized.

3.3. Machine Learning Classification of Short Window Data Epochs

Next, the classification performance over short time windows (one-minute resolution)
was tested using support vector (SV) and random forest (RF) machine learning models.
All medication state classifications using the four previously selected motion features led
to low AUC scores (means per model ranged between 0.49 and 0.64) and low accuracies
(means per model ranged between 49% and 60%) (see Table S2 for detailed results).

We therefore repeated the classification analysis, using an expanded kinematic feature
set (103 features). With the full feature set, notably higher AUC scores and classification
accuracies were seen for all individual and group (SV and RF) models (Table S2 and
Figures S3A,B). Mean AUC scores per model ranged between 0.65 and 0.70, and mean
accuracies per model ranged between 60% and 65% (Table S2). Most participants yielded
AUC scores and accuracies significantly better than chance level (17 out of 20 participants
per model), tested through random surrogate dataset generation.

In 90% of participants (18 out of 20), either the best individual or group model classified
medication states per 60 s significantly better than chance level based on our surrogate
datasets (Figure 3 and Table S2). Group trained models resulted in AUC scores statistically
significantly higher than random classification in 17 participants. Individually trained
models resulted in AUC scores statistically significantly higher than random classification
in 13 participants. Both individual and group models resulted in mean AUC scores of 0.70
(±respectively 0.18 and 0.10), and mean accuracies of respectively 65% (±0.14) and 64%
(±0.08) over all 20 participants (Figure 3, Table S2). Notably, the individual models resulted
in a larger standard deviation of AUC scores, including several AUC scores higher than 0.9
as well as below chance level (Figure 3).

Overall, these findings confirmed the feasibility of rapid naturalistic bradykinesia clas-
sification based on wrist-worn accelerometer metrics. Individual model training resulted in
a similar mean AUC with a wider standard deviation compared to group model training.
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Figure 3. Classification of medication induced motor fluctuations on short accelerometer time
windows in individual participants. The first pair of bars represents the mean area under the curve
(AUC) score over the twenty participants. Each subsequent pair of bars (002 to 090) represents
the AUC scores from one participant. The blue bars represent the AUC score for the individual
model, and the yellow bars represent the group model. Note that for the individual models, AUC
scores are the averages over the multiple cross-validation folds within a participant (Figure 1B). The
asterisks indicate whether the corresponding AUC score was significantly better than chance level
(5000-repetitions permutation test). Both models have equal mean AUC scores. It is notable that
the majority (18 out of 20 of participants) has at least one significant score. Half of the participants
yielded a higher AUC score with the individual model than with the group model.

3.4. Classification of Bradykinesia-Centred Motor Fluctuations Versus Co-Occurring Symptoms

We found no significant correlations between the individual classification performance
and the individual clinically scored fluctuations in bradykinesia, tremor, and AIMS (see
Table S3, all p-values larger than 0.1). At an individual level, we found significant AUC
scores in participants with (13, 24, and 79) and without (39, 51, and 58) tremor fluctuations
(Figure S4A). Similarly, we found significant AUC scores in participants with (2, 15, 51, and
79) and without (39, 18, 24, and 90) AIMS fluctuations (Figure S4B).

Individual predictive performance was found not to be proportional to the size of
tremor or AIMS fluctuations, suggesting the feasibility of using the applied metrics for
PD patients with and without tremor and abnormal involuntary movements. Meanwhile,
the severity of bradykinesia did not influence the classification performance, suggesting
feasibility of the metrics for patients with even mild-to-moderate bradykinesia fluctuations.

3.5. Influence of Training Data Size and Feature Window Length

We found an increase in the predictive performance (AUC) of the group models as the
number of patient datasets used during model training was increased (Figure 4A). Above
15 participants, the increase in mean AUC levelled off toward the 19 included participants.

Next, we wanted to investigate the impact of the accelerometer data feature window
length on the predictive performance of the group models. Increasing the length of the
feature windows up to 300 s improved the mean AUC (Figure 4B). Due to data size
limitations, the feature windows were not expanded further than 300 s. These analyses
could not be reproduced for the individual models due to data size limitations.
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Figure 4. Increasing number of training patients and length of data window duration improves
classification performance. (A): Group models are trained for every patient with a varying number
of included training data, (x-axis). On the y-axis, the AUC is shown for both SV and RF models
(both included activity filtering). An increase in AUC is seen for SV and RF models parallel to an
increase in included training patients. (B): Group models are trained for every patient with various
feature window lengths (x-axis). On the y-axis, the AUC of the SV and RF models are visualized.
Due to the longer feature window lengths, the activity filter in this sub-analysis is not applied to
data size limitations. Larger window lengths up to 300 s increase classification performance, while
smaller window lengths decrease classification performance. AUC: area under the receiver operator
characteristic; SV: support vector classifier; RF: random forest classifier.

4. Discussion

Our results demonstrated successful classification of naturalistic bradykinesia fluctua-
tions using wrist accelerometer data on different timescales using conventional statistical
approaches (over one-hour epochs) and machine learning classification (over one-minute
epochs). We found that the coefficient of variation of the accelerometer amplitude was
significantly increased following dopaminergic medication when a full 60 min of data was
analyzed per medication condition. At shorter timescales (60 s), this feature (complemented
with 3 other accelerometer metrics) was not strongly predictive of medication state using
machine learning. However, using a larger number of motion metrics (103), statistically
significant classification of medication states could be achieved in 90% of participants (18
out of 20) using either group- or individually-trained models (Figure 3). Individual and
group models both resulted in a mean AUC of 0.70 on the 60 s epochs, where the individual
models’ AUC scores had a larger standard deviation (Figure 3, Table S2). Expansion of
the data epoch length (from 60 to 300 s), as well as inclusion of more training participants,
improved AUC scores in the group models. Limited individual data sizes withheld us
from testing individual models with expanded data epochs and may explain the larger
standard deviation for individual model AUCs (Figures 1B and S1).

These results represent the first demonstration of classification of Parkinsonian bradyki-
nesia fluctuations using individually-trained models for single-wrist accelerometer data on
a rapid timescale. Although we showed statistically significant classification over short
time windows, we did not find added value yielded by individual model training based



Sensors 2021, 21, 7876 11 of 16

on our current results. Reproduction with longer accelerometer recordings for individuals
is, however, likely to improve classification results further.

The significant difference of only the mean individual coefficient of variance between
pre- and post-medication recordings (Figure 2) may be explained by a suggested larger
discriminative potential of naturalistic sensor features describing a distribution rather than
describing extreme values or sum scores [11].

In general, the presented classification models were notable due to the unconstrained
naturalistic (real-world) data collection environment and short time scale of classification.
Operating at this shorter timescale, the models showed good classification performance
compared with benchmark naturalistic medication-state detection models (Figure 3) [34–36].
Although better classification performances have previously been described with models
using data over longer timescales or from more constrained recording scenarios, these
methodologies improved classification results at the cost of less naturalistic generalizabil-
ity [18,22,27,28,43]. Adding a second motion sensor would likely increase performance at
the cost of user-friendliness and feasibility [32]. Systems using wrist, ankle and/or axial
motion sensors have the theoretical advantage of being more sensitive for arm versus leg-
and gait-centered symptomatology.

4.1. Clinical Relevance and Methodological Challenges of Naturalistic and Rapid PD
Motor Monitoring

Wearable accelerometer-based PD monitoring systems have been developed to aug-
ment therapeutic decision making, [20,21,23] and to augment clinical assessments in phar-
macological trials [11,47]. Previous systems have been validated over the course of days.
However, other suggested clinical state tracking applications would require short time
scale feedback [22], including fine-grained cycle-by-cycle medication adjustments and con-
ventional [48,49] or adaptive [50–53] deep brain stimulation programming. Moreover, the
significant predictive performance in patients with and without both tremor and dyskinesia
(AIMS) fluctuations underlines the potential of dynamic naturalistic monitoring for a wide
spectrum of PD patients (Figure S4A,B). The latter was important to investigate despite the
filtering out of typical tremor bandwidths, since solely band pass filtering cannot rule out
any influence of tremor dynamics.

Notably, we observed marked differences in classification accuracy using either 4 ac-
celerometer features or 103 features (Figures 3 and S3). This suggests that bradykinesia
classification on shorter timescales, requires rich feature sets. The significance testing
with surrogate datasets aimed to rule out any resulting overfitting. However, a thorough
comparison of feature sets is often complicated by proprietary algorithms or the lack of
open-source code [12]. This underlines the importance of transparent, open source, and
reproducible movement metric feature sets for naturalistic PD monitoring [54,55].

Another methodological challenge for rapid, objective, naturalistic short-term PD
monitoring is the lack of a high-quality labelling of data on the same time scale. PD clinical
assessment tools, currently applied as gold standards, are limited in their applicability for
rapid time scales. Multiple longitudinal time windows of the dynamic accelerometer time
series are labelled with a single clinical score, which weakens model training and evaluation.
In effect, sensor-based outcomes are often aggregated to match clinical evaluation metrics
and time scales, which might account for the current upper limit in wearable classification
performance [21,24,29]. PD-specific eDiaries [56–59] labelled video-recordings on fine time
scales [60], and other virtual telemedicine concepts [61] may contribute to this challenge.

4.2. Future Scientific Opportunities to Improve Naturalistic PD Monitoring Development

We predict that the coming expansion of real-world motion data sets, containing
long-term data over weeks to years in patients with PD, will support optimization of
individually-trained models [62]. These larger datasets will also allow the exploration of
alternative, more data-dependent, computational analyses, such as deep neural network
classification and learning [35,63]. Moreover, unsupervised machine learning models could
also be explored to overcome the issues of lacking temporally matching gold standard
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for model training and evaluation by surpassing the need for long-term, repetitive, true
labels [11,64]. The observed discriminative potential of the coefficient of variation (Figure 2)
might be of value in post hoc differentiation of clusters in unsupervised machine learning
models.

Additionally, open-source research initiatives should catalyze the development of nat-
uralistic PD monitor models which are not dependent on proprietary software [10,43]. The
Mobilize-D consortium, for example, introduced a roadmap to standardize and structure
naturalistic PD monitoring by creating specific “unified digital mobility outcomes” [54,55].
During the development of these outcomes, features describing distribution ranges and
extreme values—rather than means or medians—should be considered [11]. Parallel to
open-source initiatives, other creative collaborations between industry and academia, such
as data challenges, might offer valuable (interdisciplinary) cross-fertilization [65]. Further-
more, adding more limb sensors to improve naturalistic PD monitoring is controversial.
Although there is evidence supporting the combined use of wrist, ankle [32,66], or in-
soles [67] sensory tracking, other reports have not shown improved performance and
instead described additional burden to the patient [35,68,69].

4.3. Limitations

Our study was limited by the individual data set sizes, which restricted inferences that
could be made regarding models trained with individual versus group data. Additionally,
the unconstrained character of the pre- and post-medication recordings led to an imbalance
in terms of captured activities during the two medication states. The applied activity-filter
addressed this limitation partly but does not rule out imbalance in exact activities. This
imbalance compromises pattern recognition based data analysis [35], but is also inherent
to naturalistic PD monitoring [18]. Exploring the boundaries of this limitation is essential
for future PD monitor applications. Replication of our methodologies in larger data sets,
and inclusion of validated activity classifiers may contribute to overcoming this limitation.
Future studies should also aim to detect symptom states beyond a binary differentiation
between on- versus off-medication.

5. Conclusions

We demonstrated that classification of naturalistic bradykinesia fluctuations at the
single-minute time scale was feasible with machine learning models trained on both
individual and group data in PD patients using a single wrist-worn accelerometer. At longer
timescales (i.e., an hour), a single accelerometer feature, the coefficient of variation, was
predictive of bradykinesia at the group level. Extension of short accelerometer time epochs
and an increased number of training patients improved classification of group-trained
models. Rapid, dynamic monitoring has the potential to support personalized and precise
therapeutic optimization with medication and stimulation therapies in Parkinson’s patients.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/s21237876/s1, Table S1: Overview of extracted features. Figure S1: Schematic visualization of
data splitting method for individual models. Figure S2: Visualization of activity filter performance
versus the parallel raw signal vector magnitude. Table S2: Predictive metrics for all models and
approaches. Figure S3: Comparison of different model approaches for short window medication
states classification. Figure S4: Classification performance in patients with and without tremor and
abnormal involuntary movements. Table S3: Spearman R correlations between symptom fluctuation
and predictive performance at an individual level.
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