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In the past decades, genomic prediction has had a large impact on plant breeding. Given

the current advances of high-throughput phenotyping and sequencing technologies, it is

increasingly common to observe a large number of traits, in addition to the target trait of

interest. This raises the important question whether these additional or “secondary” traits

can be used to improve genomic prediction for the target trait. With only a small number

of secondary traits, this is known to be the case, given sufficiently high heritabilities and

genetic correlations. Here we focus on the more challenging situation with a large number

of secondary traits, which is increasingly common since the arrival of high-throughput

phenotyping. In this case, secondary traits are usually incorporated through additional

relatedness matrices. This approach is however infeasible when secondary traits are

not measured on the test set, and cannot distinguish between genetic and non-genetic

correlations. An alternative direction is to extend the classical selection indices using

penalized regression. So far, penalized selection indices have not been applied in a

genomic prediction setting, and require plot-level data in order to reliably estimate genetic

correlations. Here we aim to overcome these limitations, using two novel approaches.

Our first approach relies on a dimension reduction of the secondary traits, using either

penalized regression or random forests (LS-BLUP/RF-BLUP). We then compute the

bivariate GBLUP with the dimension reduction as secondary trait. For simulated data

(with available plot-level data), we also use bivariate GBLUP with the penalized selection

index as secondary trait (SI-BLUP). In our second approach (GM-BLUP), we follow

existing multi-kernel methods but replace secondary traits by their genomic predictions,

with the advantage that genomic prediction is also possible when secondary traits are

only measured on the training set. For most of our simulated data, SI-BLUP was most

accurate, often closely followed by RF-BLUP or LS-BLUP. In real datasets, involving

metabolites in Arabidopsis and transcriptomics in maize, no method could substantially

improve over univariate prediction when secondary traits were only available on the

training set. LS-BLUP and RF-BLUP were most accurate when secondary traits were

available also for the test set.
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1. INTRODUCTION

Genomic prediction is increasingly applied as standard tool in
many animal and plant breeding programs. Since it was first
introduced by Meuwissen et al. (2001), the main objective of
genomic prediction was to estimate the breeding values for
unphenotyped (test) genotypes with only molecular markers,
using a training population for which both phenotypic and
genotypic data are available. Applications of genomic prediction
facilitate the rapid selection of superior genotypes (genomic
selection) and accelerate genetic progress in crop breeding.

At the same time, advances in high-throughput phenotyping
and cell biology technologies provide increasing amounts of
phenotypic data, in addition to the “primary” or “target” traits
of interest, such as yield or disease resistance. Such additional
traits are typically high-dimensional, and collected using various
types of technology, e.g., remote-sensing (Araus et al., 2018),
machine vision (Yang et al., 2020), and automation technology
(Sun et al., 2019). Common situations are that secondary traits
are measured (1) in the field, on the same plant as the target trait,
but much earlier in the growing season (2) on entirely different
plants, in controlled environments in phenotyping platforms. In
both cases, the secondary traits are either observed only for the
training set of genotypes, or also for the test set. In all cases
however, the question is whether some of the secondary traits
are associated with the target traits of interest, and whether these
correlations are genetic. In a genomic prediction context, the
question becomes when and how secondary traits can improve
prediction for the target trait. This is well understood if there
is only one secondary trait: accuracy for the target trait then
improves when the heritability of the target trait is lower than
the heritability of the secondary trait times the squared genetic
correlation (Schulthess et al., 2016; Velazco et al., 2019). Here we
focus on the more challenging situation with a large numbers of
secondary traits, which is increasingly common since the arrival
of high-throughput phenotyping.

The two main approaches to incorporate high-dimensional
secondary traits in genomic prediction are the use of multiple
relatedness matrices, and penalized selection indices. In the
former approach, the target trait is modeled as the sum of
genetic effects and effects from secondary traits. Both type
of effects are random, and the relative importance of these
contributions is estimated either using REML-estimates for
variance components or cross-validation. Predictions for the
test set are the sum of the BLUPs for the different effects.
Examples of this approach are Fu et al. (2012), who obtained a
high level of accuracy for predicting hybrid yield performance
using gene expression data from the hybrid parents. Similarly,
Riedelsheimer et al. (2012) reported moderate to high accuracies
for yield-related traits using 120 metabolites in maize. Schrag
et al. (2018) and Xiang et al. (2019) used different relatedness
matrices corresponding to different types of -omics data. Two
major limitations of multiple random-effects models are that
(1) they cannot be used when secondary traits are only
available on the training set; (2) they cannot distinguish
between genetic and residual correlations among the target and
secondary traits.

The second approach was recently proposed by Lopez-Cruz
et al. (2020), who extended classical selection indices by imposing
a LASSO or ridge penalty on the coefficients. This achieves a
dimension reduction, replacing the secondary traits by a single
selection index S, which is a linear combination of the original
traits. The coefficients are chosen to maximize h2(S)ρ2

G(Y , S), i.e.,
the heritability of S times the squared genetic correlation between
S and the target trait (Y). Lopez-Cruz et al. (2020) found that
on new data, this quantity was indeed much higher than for the
classical (unpenalized) selection index. Despite this promising
result, penalized selection indices have not yet been applied in
a genomic prediction context. One possible reason may be that
accurate estimates of genetic correlations between Y and each
of the secondary traits are required, for which the availability of
plant/plot-level observations is assumed.

In the present paper, we propose two new approaches to deal
with large numbers of secondary traits, and compare these to
the approaches described above, using simulated and real data.
First, we define genomic prediction using alternative dimension
reductions (LS-BLUP/RF-BLUP), relying on penalized regression
(or random forest regression) of the target on the secondary
traits.We then compute the bivariate GBLUPwith the dimension
reduction as secondary trait. Second, we extend existing multi-
kernel methods by replacing the secondary traits by their
genomic predictions, the main advantage being that genomic
prediction for the test set is always possible, also when secondary
traits are only measured on the training set. For simulated data
(with available plot-level data), we will also use bivariate GBLUP
with the penalized selection index as secondary trait (SI-BLUP).

2. MATERIALS AND METHODS

2.1. Distributional Assumptions
To a large extent we follow the notation of Runcie and Cheng
(2019), assuming observations on traits Y1, . . . ,Yp+1, where each
Yj is a column vector. The first one (Y1 = Yf ) is the focal
or target trait, for which genomic predictions are required;
Y2, . . . ,Yp+1 are the secondary traits. Ys = (Y t

2, . . . ,Y
t
p+1)

t is
the column vector containing all secondary traits; similarly, Y =
(Y t

1, . . . ,Y
t
p+1)

t is the column vector containing all traits. We
have in total n = nt + no genotypes, including no genotypes for
which the target trait is observed (the training set), and nt for
which it is to be predicted (the t referring to test set). We will use
subscripts t and o to indicate that we take the subset of values on
the test, respectively training set, for example Yo and Yf ,o.

The secondary phenotypes are either observed only on the
training set (the CV1-scenario, using the terminology of Runcie
and Cheng, 2019), or also for the test genotypes (CV2). Since
our focus here is on variable selection and dimension reduction
(rather than different cross-validation schemes), we will refer to
these simply with scenarios 1 and 2, respectively. The n × n
genetic relatedness matrix K is partitioned as:

K =
(

Ktt Kto

Kot Koo

)

,
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where the nt × no matrix Kto defines the relatedness between
new (test) and observed (training) genotypes. We will also write
Kt· = [Ktt Kto] and Ko· = [Kot Koo]. Similarly, we can decompose
the genetic and residual covariance matrices 6u and 6e as

6u =
(

6u
ff

6u
fs

6u
sf

6u
ss

)

=
(

6u
f ·

6u
s·

)

,

6e =
(

6e
ff

6e
fs

6e
sf

6e
ss

)

=
(

6e
f ·

6e
s·

)

,

where the scalars 6u
ff
and 6e

ff
are respectively the genetic and

residual variance of the focal trait, and the matrices 6u
ss and 6e

ss

contain the genetic and residual (co)variances of the secondary
traits. The row-vectors 6u

fs
and 6e

fs
contain the genetic and

residual covariance between the focal and the secondary traits.
The joint distribution of Y = (Y1, . . . ,Yp+1) is assumed to be

Y = Xβ + U + E

=







Y1
...

Yp+1






=







X1β1
...

Xp+1βp+1






+







U1
...

Up+1






+







E1
...

Ep+1







=
[

Yf

Ys

]

=
[

Xf βf

Xsβs

]

+
[

Uf

Us

]

+
[

Ef
Es

]

,

(1)

where

U ∼ N(0,6u ⊗ K), E ∼ N(0,6e ⊗ In). (2)

The genetic covariances (6u
fs
) quantify the degree of overlap

among genetic signals, based on which multivariate methods
can potentially improve genomic prediction. The residual
covariances (6e

fs
) are important when traits are measured on the

same individuals; if measured on different individuals (typically,
in a different experiment), 6e can assumed to be diagonal.
6u and 6e are usually unknown, and need to be estimated
from the data. For p larger than 5 − 10, this usually requires
approximations. Below we describe several dimension reduction
approaches, which reduce the dimensionality of the secondary
phenotypes to 1, and exact REML-estimates of 6u and 6e can
be obtained with standard software.

2.2. Genomic Prediction
Themain objective is the prediction of the genetic effectU1 = Uf ,
i.e., the breeding values for the focal trait, in particular for the
test set (Uf ,t). In our simulations we assess prediction accuracy in
terms of the Pearson correlation (r) between the simulated and
predicted genetic effects, on the test set. For real data, we consider
the correlation between the predicted genetic effects and the trait
values observed on the test sets. Although it is well-known that
this is a biased estimator of the true accuracy (i.e., the correlation
with the unknown genetic effect), the bias is likely to be constant
among methods, as long as the target and secondary traits are
observed on different plants (Runcie and Cheng, 2019).

2.3. Univariate GBLUP
The univariate GBLUP for Uf ,t is defined by

Û
(uni)
f ,t = E(Uf ,t|Yf ,o) = 6̂u

ffKtoV̂
−1(Yf ,o − Xf ,oβ̂f )

= KtoK
−1
oo Û

(uni)
f ,o ,

Û
(uni)
f ,o = 6̂u

ffKooV̂
−1(Yf ,o − Xf ,oβ̂f ),

V̂ = 6̂u
ffKoo + 6̂e

ff Ino ,

(3)

where Û
(uni)
f ,o is the GBLUP for the training set, and REML-

estimates of βf and the variance components 6u
ff
and 6e

ff
are

obtained from a univariate mixed model for Yf . This is the best
(univariate) linear unbiased predictor, at least given the true
values of the variance components.

2.4. Multivariate GBLUP in Scenarios 1
and 2
The multivariate GBLUP in scenario 1 is

Û
(m1)
f ,t = E(Uf ,t|Yo) = (6̂u

f · ⊗ Kto)V̂
−1(Yo − Xoβ̂)

= KtoK
−1
oo Û

(m1)
f ,o ,

Û
(m1)
f ,o = (6̂u

f · ⊗ Koo)V̂
−1(Yo − Xoβ̂),

V̂ = 6̂u ⊗ Koo + 6̂e ⊗ Ino ,

(4)

where Û
(m1)
f ,o is the GBLUP for the training set, and REML-

estimates of β and the variance components (matrices) 6u and
6e are obtained from the multivariate mixed model for Yf and

Ys. As pointed out by Runcie and Cheng (2019), Û
(m1)
f ,t and Û(uni)

f ,t

have the same form, but the “input” Ûf ,o differs.
The multivariate GBLUP in scenario 2 is

Û
(m2)
f ,t = E(Uf ,t|Yf ,o,Ys)

=
(

6̂u
ff ⊗ Kto 6̂u

fs ⊗ Kt·
)

V̂−1
(

Yf ,o − Xf ,oβ̂f

Ys − Xsβ̂s

)

,

V̂ =
(

6̂u
ff
Koo 6̂u

fs
⊗ Ko·

6̂u
sf
⊗ Kt

o· 6̂u
ss ⊗ K

)

+





6̂e
ff
Ino 6̂e

fs
⊗
(

0 Ino
)

6̂e
sf
⊗
(

0t

Ino

)

6̂e
ss ⊗ In





(5)

where 0 denotes a nt × no matrix of zeros. This differs from the
CV2 prediction in Runcie and Cheng (2019), who described a
two-step approach.

2.5. Dimension Reduction Using LASSO or
Random Forests
Expressions (4) and (5) are valid regardless whether there
is just a single secondary phenotype, or multiple ones.
However, when the dimension of the secondary phenotype
(p) is larger than 5 − 10, estimation of the required
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FIGURE 1 | Causal diagrams showing different assumptions about the

mechanisms underlying genetic correlations between a high-dimensional

secondary phenotype Ys and a target (focal) trait Yf . For ease of presentation,

Ys is represented by a single node; causal relationships among some of the

secondary traits might exist. Outgoing arrows from the node G to a trait

represent the genetic effect of all loci combined. The arrow Ys → Yf represents

a causal effect from at least one of the secondary traits on the target trait.

(Left) Some of the genetic correlations between Ys and Yf are the result of the

causal effect Ys → Yf ; to some extent they may also be a consequence from

correlation between the direct genetic effects G → Yf and G → Ys (see Kruijer

et al., 2020 for more mathematical details). (Right) There is no causal effect

Ys → Yf , and genetic correlations between them may be induced by genetic

effects on a latent trait L that is affecting both Ys and Yf . The LS-BLUP and

RF-BLUP methods assume the left diagram, and reduce the dimension of Ys
first making a prediction Ŷf using Ys within the training set. Also the GM-BLUP

method implicitly assumes the left diagram.

genetic covariances quickly becomes challenging and often
infeasible (Zhou and Stephens, 2014; Zwiernik et al.,
2017). Moreover, even if estimates of genetic covariance
are available, the resulting predictions may be prone to
overfitting. Reducing the dimension of the secondary
phenotype appears to be a relevant strategy to deal with
these issues.

Here we propose the dimension reduction S = ĥ(Ys),

where ĥ(Ys) is a prediction of Yf based on Ys, obtained
either with LASSO or random forests. Genomic prediction in
scenarios 1 and 2 is then performed using (4) and (5), with

S = ĥ(Ys) as secondary trait. We will refer to the resulting
genomic predictions using LS-BLUP and RF-BLUP, depending
on whether the dimension reduction was achieved by respectively
LASSO or random forests. In a GWAS context, such dimension
reductions have been used by van Heerwaarden et al. (2015)
and Melandri (2019). The intuition behind this dimension
reduction is that some of the secondary traits may have a
causal effect on Yf (Figure 1, left). Genomic prediction with

LS-BLUP and RF-BLUP may then work well if Ŷf captures
most of the relevant genetic correlations. In our simulations
described below, we also consider the situation where genetic
correlations are not the result of a causal effect of Ys on
Yf (for example, as in Figure 1, right panel). Because of the
relatively small size of the populations considered here, the
dimension reduction is computed on the same training set that
is used for genomic prediction. This is of course not essential
for this approach, and various sample splitting techniques
may be of interest for larger populations; see the discussion
section below.

When using RF-BLUP in the simulations described below,
we used the R-package randomForest, with the default settings.
Often however, a more accurate dimension reduction can be
achieved by tuning various hyperparameters (like the number of
trees), which we explore for the real data.

2.6. Dimension Reduction Using Selection
Indices
In addition to the notation Ys for the column vector containing
all secondary traits, we will now also use Ys(j) for the column-
vector containing the jth secondary trait, the dimension being

either no × 1 (scenario 1) or n × 1 (scenario 2). We will use Y(i)
s

for the row-vector containing all secondary traits for genotype
i. Recall that the individual secondary traits are still labeled
Y2, . . . ,Yp+1, Y1 being the target trait.

A well-known alternative dimension reduction approach is
to use a selection index S =

∑p
j=1 γjYs(j), which is a linear

combination of secondary traits, with coefficients such that the
resulting index best predicts the genetic effect of the target trait
(Falconer and Mackay, 1996). Assuming independent genetic
effects (i.e., ignoring population structure), the p × 1 vector γ

of coefficients is obtained by minimizing, for each individual

i, the expectation of (Uf [i] − Y
(i)
s γ )2. The minimizing γ then

equals the inverse variance-covariance of Ys times the vector of
genetic covariances between Ys and Yf , i.e., γ SI = 6s

−16u
sf
.

To estimate γ SI one could plug in estimates 6̂s and 6̂u
sf
, where

6̂s = 6̂u
ss ⊗ Koo + 6̂e

ss ⊗ Ino is the estimated variance-covariance
matrix of the secondary traits on the training population, and
6̂u

sf
contains estimates of genetic covariances with the target

trait. However, when the dimension (p) is large, 6u
ss and 6e

ss are
difficult to estimate, and the selection index is likely to overfit,
as some elements in 6u

sf
may be large by chance, and receive too

much weight.
To address these issues, Lopez-Cruz et al. (2020) proposed

penalized selection indices, minimizing instead E(Uf [i] −
Y
(i)
s γ )2 + λJ(γ ), where λ > 0 is the penalty and J(γ ) is either
∑p

j=1 γ 2
j (ridge penalty) or

∑p
j=1 |γj| (LASSO penalty). λ = 0

gives the classical (unpenalized) SI. In case of a ridge penalty, the
penalized SI is given by

γ̂ SI(λ) = (6̂s + λIp)
−16̂u

sf . (6)

We will follow the implementation by Lopez-Cruz et al. (2020)
in their R-package SFSI, where 6u

sf
is estimated with MANOVA

on the individual plant or plot-level data, and 6u
ss is estimated

using the sample covariance matrix of the secondary traits. We
emphasize that no multi-trait mixed-model of the form (1)–(2) is
fitted. Moreover, the regularization only controls how 6̂s affects
6̂u

sf
; the estimates 6̂s and 6̂u

sf
themselves are not regularized.

Following again (Lopez-Cruz et al., 2020), we use internal
cross-validation within the training set to choose an appropriate
value of λ, maximizing h(S)ρG(S,Yf ). After selecting a value for
λ, genomic prediction in scenarios 1 and 2 is performed using
(4) and (5), with a single secondary trait, i.e., the selection index
∑p

j=1 γ
(λ)
j Ys[j]. We will use SI-BLUP to refer to the genomic

prediction obtained this way.

2.7. Genomic Prediction Using Multiple
Relatedness Matrices
Another alternative to selection indices is to model the secondary
traits using random effects (see e.g., Riedelsheimer et al., 2012;
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Van De Wiel et al., 2016; Xu et al., 2016; Schrag et al., 2018;
Xiang et al., 2019; Azodi et al., 2020). In addition to the
genetic relatedness matrix K, these models use an additional
relatedness matrix M derived from the secondary phenotypes,
and assume that

Yf = Xf βf+U
(gen)
f

+V
(sec)
f

+Ef = Xf βf+U
(gen)
f

+Ysbs+Ef , (7)

where U
(gen)
f

∼ N(0, σ 2
KK) and V

(sec)
f

∼ N(0, σ 2
MM). We will

call this the Multi-BLUP model (not to be confused with Speed
and Balding, 2014, where the same type of model is used, but
where genomic regions are represented by different relatedness
matrices). The variance components σ 2

K , σ 2
M , and σ 2

E can be
estimated with REML or with cross-validation. For simplicity
we consider only one type of secondary phenotypes. Similar
to the equivalence between GBLUP and SNP-BLUP, the effects

V
(sec)
f

can be written as Ysbs, for a vector bs of independent

random effects with N(0, p−1σ 2
M) distribution. Hence, similar to

the LS-BLUP and RF-BLUP, the Multi-BLUP approach implicitly
assumes a causal effect of Ys on Yf (Figure 1, left), which
is assumed to be linear, with random coefficients. The usual
“genomic” prediction based on model (7) is

ÛMulti = Û
(gen)
f

+ V̂
(sec)
f

, (8)

i.e., the sum of the BLUPs for the genetic and secondary trait
effects. We put genomic between quotes because (8) is partly a
phenotypic prediction: instead of the genetic component of the
secondary traits, it directly relies on these traits themselves, which
are assumed to be available on the test set. As a consequence, the
use of (8) is limited to scenario 2.

To overcome these limitations we propose the GM-BLUP:

ÛGM = Û
(gen)
f

+ Û
(gen)
s b̂s, (9)

where b̂s is the vector of predicted random coefficients obtained

from the Multi-BLUP model, and Û
(gen)
s is the matrix of GBLUPs

for the secondary traits (either univariate or multivariate). These
GBLUPs can of course also be computed in scenario 1. Apart
from being the “genomic analogue” of (8), (9) can also be
motivated by a causal model of the form

Yf = Xf βf + Uf + Ef + h(Us), (10)

as considered by Töpner et al. (2017) and Grotzinger et al. (2019).
In contrast to the Multi-BLUP, GM-BLUP only depends on the
genetic components of the secondary traits.

Finally, following many other authors (e.g., Riedelsheimer
et al., 2012; Xu et al., 2016) we will also compute a prediction
based on the secondary traits alone, using the model

Yf = Xf βf + V
(sec)
f

+ Ef = Xf βf + Ysbs + Ef , (11)

and define the MBLUP

ÛM = V̂
(sec)
f

= Ysb̂s. (12)

Again, this is to some degree a phenotypic prediction, and since

the direct effects of the SNPs are ignored, the estimated effects b̂s
will differ from those obtained from model (7).

2.8. Simulations
We first compare the different methods on simulated data, with
p = 300 secondary traits. We used existing genotypic data, from
the Arabidopsis RegMap, containing 1, 307 accessions genotyped
with 214, 051 SNPs (Horton et al., 2012). For each data-set we
randomly selected 500 accessions, from which we randomly
sampled a test set of 100 accessions. We randomly selected 1, 500
SNPs with a minor allele frequency of at least 0.3. For each data-
set we first simulated direct genetic effects (gi) and residuals (ri)
for each accession i, and the final trait values were obtained
using a structural equationmodel, describing functional relations
between traits. More specifically, for each individual i, the (p +
1)×1 vector of trait values is defined by yi = yi3+gi+ri,3 being
the (p+ 1)× (p+ 1) matrix of structural coefficients. The (k, l)th
entry of 3 contains the effect of trait k on trait l, and the vectors
gi and ri have zero mean Gaussian distributions with covariance
matrices 6g and 6r , respectively. The joint distribution of all
n(p + 1) trait values is then as in (1), with 6u = Ŵt6gŴ and
6e = Ŵt6rŴ, where Ŵ = (I − 3)−1 (Gianola and Sorensen,
2004; Töpner et al., 2017; Kruijer et al., 2020).

The target trait is defined as Yf = Y1 = λ(Y2 + Y3 +
Y4) + G1 + R1, and we do not assume any functional relations
among the secondary traits. Hence, if λ 6= 0, there is a causal
effect from Y2, Y3, and Y4 on Y1, but the algorithms under
consideration do not know which of the 300 secondary traits
are the actual causal ones. We consider λ values on the grid
{−1,−0.5, 0, 0.5, 1}. 6g has diagonal elements (0.2, 0.7, . . . , 0.7),
i.e., the variances of the direct genetic effects are 0.2 for Yf and
0.7 for each of the secondary traits. The off-diagonal elements
corresponding to Y1 vs. (Y2,Y3,Y4) are ρG

√
0.2 · 0.7, where we

choose ρG ∈ {−0.5, 0, 0.5}. Similarly, 6r has diagonal elements
0.8 for Yf and 0.3 for the secondary traits, and the off-diagonal

elements between Y1 and (Y2,Y3,Y4) are ρE
√
0.8 · 0.3, with ρE ∈

{−0.5, 0, 0.5}. The other off-diagonal elements in 6g and 6r

are zero.
For the special case λ = 0 we have Ŵ = I, 6u = 6g and

6e = 6r , and Yf will have a heritability of 0.2. The secondary
traits will have heritability 0.7, and there is no causal effect of
(Y2,Y3,Y4) on Y1. Genomic prediction for Y1 can however still
benefit from the genetic correlation between these traits (which
is present when ρG 6= 0). When λ 6= 0, the causal effect of
(Y2+Y3+Y4) onY1 will introduce additional genetic and residual
covariance in 6u and 6e.

For each of the 125 combinations of λ, ρG and ρE we simulate
50 data-sets; for each of them we predicted the simulated genetic
effects for the test set, with the different methods.

2.8.1. Benchmark

In addition to the methods described above, we evaluate
a benchmark prediction, by computing (4) and (5) for the
four-dimensional mixed model with Y1 − Y4, using the true
(simulated) variance components.
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2.9. Data
To test the methods on real data, we consider four data-sets with
various target and secondary phenotypes. To assess accuracy,
each data set was randomly split into training (70%) and a test
genotypes (30%). This was repeated 160 times, and we report
accuracy averaged over the 160 test sets. Because of the required
computing time, only 50 test sets were analyzed for RF-BLUP
with hyper-parameter-optimization (for the Arabidopsis data-
sets), and 30 test-sets for the maize data (for all methods).
With one exception (mentioned below), the target and secondary
phenotypes were measured on different plants; therefore, all
bivariate mixed models were fitted with diagonal residual
covariance (i.e., diagonal 6e in Equations 4 and 5).

The first two data sets were measured on the A. thaliana
HapMap population, where 36 metabolites from Fusari et al.
(2017) were used as secondary phenotypes and the kinshipmatrix
was estimated based on one million imputed SNPs (Arouisse
et al., 2020). Dataset 1 contains three target traits related to biotic
and abiotic stress, fromThoen et al. (2017). In dataset 2, the target
is the rosette fresh weight, measured in of the experiments of
Fusari et al. (2017). This is the only dataset for which the residual
covariance is non-diagonal.

In the third data set, we predicted the grain yield, plant height
(PH) and flowering time (FT) of 388 inbredmaize lines (Z. mays),
using 5, 760 transcripts (Azodi et al., 2020) as secondary traits. In
this case, we selected for each data-set a subset of transcripts using
the LASSO on the training set, following Azodi et al. (2020). In
other words, the transcripts selected by LS-BLUP were also used
for the other methods.

2.10. Data Availability
The data that support the findings of this study are available at:
https://doi.org/10.1105/tpc.19.00332 (Maize data)
https://doi.org/10.1105/tpc.17.00232 (A. thaliana Metabolite
data)
https://doi.org/10.1111/nph.14220 (A. thaliana Phenotypes)
https://doi.org/10.1111/tpj.14659 (A. thaliana SNP data)

All data-sets (except the maize transcriptomics) are
included in an Rdata file available at: https://figshare.com/
s/5d01062711ce33bb327e.

2.11. Software and Computing Time
The required computing time is mainly driven by the complexity
of fitting either a bivariate mixed model with a single relatedness
matrix, or univariate mixed models with either one or two
relatedness matrices. For the datasets considered here, each
bivariate mixed model took between 20 and 50 s to fit, the
univariate mixed models taking at most a few seconds. For
complexity as function of n and p we refer to Zhou and Stephens
(2014).

R-code for all methods is available at https://figshare.com/
s/5d01062711ce33bb327e, where we mostly relied on asreml-
R (Butler et al., 2009). Several open source alternatives are
however available; in particular sommer (Covarrubias-Pazaran,
2016) for bivariate mixed models, and gaston for univariate
mixed models. Using gaston’s lmm.diago.likelihood function,
the (univariate) GBLUP for large numbers of traits can

be computed in only a few seconds, which is useful for
the GM-BLUP method. For the dimension reduction in LS-
and RF-BLUP we used the R-packages glmnet (Friedman
et al., 2010), caret (https://cran.r-project.org/package=caret), and
randomForest (Liaw and Wiener, 2002). For the maize data,
LASSO and random-forest regression were performed in python,
using the scikit-learn packages.

3. RESULTS

3.1. Simulations
Figures 2, 3 show the estimated accuracy as function of λ, i.e.,
the size of the causal effects of Y2, Y3, and Y4 on the target trait
Yf (i.e., Y1). We focus on three cases, with different values for the
correlations between the direct genetic effects on Y1, . . . ,Y4, as
well as the corresponding residuals (see section 2): (A) ρG = 0.5
and ρE = −0.5, (B) ρG = ρE = 0, and (C) ρG = 0.5 and
ρE = 0.5. In scenario 1 (Figure 2) as well as scenario 2 (Figure 3),
accuracies are generally higher when λ moves away from zero.
This is expected, as the total genetic variance and heritability
increase due to the causal effect, especially when ρG and λ have
the same sign. When they have opposite sign, the lowest accuracy
can occur at an intermediate value of λ [e.g., at λ = −0.5 in
case of (A)].

The multi-trait benchmark with perfect information on the
genetic and residual covariance between the target trait Yf and
secondary traits Y2, Y3, and Y4 always outperforms univariate
GBLUP, except when ρG = λ = 0, in which case accuracies are
equal. When ρG 6= 0, the benchmark always benefits from the
genetic correlations between the target trait and the secondary
traits, even if the latter do not have a causal effect on Yf .

The accuracy of univariate GBLUP varied between r = 0.44
and r = 0.70, while the benchmark had accuracy between 0.50−
0.70 (scenario 1) and 0.50 − 0.92 (scenario 2). The difference
between scenario 2 (secondary traits observed on the test set) and
scenario 1 (secondary traits only observed on the training set)
was bigger for large values of |λ|. This is because for large |λ|, the
total genetic correlation (which is also a function of ρG) between
Yf and the causal secondary traits (Y2, Y3, and Y4) is larger.

In absence of a causal effect Ys → Yf (λ = 0) and residual
genetic and residual correlations having opposite sign (case
A), our simulation setup appeared to be too challenging, and
none of the methods performed better than univariate GBLUP.
Something similar occurred in case C, for λ = −0.5. On the
positive side, for large values of |λ|, both SI-BLUP and LS-BLUP
have near-benchmark accuracy, where the latter did not rely on
plot-level observations. In scenario 2, RF-BLUP appeared to be
an interesting alternative, with somewhat lower accuracy on the
extreme sides, but relatively good performance at unfavorable
values of λ.

Prediction based on the secondary traits only (M-BLUP; only
available in scenario 2) is generally one of the least successful.
The multi-kernel methods (Multi-BLUP and GM-BLUP) are
somewhere in between, GM-BLUP often having an accuracy
similar to that of RF-BLUP. GM-BLUP appears to be slightly
better than Multi-BLUP, but in most cases the difference is
smaller than the standard errors of the accuracy estimates.
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FIGURE 2 | Accuracy of genomic prediction methods in scenario 1, which for each value of λ is estimated from 50 simulated data-sets (standard errors between 0.011

and 0.042). “GBLUP” is the univariate GBLUP, and the benchmark is the multivariate GBLUP based on Y1, . . . ,Y4, using the true (simulated) values of the variance

components (see section 2.8.1). Acronyms of the other methods are given in section 2; they use all secondary traits (Y2, . . . ,Y301), without knowledge of (Y2,Y3,Y4)

being causal. λ is the size of the causal effect of (Y2,Y3,Y4) on Y1. ρG is the correlation between the direct genetic effects on Y1, . . . ,Y4; similarly, ρE is the correlation

between the non-genetic effects. The total genetic correlation is function of λ and ρG. (A) ρG = 0.5, ρE = −0.5, (B) ρG = 0, ρE = 0, and (C) ρG = 0.5, ρE = 0.5.
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FIGURE 3 | Accuracy of genomic prediction methods in scenario 2, which for each value of λ is estimated from 50 simulated data-sets (standard errors between 0.014

and 0.051). “GBLUP” is the univariate GBLUP, and the benchmark is the multivariate GBLUP based on Y1, . . . ,Y4, using the true (simulated) values of the variance

components (see section 2.8.1). Acronyms of the other methods are given in section 2; they use all secondary traits (Y2, . . . ,Y301), without knowledge of (Y2,Y3,Y4)

being causal. λ is the size of the causal effect of (Y2,Y3,Y4) on Y1. ρG is the correlation between the direct genetic effects on Y1, . . . ,Y4; similarly, ρE is the correlation

between the non-genetic effects. The total genetic correlation is function of λ and ρG. (A) ρG = 0.5, ρE = −0.5, (B) ρG = 0, ρE = 0, and (C) ρG = 0.5, ρE = 0.5.
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3.2. Arabidopsis and Maize Data
Tables 1, 2 contain the accuracies for datasets 1–4 described
above, averaged over randomly sampled test sets (see section
2). Because the original individual plant (or plot) data were not
available, we could not compute the SI-BLUP here.

In scenario 1 (Table 1), none of the multi-trait methods
performed consistently better than univariate GBLUP. For the
second trait in data-set 1 (Salt5), RF-BLUP had accuracy 0.09, vs.
0.03 for univariate GBLUP; the latter had highest accuracy for the
first and third trait in dataset 1 (fungus, and drought and fungus
stress combined).

The remainder of this section we focus on scenario 2 (Table 2),
in which there weremore substantial differences amongmethods.
For all datasets, methods based on multiple relatedness matrices
(Multi-BLUP and GM-BLUP) had accuracies similar to single-
trait GBLUP. As in the simulations, GM-BLUP gave only a
minor (if any) improvement over Multi-BLUP. The approaches
based on dimension reduction of the secondary traits (LS-BLUP
and RF-BLUP) appeared to give a substantial improvement over
univariate GBLUP, e.g., from r = 0.03 to r = 0.23 (LS-BLUP)
for the Salt5 trait in data-set 1, or from r = 0.55 to r = 0.65
(RF-BLUP) for Maize yield in data-set 3, with transcriptomics as
secondary traits.

LS-BLUP had the highest accuracy in all Arabidopsis datasets,
with a small but consistent improvement over RF-BLUP (0.02–
0.03 higher), also when optimized with the caret/scikit-learn
packages. This hyperparameter optimization appeared to be
rather important for the Maize data; using the default settings
from the randomForest package (as in the simulations), accuracy
was considerably lower (for yield and the transcripts for example,
r = 0.65 vs. r = 0.51).

For the maize data, RF/LS-BLUP improved accuracy for yield
from around 0.64 − 0.65 to 0.71 − 72 when plant height and
flowering time were included as secondary phenotypes, together
with the transcriptome data. None of the other methods could
exploit the additional data, and accuracies were similar to those
obtained with the transcripts alone. Prediction based on the
secondary traits alone (M-BLUP) had around zero accuracy in
all Arabidopsis data-sets, but r = 0.49− 0.54 for the maize data,
similar to GBLUP and multi-BLUP.

4. DISCUSSION

Given the importance of genomic selection in plant breeding and
the rapid development of phenotyping technology, it becomes
increasingly important to know if and how the availability of
additional phenotypic traits can improve prediction accuracy for
a target trait. Here we proposed new methods to incorporate
large numbers of such additional traits in genomic prediction,
and compared these to existing methods, in simulated and real
data. In many of the simulated data-sets, some of our methods
indeed greatly improved univariate genomic prediction. In these
cases, the accuracy was often close to that of penalized selection
indices, without requiring plot-level data. In other cases, none
of the methods did very much better than univariate prediction,
while the multi-trait benchmark indicated that there is in fact

scope for improvement. This happens especially when genetic
and residual correlation have opposite sign. Moreover, our study
indicates that current methods do not perform well when the
secondary traits are available only on the training set (i.e., in
scenario 1): while there was often some improvement in many
of the simulations, accuracy in scenario 1 was hardly improved
for any of the real data-sets.

While scenario 1 is probably most common, scenario 2
(secondary traits being also observed for the test set) may
arise in a number of applications. In particular, it has become
increasingly common to screen large collections for metabolites
or other types of -omics data, and scenario 2 may also arise
in a biomedical context when biomarkers could be used to
predict disease. Our results for various stress traits in Arabidopsis
showed that metabolites can indeed improve accuracy, even if
they were measured in a different study. While Multi-BLUP and
the LS- and RF-BLUP require balanced data, the GM-BLUP is
more flexible, and can also handle an intermediate scenario where
only some of the secondary traits are measured for all (or some
of) the test genotypes.

Except SI-BLUP, all methods implicitly assume a causal
relationship between the secondary traits and the target trait.
In our simulations, accuracy was indeed suboptimal when this
relationship was weak or absent. However, in these cases the SI-
BLUP often performed poorly as well. The accuracy of LS-BLUP
and RF-BLUP may be improved if one could successfully address
the following two artifacts. First, the dimension reduction and
genomic prediction should ideally be carried out on different
subsets of the training set. In the populations we considered here,
this however led to poor estimation of variance components and
lower accuracies, because of the relatively small population size.
We therefore used the whole training set for both dimension
reduction and genomic prediction. The advantage of a larger
training set seems to outweigh the incurred overfitting, but this
may be different for larger populations, in which case sub-
sampling strategies like bootstrap aggregation (bagging) might be
useful. Second, specifically for LS-BLUP, the cross-validation in
the first (dimension reduction) step appears to select too many
variables. Often, this may still result in an accurate prediction
Ŷs on the training set, but for the prediction of breeding
values on the test set that leads to overfitting. The methodology
implemented in the hdi-package (Dezeure et al., 2015) might
resolve this issue, by first assessing significance of secondary
traits. Such improvements should at least guarantee an accuracy
that is never (much) below that of univariate GBLUP. Finally,
a remaining limitation of RF-BLUP and LS-BLUP is that the
dimension reduction relies on phenotypic rather than genetic
values, which is likely to stay sub-optimal in case genetic and
residual correlations have opposite sign.

We attempted to improve existing multi-kernel methods with
our GM-BLUP approach, replacing secondary traits by their
genomic predictions. Unfortunately, this led to only minor
improvements. In case secondary traits have high heritability,
there is little shrinkage and genomic predictions and trait
values are highly correlated, leading to similar accuracies. In
case secondary traits have lower heritabilities, the methods may
potentially differ more, but at the same time, in such a scenario
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TABLE 1 | Prediction accuracy in scenario 1, for various target and secondary traits in Maize and Arabidopsis.

Data sets Target trait Secondary phenotypes GBLUP GM-BLUP LS-BLUP RF-BLUP RF-BLUP*

1 Number of spreading lesions Metabolites 0.23 0.22 0.20 0.21 0.21

under fungus stress

Fresh weight of the rosette Metabolites 0.03 0.00 0.07 0.09 0.09

under Salt_5 stress

Number of spreading lesions Metabolites 0.19 0.18 0.16 0.16 0.15

under Drought_and_fungus stress

Number of damaged leaves and Metabolites 0.10 0.09 0.06 0.10 0.10

feeding sites under Caterpillar_3 stress

2 Fresh weight Metabolites 0.30 0.30 0.29 0.30 0.30

3 Flowering time (FT) [4] Transcripts 0.54 0.55 0.55 0.53 0.55

Plant height (PH) Transcripts 0.54 0.55 0.55 0.53 0.51

Yield Transcripts + FT+PH 0.53 0.53 0.54 0.52 0.52

Yield Transcripts 0.55 0.55 0.55 0.55 0.55

Acronyms of the methods are as in Figures 2, 3. For RF-BLUP*, we used the randomForest package with the default settings; for RF-BLUP, hyper-parameters were optimized using the

caret package (data-sets 1 and 2) or scikit-learn (data-set 3). For data-sets 1 and 2, reported accuracies are averages over 160 test sets (standard errors between 0.006 and 0.007),

except for RF-BLUP, where 50 sets were used (SE between 0.010 and 0.014). In dataset 3, 30 test sets were used for all methods (SE between 0.006 and 0.03).

TABLE 2 | Prediction accuracy in scenario 2, for various target and secondary traits in Maize and Arabidopsis.

Data sets Target trait Secondary phenotypes GBLUP M-BLUP Multi-BLUP GM-BLUP LS-BLUP RF-BLUP RF-BLUP*

1 Number of spreading lesions Metabolites 0.23 −0.04 0.21 0.22 0.31 0.28 0.28

under fungus stress

Fresh weight of the rosette Metabolites 0.03 0.09 0.08 0.07 0.23 0.20 0.19

under Salt_5 stress

Number of spreading lesions Metabolites 0.19 −0.02 0.16 0.17 0.27 0.25 0.23

under Drought_and_fungus stress

Number of damaged leaves and Metabolites 0.10 0.05 0.06 0.07 0.14 0.12 0.11

feeding sites under Caterpillar_3 stress

2 Fresh weight Metabolites 0.30 0.00 0.29 0.30 0.32 0.30 0.28

3 Flowering time (FT) [4] Transcripts 0.55 0.54 0.55 0.55 0.66 0.65 0.54

Plant height (PH) Transcripts 0.54 0.53 0.54 0.55 0.66 0.64 0.53

Yield Transcripts + FT+PH 0.53 0.49 0.50 0.52 0.72 0.71 0.49

Yield Transcripts 0.55 0.52 0.53 0.54 0.64 0.65 0.51

Acronyms of the methods are as in Figures 2, 3. For RF-BLUP*, we used the randomForest package with the default settings; for RF-BLUP, hyper-parameters were optimized using the

caret package (data-sets 1 and 2) or scikit-learn (data-set 3). For data-sets 1 and 2, reported accuracies are averages over 160 test sets (standard errors between 0.006 and 0.012),

except for RF-BLUP, where 50 sets were used (SE between 0.010 and 0.014). In dataset 3, 30 test sets were used for all methods (SE between 0.006 and 0.03).

there is much less scope for improvement with multi-trait
methods in the first place. BothMulti-BLUP and GM-BLUP were
often less accurate than competing methods. To some extent
this may be explained by the absence of variable selection, or,
compared to RF-BLUP, the assumed linearity. Nonetheless, GM-
BLUP extended the use ofMulti-BLUP to scenario 1, without ever
being less accurate.

For the case of a single secondary trait, Runcie and Cheng
(2019) studied the bias in accuracy estimates, when these are
based on the correlation with the observed phenotype, rather
than with the (unobserved) genetic effect. This can become
problematic when traits are measured on the same plants, in
which case the amount of bias is likely to vary among methods,
in particular when residual correlations between the target and

secondary traits are large. For the Arabisopsis and maize data
considered here, the bias should be constant, as all target and
secondary traits were measured on different plants. No bias
occurred for the simulated data, where we used the true genetic
values to assess accuracy. Nevertheless, further work is needed
to extend the methods presented here with reliable estimates of
accuracy, also in the case of traits measured on the same plants.
For the LS-BLUP, RF-BLUP and SI-BLUP, the parametric and
semi-parametric accuracy estimates of Runcie and Cheng (2019)
can in principle be computed, since all these methods reduce the
dimension of the secondary traits to one. This would however
require the sample-splitting or bagging schemes mentioned
above, and it is an open question how the different accuracy
estimates should be aggregated.
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Statistical methods for high-dimensional data often benefit
from initial screening, for example by removing variables with
very low marginal correlation (see e.g., Fan and Lv, 2008). In
the present context, screening should be based on heritability
and genetic correlation with the target trait. This is however
difficult for several reasons. First, as pointed out before, reliable
estimates of these correlations require plot-level data, at least for
the population sizes considered here. Moreover, bivariate mixed
models need to be fitted for each secondary trait, increasing
computation time. A more fundamental problem is that even
if accurate estimates were available, it would be difficult to
formulate an appropriate criterion and threshold. The well-
known criterion for a single secondary trait (whose heritability
times the squared genetic correlation with the target trait
should exceed the heritability of the latter) cannot directly be
generalized. For example, in one of our simulation settings (i.e.,
with λ = 0 and ρG = 0.5), each of the three relevant secondary
traits (Y2,Y3,Y4) has heritability 0.7, the heritability of the target
trait being 0.2. Consequently, we have 0.7 × ρ2

G < 0.2 for each
secondary trait individually, while at the same time genomic
prediction using a mixedmodel for Y1−Y4 is more accurate than
with a mixed model for Y1 alone.

More generally, themethods presented here could be extended
in several ways. First, for all of them, prediction relies on the
GBLUP: either bivariate GBLUP, or univariate GBLUP extended
with additional relatedness matrices. This corresponds to a
Gaussian prior on the marker effects, which could be generalized
to a mixture of Gaussians and a point mass at 0, as for example

in Bayes-R (Moser et al., 2015). Another extension would
be the prediction of sensitivities to environmental covariates,
which could then be used to predict new environments, as in
Millet et al. (2019). In the LS- and RF-BLUP methods, a wider
range of prediction methods could be considered to achieve
the dimension reduction, such as elastic nets or gradient tree
boosting. Ideally, this reduction is driven by genetic rather than
phenotypic effects, and the dimension should not necessarily be
reduced to one (like we did here), but to a data-driven number.
Finally, it would be of interest to relax the linearity assumption
on which most methods (except RF-BLUP) rely. Deep learning
with feedforward or convolutional neural networks seems of
particular interest here, especially for the relationship between
target and secondary traits.
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