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1 Instituto de Quı́mica-Médica, IQM-CSIC, Madrid, Spain, 2 Instituto de Quı́mica Fı́sica Rocasolano IQFR-CSIC, Madrid, Spain, 3 Instituto de Biologı́a Molecular y Celular,

Universidad Miguel Hernández, Elche, Spain

Abstract

1,2-Diamine derivatives are valuable building blocks to heterocyclic compounds and important precursors of biologically
relevant compounds. In this respect, amino acid-derived b–keto esters are a suitable starting point for the synthesis of b,c–
diamino ester derivatives through a two-step reductive amination procedure with either simple amines or a–amino esters.
AcOH and NaBH3CN are the additive and reducing agents of choice. The stereoselectivity of the reaction is still an issue, due
to the slow imine-enamine equilibria through which the reaction occurs, affording mixtures of diastereoisomers that can be
chromatographically separated. Transformation of the b,c–diamino esters into pyrrolidinone derivatives allows the
configuration assignment of the linear compounds, and constitutes an example of their potential application in the
generation of molecular diversity.
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Introduction

Reductive amination of carbonyl compounds is one of the most

useful and versatile methods for the synthesis of different kinds of

amines, key intermediates in organic synthesis and in the

preparation of important building blocks for drug discovery [1–

3]. Reductive amination proceeds upon reaction of a carbonyl

compound with ammonia, a primary amine or a secondary amine,

through the formation of a carbinolamine, which normally

dehydrates to form an imine or an iminium ion intermediate,

followed by in situ reduction to the corresponding amine alkylated

product [2]. The process could be direct, when all components

and reactives are mixed without prior formation of intermediates,

or indirect, with pre-formation of intermediates (imine/iminium/

enamine) and reduction in separate consecutive steps [3,4].

Regarding the reduction process, the most used methods are

catalytic hydrogenation and hydride agents [1–4], although some

other reagents have been developed [5–7]. Reductive amination of

aldehydes and ketones with primary amines are typically easy, fast,

and high-yielding reactions with many examples documented in

the literature [1–4]. However difficulties have been described for

some aromatic and acyclic ketones, with slower reaction rates and

lower isolated yields than those found for alicyclic ketones and

aldehydes [4]. The rate of reaction also depends on the steric and

electronic factors of the reactant amine, and the process usually

requires the addition of AcOH, the use of 5–10% excess of the

amine, and a large excess of the reducing agent [3,4].

Examples of reductive amination using b-ketoesters as the

carbonyl component are scarce, despite the final products, b–

amino acid derivatives, have interesting synthetic and biological

applications [8,9]. A few reported examples describe the reduction

of simple b–enamino esters by either catalytic hydrogenation or

treatment with hydrides [10–12]. Other examples report the direct

or indirect reductive amination of b–keto esters with ammonium

acetate, different amines or the chiral ammonia equivalent a–

methylbenzylamine [13–16]. In addition, both inter- and intra-

molecular processes have been applied to the efficient preparation

of bioactive and natural compounds of high added value [17,18].

Despite the well documented use of amino acids in the reductive

amination of aldehydes (i.e. in the formation of peptide reduced

bonds) [19], to the best of our knowledge, only two reports

describe the application of amino acid derivatives with ketones and

b–keto esters [20,21]. In close relation to these precedents, we

have previously studied the intramolecular reductive amination of

Orn-derived b–keto esters (I, R1 = (CH2)4NH2) and some dipep-

tide analogues for the preparation of piperidine and piperazine

heterocycles [22,23]. These compounds were used as versatile

chemical intermediates for the synthesis of highly substituted

dioxoperhydropyrido[1,2-c]pyrimidine and trioxoperhydropyra-

zino[1,2-f]pyrimidine bicyclic systems [24,25], the former success-

fully used as the central core of selective CCK1 receptor

antagonists. Owing to this versatility, we decided to investigate

the intermolecular version of this process starting from amino
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acid-derived b-ketoesters I. A suitable method for the reductive

amination of compounds I could provide highly functionalized

b,c-diamino esters II (Figure 1), which can be seen as interesting

intermediates for the generation of molecular diversity (i.e.,

cyclization to different heterocyclic systems can easily be

envisaged). Moreover, compounds II could bear additional

reactive functions at R1 (starting amino acid side-chain) and

amine R3 substituent, thus amplifying the possibilities of additional

chemical manipulation. As the use of b-ketoesters in reductive

amination processes is underdeveloped, many questions remain to

be answered: Could amino acid-derived b-ketoesters I be applied

to such an intermolecular process? Will the initial amino acid

chiral center survive under the reductive amination conditions?

Can amino acids be used as the amino component to incorporate

additional complexity in final compounds? To answer these

queries, we now describe our attempts to synthesize compounds

II, through reductive amination, and the careful examination of

the stereochemical issues.

Results and Discussion

To explore the reaction between amino acid-derived b-

ketoesters and amines we selected compound 1, easily prepared

from Z-Phe-OH following a previously described method from our

lab [26]. Two primary amines (BnNH2 and n-BuNH2) and two a-

amino esters (H-Ala-OtBu and H-Gly-OtBu) were chosen as

amines for the reductive amination (Figure 2). H-Ala-OtBu was

selected for the initial exploratory study, since it could be the most

demanding amino component. It is chiral, sterically congested due

to a–substitution, and the lower pKa of its amino group

(calculated pKa = 7.82) should normally imply a weaker nucleo-

philic character, and hence a lower reactivity than simple alkyl/

benzyl amines (n-BuNH2, pKa = 10.87; BnNH2, pKa = 9.33).

Starting from 1 and H-Ala-OtBu, we first investigated a battery

of different conditions described for the reductive amination of

ketones and b-keto esters, both using direct and indirect protocols.

Direct reductive amination assays (Ti(OiPr)4 or AcOH as additive

and NaBH3CN or NaBH(OAc)3 as reducing agent failed,

recovering the starting b–keto ester or leading to alcohols 2a,b
in different yield and diastereomeric ratio (Table S1, supporting

information). Probably, the low reactivity of both carbonyl and

amino species could take account for the disappointing results and,

in fact, the diamino derivatives 3 were only detected, although in

low yield, in the direct reaction at 50uC with AcOH/NaBH3CN.

Using indirect procedures, first the reaction was allowed to stand

at room temperature or at 50uC for the formation of the imine/

enamine intermediates (completion monitored by tlc), in the

presence of different additives commonly used in reductive

aminations [Ti(OiPr)4, AcOH, CAN, LaCl3, ZnCl2] [20,27–30].

Then, NaBH3CN, NaBH(OAc)3, NaBH4, or H2/Pd-C were

considered for the reduction of formed intermediates (Table S2,

supporting information). The results of the two-step methods were

more satisfactory, especially for the combination of AcOH and

NaBH3CN, although the process required long reaction times,

both for the intermediate formation and for the reduction step.

Under the best conditions, (1. AcOH (1 equiv), CHCl3, 50uC; 2.

NaBH3CN), the reaction of 1 and H-Ala-OtBu afforded three

diastereoisomeric compounds 3 (crude HPLC a:b:c ratio,

10:13:17), which were chromatographically separated and their

configuration established as indicated later on. Although it has

been pointed out that the reductive amination of a–substituted b-

keto esters apparently occurs with control of the stereochemistry at

both a and b-positions [4], the formation of the 4R-configured

isomer 3c indicates that the stereochemical integrity at c-position

of the starting b–keto ester 1 was partially lost during the process.

The reaction between 1 and H-Ala-OtBu in the presence of

Ti(OiPr)4, followed by reduction with a mixture of NaBH(OAc)3
and NaBH3CN, afforded low yield of diastereoisomers 3a and 3b,

along with alcohols 2a,b as major products. In this case, the lack

of 3c suggests that most probably the intermediate species for

reduction are hemiaminal titanate derivatives and not imine/

enamine species [27]. In fact, the imine/enamine intermediates

were detected by HPLC-MS in the Ti(OiPr)4-promoted reactions

in MeOH but not in the experiments performed in aprotic solvents

(dichloromethane and dichloroethane, Table S2). Unfortunately,

an attempt to optimize this Ti(OiPr)4-mediated process, which

included heating the mixture of the ketoester and the amine in

neat Ti(OiPr)4 (no solvent), was unsuccessful (Table S2, entry 8).

The assay to reduce the preformed imine/enamine intermediates

in the presence of a heterogeneous hydrogenation catalyst (Pd-C,

50uC, 45 psi), a method that have worked very well for other

substrates [23,31], was also unproductive in this case, resulting in

the partial reversion to the initial b-ketoester (Table S2, entry 17).

Application of the AcOH/NaBH3CN optimized conditions to

the reaction of 1 with H-Gly-OtBu resulted in an approximately

1:1 mixture of the expected diastereoisomers 4a and 4b (Figure 2,

Table 1). Almost equimolecular mixtures of 3S,4S and 3R,4S

diastereoisomers were also formed in the reaction with benzyl and

butyl amines, although the total yield of the corresponding

compounds 5a,b and 6a,b were slightly lower than those

obtained with amino acids. Taking into account the higher pKa

of these amines in relation to amino esters, this result seems to

suggest that the amino acid-derived b–keto ester is the principal

responsible of the low reactivity found. We might speculate that

the existence of the ZNH group at the c–position, neighboring to

the reactive carbonyl, hampers the attack of the amine compo-

nent. Finally, according to chiral HPLC experiments, compounds

4–6 were obtained as racemic mixtures, while a 70:30 ratio of

enantiomers was observed for Ala derivatives 3a–c (Figures S1

and S2).

To provide some insight into the mechanism of the two-step

reductive amination process, we follow first the formation of

reaction intermediates by 1H NMR. The reaction of 1 and H-Gly-

OtBu in CDCl3 and AcOH (1 equiv) gave a mixture of E and Z

enamines B1 and B2 in a 3:4 ratio, as deduced from the singlet

Figure 1. Intermolecular reductive amination of amino acid-
derived b–ketoesters.
doi:10.1371/journal.pone.0053231.g001

Highly Functionalized 1,2-Diamino Compounds
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signals at 4.68 and 4.45 ppm, respectively [29] (Figure S3).

However the spectrum of the crude reaction with H-Ala-OtBu

showed four signals of enamine proton (at 4.68, 4.62, 4.56 and

4.52 ppm, relative ratio 5:8:9:11), which were supposed to be two

E- (B1 and B1’) and two Z-isomers (B2 and B2’), having 4S and

4R-configuration. From this result, we reasoned that the initially

formed imines A should isomerize to the most stable conjugated

enamines B, and that enamines C should also be present in the

equilibrium and could be responsible for the stereochemical

integrity loss (Figure 3). The observed epimerization at the 19-

position of final diamino esters indicated that conjugated-imines D
must also be present among the possible intermediates of the

reaction. While the imine-enamine tautomerism (A«B and/or

A«C) was expected to occur in some extent, as previously

reported for intramolecular processes [24,32], the A«D inter-

conversion was unanticipated, since the chiral integrity of the

amino acid derivative acting as the amino component is normally

preserved in reductive amination reactions of a-amino esters with

aldehydes, a-aminoaldehydes and even ketones [33–36].

When the intermediates formed between 1 and H-Ala-OtBu or

H-Gly-OtBu were reduced with NaBD3CN the measured incor-

poration of deuterium (Table 2) corroborated the presence of

intermediates B, C and D, although imines A are predominantly

reduced by the hydride, as deduced from the high percentage of

deuterium found at position 3 (Figures S4 and S5). The formation

of all possible intermediates could be favored by the temperature

and long times needed in the first step, due to the low reactivity of

the starting materials, and to the slow speed of reduction in the

second. Here, the more stable conjugated enamines B are reduced

in low extent, but the transitory short-life imine A is the main

intermediate trapped by the hydride.

In the 1H NMR spectra, compounds 3a, 3c and 4a showed a

small value of the 3,4 coupling constant (0–2.9 Hz), indicating a

preferred conformation in which the 3 and 4 protons form a

dihedral angle close to 90u, while for isomers b this J value is

higher (,6.2 Hz). Although simple Chem3D calculation suggested

a threo disposition for isomers a and c and erythro for b, this data did

not afford any conclusive experimental information about the

configuration at C3 and C4 chiral centers. The configurational

assignment was done in an indirect way through the formation of

pyrrolidinone derivatives. To this end, compounds 3 and 4 were

deprotected at the 4-NH group and cyclized to the corresponding

five-membered heterocycles 7 and 8, respectively (Figure 4). These

cyclic compounds can illustrate one example of the application of

the described diamino esters in the creation of diverse heterocyclic

scaffolds of interest. Related pyrrolidinone derivatives, having an

unsubstituted 4-amino group, have been prepared through the

Zinc-mediated homologation of a-aminonitriles and subsequent

acidic hydrolysis [37]. The J4,5 in derivatives 7a, 7c and 8a
(,6.5 Hz) was higher than in their corresponding distereoisomers

7b and 8b (,4.5 ppm). Knowing that in this type of heterocyclic

system the coupling constant are Janti,Jsyn [38], we can anticipate

the syn- and anti-relative stereochemistry for isomers a (c) and b,

respectively. Similarly, NOE experiments indicated a syn-relation-

ship between H4 and H5 protons in 7a, 7c and 8a and an anti-

disposition in the respective isomers b. The exclusive formation of

isomers 3a and 3b in a Ti(OiPr)4 experiment, which probably

occurs through titanate intermediates, allowed to distinguish

between 3a and 3c syn-diastereoisomers. 4,5-Syn- and 4,5-anti-

pyrrolidinones showed a different pattern of chemical shifts in 13C-

NMR, with C-4, C-5, and especially 5-CH2 carbons notoriously

shielded for syn-isomers a and c (,55, 59, and 36 ppm) [39] with

respect to their corresponding anti analogues b (57.5, 62, and

41 ppm). Just the opposite behavior was observed for the C-5

carbon in the linear precursors 3 and 4, for which the most

shielded signal corresponds to the threo-isomers b (,37 ppm for

threo, and ,39 ppm for erithro). A comparison of these values with

Figure 2. Synthetic procedure for b,c–diamino esters by reductive amination of Phe-derived b–ketoester 1.
doi:10.1371/journal.pone.0053231.g002

Table 1. Result of the reductive amination of Phe-derived b–
ketoester 1.

Final Compd. Diastereoisomer (%)a

a b c

3 18 20 30

4 33 34 2

5 16 19 2

6 23 27 2

aYield of isolated compounds.
doi:10.1371/journal.pone.0053231.t001

Highly Functionalized 1,2-Diamino Compounds
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those of J3,4 between distereoisomers a and b in compounds 5 and

6 allowed us the stereochemical assignment of these compounds.

Fortunately, we succeed in getting crystal structures of a couple

of the pyrrolidinone derivatives, 7a and 7b, corroborating the syn

and anti disposition between substituents at 4 and 5 positions in

these compound, and hence the previous assignment performed by

NMR (Figures 5 and 6). Structures have been deposited at the

Cambridge Crystallographic Data Centre, CCDC number:

880360 (7a) and 877464 (7b). Despite the 70:30 enantiomeric

mixture observed in chiral HPLC of these compounds, each

crystal contains a racemic 1:1 mixture of enantiomers. For 7a,

these enantiomers, related by a pseudocenter of symmetry [40],

are forming dimers through N101-H101…O201 and N201-

H201…O101 hydrogen bonds. Strong chains are created via a

number of CH…p and CH…O = C contacts (C104-

H104…Cen2, C103-H103…Cen2, C204-H204…Cen1, C203-

H203…Cen1, C105-H105…O101, C205-H205…O201). These

chains form (001) layers through CH…p interactions and the 3D

structure is build up through CH…O = C contacts and Van der

Waals interactions between the tert-butyl groups (Figure S6). For

7b, the enantiomers, related by a center of symmetry, form dimers

through N1-H1…O1 strong hydrogen bonds. These dimers are

joined (N2-H2…O2) to form chains along the ac diagonal. These

chains form (10-1) sheets through CH…O weak interactions (C10-

H10a…O1 and C13-H132…O1). The crystal is formed by the

union of these sheets through CH…p (C12-H12A…CenPh)

contacts (Figure S7).

Figure 3. Reaction Intermediates. Possible intermediates in the reductive amination of 1 with H-Gly-OtBu (R1 = H) or H-Ala-OtBu (R1 = Me). For
clarity, only 4S and 19S isomers are depicted (A–D), but 4R and 19R containing intermediates (A’–D’) are also possible if all the indicated species are
present in equilibrium.
doi:10.1371/journal.pone.0053231.g003

Table 2. Incorporation of deuterium in the reduction with
NaBD3CN.

Final Compd. %Da

H2 H3 H4 H1’

3a 11 .90 5 4

3b 5 .90 3 6

3c 10 .90 5 3

4a 4 .90 4 5

4b 3 .90 3 5.5

aMeasured by 1H NMR (d1 = 10) in CDCl3 at 25uC. Reduction of imines A:
incorporation of D at H3; Enamines B: D at H2, H3; Enamines C: D at H3, H4;
Imines D: D at H1’.
doi:10.1371/journal.pone.0053231.t002

Highly Functionalized 1,2-Diamino Compounds
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Conclusions
In summary, we describe a procedure for the preparation of

b,c–diamino esters from reaction of amino acid-derived b–

ketoesters with both simple amines as well as a–amino esters. To

the best of our knowledge, this represents the first reductive

amination protocol ever described using amino acid-derived b–

ketoesters. This requires a first step of formation of intermediates

with AcOH, and the subsequent reduction with NaBH3CN. In

this method, the diastero- and enantioselectivities were compro-

mised by the existence of different imine-enamine equilibria, as

demonstrated by 1H NMR and deuteration experiments. These

equilibria are favored by the long reaction times required,

probably derived from the low reactivity of the hindered carbonyl

component. The separated diastereoisomeric b,c–diamino esters

can be transformed into the corresponding pyrrolidinone deriv-

atives by cyclization between the 4-amino and the 1-carboxylate

groups. These pyrrolidinones serve as reliable clue in the

configurational assignment (NMR, X-ray) of the linear precursors,

and represent a first example of the potential of the described

diamino esters for the preparation of different heterocycles.

Materials and Methods

All reagents were of commercial quality. Solvents were dried

and purified according to standard methods. Flash chromatogra-

phy was performed on silica gel 60 (230–400 mesh). NMR spectra

were recorded on spectrometers operating at 300 and 75 MHz for
1H and 13C, respectively, using TMS as internal standard (Figure

S8). Chemical shifts are given in ppm and J values in Hz. The C

attributions are supported by HSQC experiments. Electrospray

mass spectra (positive mode) were also recorded. Analytical HPLC

were performed on a Eclipse Plus C18 (5 mm, 4.66150 mm)

column using a UV detector at 220 nm. Mixtures of CH3CN

(0.05% TFA, solvent A) and H2O (solvent B) were used in the

mobile phase, and the corresponding mixture was specified in each

Figure 4. Synthetic procedure for 4,5-disubstituted 2-pyrrodinones from b,c–diamino ester derivatives.
doi:10.1371/journal.pone.0053231.g004

Figure 5. X-Ray molecular structure of 2-pyrrolidinone deriv-
ative 4R*,5R*–7a. Atom labeling for molecule 1 or 2 can be obtained
by adding 100 or 200 respectively to the label of the atom shown in this
figure, i.e. O1 is labelled O101 in molecule 1 and O201 in molecule 2.
Thermal ellipsoids are drawn at 50% probability level of non-H atoms,
and the H atoms are denoted as spheres of 0.1 Å radius.
doi:10.1371/journal.pone.0053231.g005

Figure 6. X-Ray molecular structure of 2-pyrrolidinone deriv-
ative 4R*,5S*–7b showing the atomic numbering scheme.
Thermal ellipsoids are drawn at 50% probability level of non-H atoms,
and the H atoms are denoted as spheres of 0.1 Å radius.
doi:10.1371/journal.pone.0053231.g006

Highly Functionalized 1,2-Diamino Compounds
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case (flow rate 1 mL/min). HPLC-MS, performed in a X-Bridge

C18 (3.5 mm, 2.16100 mm) column; eluent CH3CN (0.08%

formic acid, solvent A) and H2O (0.1% formic acid, solvent B);

flow rate 0.5 mL/min. Chiral HPLC was performed on a

Chiralpak IA column (0.4625 cm) using the mixtures of solvents

indicated in each case (isocratic conditions). b–Ketoester 1 was

prepared as previously described [41,42].

General Procedure for the Reductive Amination
Method A (One step-procedure). To a stirred solution of b-

ketoester 1 (57 mg, 0.15 mmol) in the appropriate solvent (2 mL),

H-Ala-OtBu (0.30 mmol), TEA (41 mL, 0.30 mmol) the corre-

sponding additive (0.5–2 equiv.) and the reducing agent (20 mg,

0.30 mmol) were added. The mixture was stirred at room

temperature or 50uC for 1–3 days. After evaporation, the residue

was dissolved in EtOAc and washed with 10% NaHCO3 and

brine, dried over Na2SO4 and concentrated in vacuum. The

resulting residue was monitored by HPLC-MS (Table S1), and in

one case purified on a silica gel column using hexane:EtOAc 4:1 to

characterize alcohol derivatives 2.

(3R,4S)-Methyl 4-(benzyloxycarbonyl)amino-3-hydroxy-5-
phenylpentanoate (2a)

HPLC tR = 10.78 min (X-Bridge, gradient 20–100 ACN in

15 min.). 1H NMR (CDCl3) d: 7.44–7.12 (m, 10H, Ar), 5.22 (bd,

1H, J = 7.4, NH Z), 5.11 and 5.06 (d, 1H, J = 12.4 Hz, CH2 Z ),

4.01 (bd, 1H, J = 9.6, 3-H), 3.82 (q, 1H, J = 7.9, 4-H), 3.67 (s, 3H,

OCH3), 3.42 (bs, 1H, OH), 2.94 (bd, 2H, J = 7.6, 2-H), 2.59 (dd,

1H, J = 16.9, 10.2, 5-H), 2.39 (dd, 1H, J = 16.9, 2.3, 5-H). 13C

NMR (CDCl3) d:173.8 (CO2), 156.3 (CO Z), 137.9, 136.5 (C Ar),

129.4, 128.6, 128.5, 128.1, 127.9, 126.5 (CH Ar), 66.9 (3-C), 66.8

(CH2 Z), 55.9 (4-C), 51.9 (OCH3), 38.6 (2-C), 38.3 (5-C).

[a]D = +12.5 (c, 0.8 MeOH).

(3S,4S)-Methyl 4-(benzyloxycarbonyl)amino-3-hydroxy-5-
phenylpentanoate (2b)

Mp: 123–126uC. HPLC tR = 10.5 min (X-Bridge, gradient 20–

100 ACN in 15 min.). 1H NMR (CDCl3) d: 7.46–7.10 (m, 10H,

Ar), 5.02 (s, 2H, CH2 Z) 4.82 (m, 1H, NH Z), 4.03 (m, 1H, 3-H),

3.95 (m, 1H, 4-H), 3.71 (s, 3H, OCH3), 3.48 (bs, 1H, OH), 3.00

(dd, 1H, J = 14.1, 4.5, 5-H), 2.86 (m, 1H, 5-H), 2.60 (dd, 1H,

J = 16.6, 3.5, 2-H), 2.52 (dd, 1H, J = 16.6, 8.6, 2-H). 13C NMR

(CDCl3) d:173.2 (CO2), 156.1 (CO Z), 137.3, 136.3 (C Ar), 129.4,

128.5, 128.4, 128.0, 127.9, 126.5 (CH Ar), 69.9 (3-C), 66.7 (CH2

Z), 55.8 (4-C), 51.9 (OCH3), 38.0 (5-C), 35.6 (2-C). [a] = –40.0 (c,

0.5 MeOH). Described: [a]D = –45.5 (c, 1 MeOH) [43].

Method B (Two step-procedure, AcOH). To a stirred solution of

b-ketoester 1 (0.57 g, 1.6 mmol) in CHCl3 (10 mL), the

corresponding amine (4.8 mmol) and AcOH (91 mL, 1.6 mmol)

were added. In the case of amino acid derivatives, the amino

group was released from the HCl salt by addition of TEA

(0.66 mL, 4.8 mmol). The mixture was stirred at 50uC until the

total formation of imine/enamine intermediates was observed.

Then, NaBH3CN (0.2 g, 3.2 mmol) was added, and the mixture

was stirred at room temperature until complete reduction of the

imine/enamine intermediates. After evaporation, the residue was

dissolved in EtOAc and washed with 10% NaHCO3 and brine,

dried over Na2SO4 and concentrated in vacuum. The resulting

residue was purified on a silica gel column using the solvent system

indicated in each case.

Method C (Two step-procedure, Ti(OiPr)4). To a stirred

solution of b-ketoester 1 (0.1 g, 0.28 mmol) in CH2Cl2 (3 mL),

was added a solution of H-Ala-OtBu.HCl (0.218 mmol) and TEA

(0.218 mmol) in CH2Cl2 (3 mL). The mixture was stirred at room

temperature overnight. Then the reaction was cooled to 0uC and

NaBH3CN (0.563 mmol) and NaBH(OAc)3 (0.563 mmol) were

added. The reaction was stirred overnight. After evaporation, the

residue was solved in EtOAc and was washed with H2O and brine,

dried over Na2SO4 and concentrated in vacuum. The resulting

residue was purified on a silica gel column using EtOAc:hexane

(1:8 to 1:4) as eluents. Alcohols 2a (47.3 mg) and 2b (27.2 mg)

were isolated along with compounds 3a (8.8 mg) and 3b (5.6 mg).

Methyl 4-(benzyloxycarbonyl)amino-3-[19-(tert-

butoxycarbonyl)ethan-19-yl]amino-5-phenylpentanoate (3).

Diastereomer 3a (3S*,4S*,19S*). (CH2Cl2:Et2O:hexane,

1:1:2). Yield: 18% (syrup). HPLC tR = 13.66 min (5 to 100% A

in 15 min). 1H NMR (CDCl3) d: 7.37–7.10 (m, 10H, Ar), 5.15 (d,

1H, J = 9.4 Hz, 4-NH), 5.05, 4.98 (AB system, 2H, J = 12.2 Hz,

CH2 Z), 3.96 (q, 1H, J = 7.6 Hz, 4-H), 3.61 (s, 3H, OCH3), 3.29

(q, 1H, J = 7.0 Hz, 19-H), 2.99 (dd, 1H, J = 6.9, 5.7 Hz, 3-H), 2.84

(d, 2H, J = 7.6 Hz, 5-H), 2.51 (dd, 2H, J = 15.2, 6.9 Hz, 2-H), 2.44

(dd, 2H, J = 15.2, 5.7 Hz, 2-H),1.73 (bs, 1H, 3-NH), 1.44 (s, 9H,

CH3
tBu), 1.24 (d, 3H, J = 7.0 Hz, 29-H). 13C NMR (CDCl3) d:

175.3, 172.0 (CO2), 156.1 (CO Z), 138.0, 136.6 (C Ar), 129.1,

128.4, 128.3, 127.9, 126.3 (CH Ar), 81.2 (C tBu), 66.5 (CH2 Z),

57.2 (3-C), 55.6 (4-C), 54.8 (19-C), 51.6 (OMe), 39.1 (5-C), 38.1 (2-

C), 27.9 (CH3
tBu), 20.0 (29-C). MS: 485.5 [M+1]+. Anal. cal. for

C27H36N2O6: C 66.92, H 7.49, N 5.78, found C 66.88, H 7.51, N

5.65.

Diastereomer 3b (3R*,4S*,19S*). (CH2Cl2:Et2O:hexane,

1:1:2). Yield: 20% (syrup). HPLC tR = 12.55 min (5 to 100% A

in 15 min).1H NMR (CDCl3) d:7.32-7.19 (m, 10H, Ar), 5.34 (d,

1H, J = 7.8 Hz, 4-NH), 5.02 and 4.97 (AB system, 2H,

J = 12.6 Hz, CH2 Z), 3.99 (m, 1H, 4-H), 3.65 (s, 3H, OCH3),

3.32 (q, 1H, J = 6.8 Hz, 19-H), 3.13 (q, 1H, J = 6.3 Hz, 3-H), 2.94

(dd, 1H, J = 13.8, 5.3 Hz, 5-H), 2.78 (dd, 1H, J = 13.8, 8.8 Hz, 5-

H), 2.51 (dd, 1H, J = 15.3, 5.8 Hz, 2-H), 2.78 (dd, 1H, J = 15.3,

6.9 Hz, 2-H), 1.68 (bs, 1H, 3-NH), 1.43 (s, 9H, CH3
tBu),1.21 (d,

3H, J = 6.8 Hz, 29-H).13C NMR (CDCl3) d: 174.9, 172.5 (CO2),

156.1 (CO Z), 137.9, 136.7(C Ar), 129.2, 128.4, 128.3, 127.8,

127.7, 126.4 (CH Ar), 81.1 (C(CH3)3), 66.4 (CH2 Z), 56.8 (3-C),

55.4 (19-C and 4-C), 51.7 (OCH3), 37.15 (5-C), 37.1 (2-C), 27.9

(C(CH3)3), 19.6 (29-C). MS: 485.5 [M+1]+. Anal. cal. for

C27H36N2O6: C 66.92, H 7.49, N 5.78, found C 66.67, H 7.83,

N 5.72.

Diastereomer 3c (3S*,4S*,19R*). (CH2Cl2:Et2O:hexane,

1:1:2). Yield: 30% (syrup). HPLC tR = 12.90 min (5 to 100% A

in 15 min).1H NMR (CDCl3) d:7.32-7.19 (m, 10H, Ar), 5.35 (d,

1H, J = 8.7 Hz, 4-NH), 5.07 and 5.00 (AB system, 2H,

J = 12.3 Hz, CH2 Z), 3.95 (m, 1H, 4-H), 3.61 (s, 3H, OCH3),

3.27 (q, 1H, J = 6.9 Hz, 19-H), 3.12 (dt, 1H, J = 6.3, 2.9 Hz, 3-H),

2.93 (dd, 1H, J = 13.7, 6.3 Hz, 5-H), 2.81 (dd, 1H, J = 13.7,

7.7 Hz, 5-H), 2.48 (dd, 1H, J = 15.1, 6.7 Hz, 2-H), 2.40 (dd, 1H,

J = 15.1, 6.4 Hz, 2-H), 1.73 (bs, 1H, 3-NH), 1.45 (s, 9H, CH3
tBu),

1.23 (d, 3H, J = 6.9 Hz, 29-H).13C NMR (CDCl3) d: 174.9, 172.3

(CO2), 156.1 (CO Z), 137.8, 136.6 (C Ar), 129.3, 129.1, 128.4,

128.3, 127.9, 127.8, 126.3 (CH Ar), 81.2 (C(CH3)3), 66.5 (CH2 Z),

55.5 (4-C), 55.1 (19-C), 54.4 (3-C), 51.5 (OCH3), 38.3 (5-C), 37.3 (2-

C), 27.9 (C(CH3)3), 19.7 (29-C). MS: 485.5 [M+1]+. Anal. cal. for

C27H36N2O6: C 66.92, H 7.49, N 5.78, found C 66.90, H 7.35, N

5.51.

Methyl 4-(benzyloxycarbonyl)amino-3-[(tert-

butoxycarbonyl)methyl]amino-5-phenylpentanoate (4).

Diastereomer 4a (3S*,4S*). (CH2Cl2:Et2O:hexane, 1:1:3 to

1:1:1). Yield: 33% (syrup). HPLC tR = 12.33 min (20 to 100% A in

20 min). 1H NMR (CDCl3) d: 7.35–7.21 (m, 10H, Ar), 5.20 (bd,

1H, J = 9.1 Hz, 4-NH), 5.06 and 4.99 (AB system, 2H,
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J = 12.4 Hz, CH2 Z), 3.97 (m, 1H, 4-H), 3.63 (s, 3H, OCH3), 3.36

(s, 2H, CH2 Gly), 3.03 (dt, 1H, J = 6.7, 2.2 Hz, 3-H), 2.87 (dq, 2H,

J = 13.7, 7.4 Hz, 5-H), 2.47 (m, 2H, 2-H), 1.60 (bs, 1H, 3-NH),

1.46 (s, 9H, CH3
tBu). 13C NMR (CDCl3) d: 174.4 and 173.5

(CO2), 157.9 (CO Z), 139.6, 137.9, 136.6, 129.2, 128.4, 127.9,

127.8, 126.4 (C and CH Ar), 81.5 (C tBu), 66.5 (CH2 Z), 56.1 (3-C),

55.6 (4-C), 51.7 (OCH3), 51.0 (CH2 Gly), 38.7 (5-C), 37.6 (2-C),

28.0 (CH3
tBu). MS: 471.3 [M+1]+, 493.3 [M+23]+. Anal. cal. for

C26H34N2O6: C 66.36, H 7.28, N 5.95, found C 66.55, H 7.14, N

5.75.

Diastereomer 4b (3R*,4S*). (CH2Cl2:Et2O:hexane, 1:1:3

to 1.1:1). Yield: 34% (solid). HPLC tR = 12.52 min (20 to 100% A

in 20 min). 1H NMR (CDCl3) d: 7.33–7.18 (m, 10H, Ar), 5.15 (d,

1H, J = 9.2 Hz, 4-NH), 5.00 (m, 2H, CH2 Z), 4.01 (m, 1H, 4-H),

3.66 (s, 3H, OCH3), 3.38 and 3.22 (AB system, 2H, J = 17.4 Hz,

CH2 Gly), 3.09 (q, 1H, J = 6.1 Hz, 3-H), 2.93 (dd, 1H, J = 13.9,

5.1 Hz, 5-H), 2.79 (m, 1H, 5-H2), 2.50 (m, 2H, 2-H), 1.45 (s, 9H,

CH3
tBu). 13C NMR (CDCl3) d: 172.5 and 171.7 (CO2), 156.0 (CO

Z), 137.8, 136.6, 129.2, 128.4, 128.3, 127.9, 127.8, 126.4 (C and

CH Ar), 81.3 (C tBu), 66.4 (CH2 Z), 57.8 (3-C), 55.0 (4-C), 51.8

(OCH3), 49.9 (CH2 Gly), 37.1 (5-C), 36.6 (2-C), 28.0 (CH3
tBu).

MS: 471.3 [M+1]+, 493.3 [M+23]+. Anal. cal. for C26H34N2O6: C

66.36, H 7.28, N 5.95, found C 66.58, H 7.39, N 5.62.

Methyl 3-benzylamino-4-(benzyloxycarbonyl)amino-5-

phenylpentanoate (5). Diastereomer 5a

(3S*,4S*). (CH2Cl2:Et2O:hexane, 1:1:2). Yield: 16% (syrup).

HPLC tR = 8.02 min (20 to 100% A in 20 min). 1H NMR (CDCl3)

d: 7.37–7.11 (m, 15H, Ar), 5.20 (bs, 1H, 4-NH), 5.05 and 5.00 (AB

system, 2H, J = 12.0 Hz, CH2 Z), 4.01 (m, 1H, 4-H), 3.87 and

3.72 (AB system, 2H, J = 12.7 Hz, CH2 N-Bn), 3.62 (s, 3H,

OCH3), 3.11 (m, 1H, 3-H), 2.87 (m, 2H, 5-H), 2.49 (m, 2H, 2-H),

1.60 (bs, 1H, 3-NH). 13C NMR (CDCl3) d: 172.3 (CO2), 156.2 (CO

Z), 137.9, 136.4, 129.1, 128.5, 128.4, 128.0, 127.9, 127.4, 126.4 (C

and CH Ar), 66.6 (CH2 Z), 55.9 (4-C), 55.6 (3-C), 52.7 (CH2 Bn),

51.7 (OCH3), 38.8 (5-C), 31.7 (2-C). MS: 447.3 [M+1]+. Anal. cal.

for C27H30N2O4: C 72.62, H 6.77, N 6.27, found C 72.29, H 6.82,

N 5.93.

Diastereomer 5b (3R*,4S*). (CH2Cl2:Et2O:hexane, 1:1:2).

Yield: 19% (solid). HPLC tR = 8.03 min (20 to 100% A in 20 min).
1H NMR (CDCl3) d:7.34–7.15 (m, 15H, Ar), 5.03 (m, 2H, CH2 Z),

4.92 (d, 1H, J = 9.3 Hz, 4-NH), 4.11 (m, 1H, 4-H), 3.81 (s, 2H,

CH2 N-Bn), 3.64 (s, 3H, OCH3), 3.11 (m, 1H, 3-H), 2.94 (dd, 1H,

J = 13.9, 5.2 Hz, 5-H), 2.78 (m, 1H, 5-H), 2.54 (m, 2H, 2-H). 13C

NMR (CDCl3) d: 172.7 (CO2), 156.2 (CO Z), 140.0, 137.8, 136.5,

129.2, 128.5, 128.4, 128.3, 128.2, 128.0, 127.9, 127.0, 126.5 (C

and CH Ar), 66.6 (CH2 Z), 56.8 (3-C), 54.5 (4-C), 51.8 (OCH3),

51.2 (CH2 N-Bn), 37.7 (5-C), 35.9 (2-C). MS: 447.3 [M+1]+, 469.2

[M+23]+. Anal. cal. for C27H30N2O4: C 72.62, H 6.77, N 6.27,

found C 72.47, H 6.95, N 6.05.

Methyl 4-(benzyloxycarbonyl)amino-3-butylamino-5-

phenylpentanoate (6). Diastereomer 6a

(3S*,4S*). (CH2Cl2:Et2O:hexane, 1:1:2). Yield: 23% (syrup).

HPLC tR = 7.52 min (20 to 100% A in 20 min). 1H NMR (CDCl3)

d: 7.35-7.19 (m, 10H, Ar), 5.12 (d, 1H, J = 8.0 Hz, 4-NH), 5.06

and 5.00 (AB system, 2H, J = 12.0 Hz, CH2 Z), 3.96 (m, 1H, 4-H),

3.63 (s, 3H, OCH3), 3.02 (m, 1H, 3-H), 2.87 (m, 2H, 5-H), 2.69 (m,

1H, 4-CH2 Bu), 2.54 (dt, 1H, J = 11.1, 5.2 Hz, 4-CH2 Bu), 2.44

(m, 2H, 2-H), 1.44-1.26 (m, 4H, 2- and 3-CH2 Bu), 1.20 (bs, 1H, 3-

NH), 0.91 (t, 3H, J = 7.1 Hz, CH3 Bu). 13C NMR (CDCl3) d:

172.5 (CO2), 156.2 (CO Z), 138.1, 136.6, 129.2, 128.5, 128.4,

128.0, 127.9, 126.4 (C and CH Ar), 66.6 (CH2 Z), 56.1 (3-C), 55.6

(4-C), 51.7 (OCH3), 48.5 (4-CH2 Bu), 38.8 (5-C), 37.3 (2-C), 32.7 (3-

CH2 Bu), 20.3 (2-CH2 Bu), 13.9 (CH3 Bu). MS: 413.3 [M+1]+.

Anal. cal. for C24H32N2O4: C 69.88, H 7.82, N 6.79, found C

70.18, H 7.61, N 6.80.

Diastereomer 6b (3R*,4S*). (CH2Cl2:Et2O:hexane, 1:1:3).

Yield: 27% (syrup). HPLC tR = 7.72 min (20 to 100% A in

20 min). 1H NMR (CDCl3) d: 7.34-7.17 (m, 10H, Ar), 5.01 (m,

2H, CH2 Z), 4.92 (d, 1H, J = 9.2 Hz, 4-NH), 4.02 (m, 1H, 4-H),

3.65 (s, 3H, OCH3), 3.03 (q, 1H, J = 6.2 Hz, 3-H), 2.94 (dd, 1H,

J = 13.8, 5.2 Hz, 5-H), 2.79 (m, 1H, 5-H), 2.59 (m, 2H, 4-CH2 Bu),

2.50 (m, 2H, 2-H), 1.44-1.26 (m, 5H, 3-NH, 2- and 3-CH2 Bu),

0.89 (t, 3H, J = 7.1 Hz, CH3 Bu). 13C NMR (CDCl3) d: 172.9

(CO2), 156.1 (CO Z), 137.9, 136.6, 129.0, 128.5, 128.4, 128.0,

127.9, 126.4 (C Ar), 66.6 (CH2(Z)), 57.6 (3-C), 54.7 (4-C), 51.7

(OCH3), 46.8 (4-CH2 Bu), 37.6 (5-C), 36.1 (2-C), 32.5 (3-CH2 Bu),

20.3 (2-CH2 Bu), 13.9 (CH3 Bu). MS: 413.3 [M+1]+. Anal. cal. for

C24H32N2O4: C 69.88, H 7.82, N 6.79, found C 69.98, H 7.93, N

6.55.

General Procedure for the Cyclization to 2-pyrrolidinones
Diamino ester derivatives (0.2 mmol) were dissolved in MeOH

(10 mL) and a catalytic amount of Pd/C (10% w/w) and HCl

(35%) (0.2 mmol) were added. The reaction was kept under 20 psi

of H2 for 2 h at room temperature. The suspension was filtered

and evaporated. Then, the residue was dissolved in toluene (5 mL)

and TEA (28 mL, 0.2 mmol) was added. The reaction was heated

at 110uC for 2 hours. After evaporation, the residue was dissolved

in EtOAc and washed with H2O and brine, dried over Na2SO4

and concentrated in vacuum. The resulting residue was purified

on a silica gel column using the solvents indicated in each case.

(4S*,5S*,19S*)-5-Benzyl-4-[(19-(tert-
butoxycarbonyl)ethyl]amino-2-pyrrolidinone (7a)

Eluent: CH2Cl2:MeOH (50:1). 46% (oil). HPLC tR = 6.24 min

(20 to 100% A in 20 min).1H NMR (CDCl3) d:7.33–7.17 (m, 5H,

H Ar), 5.46 (bs, 1H, 1-NH), 3.81 (dddd, 1H, J = 11.1, 6.7, 3.4,

0.7 Hz, 5-H), 3.56 (m, 1H, J = 9.3, 7.8, 6.7 Hz, 4-H), 3.22 (q, 1H,

J = 7.0 Hz, 19-H), 2.98 (dd, 1H, J = 13.5, 3.4 Hz, 5-CH2), 2.58

(dd, 1H, J = 13.5, 11.1 Hz, 5-CH2), 2.47 (dd, 1H, J = 16.4,

7.8 Hz, 3-H), 2.28 (dd, 1H, J = 16.4, 9.3 Hz, 3-H), 1.81 (bs, 1H, 4-

NH), 1.48 (s, 9H, CH3
tBu), 1.29 (d, 3H, J = 7.0, 29-H).13C NMR

(CDCl3) d: 175.1, 174.9 (CO), 138.0, 129.8, 128.8, 126.7 (C and

CH Ar), 81.5 (C tBu), 58.8 (5-C), 56.5 (19-C), 55.5 (4-C), 36.6 (3-C),

36.4 (5-CH2), 28.0 (CH3
tBu), 19.5 (29-C). MS: 319.5 [M+1]+.

Anal. cal. for C18H26N2O3: C 67.90, H 8.23, N 8.80, found C

67.89, H 7.94, N 8.72.

(4R*,5S*,19S*)-5-Benzyl-4-[(19-(tert-
butoxycarbonyl)ethyl]amino-2-pyrrolidinone (7b)

Eluent: CH2Cl2:MeOH (40:1). 40% (oil). HPLC tR = 7.12 min

(20 to 100% A in 20 min).1H NMR (CDCl3) d:7.28-7.10 (m, 5H,

H Ar), 5.59 (bs, 1H, 1-NH), 3.51(dt, 1H, J = 9.0, 4.6 Hz, 5-H),

3.15(m, 1H, 4-H), 3.11 (q, 1H, J = 7.0 Hz, 19-H), 2.95 (dd, 1H,

J = 13.5, 4.6 Hz, 5-CH2), 2.56 (dd, 1H, J = 13.5, 9.0 Hz, 5-CH2),

2.46 (dd, 1H, J = 16.8, 7.6 Hz, 3-H), 2.12 (dd, 1H, J = 16.8,

6.3 Hz, 3-H), 1.75 (bs, 1H, 4-NH), 1.40 (s, 9H, CH3
tBu), 1.16 (d,

3H, J = 7.0, 29-H).13C NMR (CDCl3) d: 175.3, 174.9 (CO), 136.9,

129.1, 129.0, 128.6, 126.8 (C Ar), 81.4 (C tBu), 62.1 (5-C), 57.5 (4-

C), 54.9 (19-C), 41.0 (5-CH2), 37.7 (3-C), 28.0 (CH3
tBu), 19.4 (29-

C). MS: 319.4 [M+1]+. Anal. cal. for C18H26N2O3: C 67.90, H

8.23, N 8.80, found C 68.01, H 8.40, N 8.61.
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(4S*,5S*,19R*)-5-Benzyl-4-[(19-(tert-
butoxycarbonyl)ethyl]amino-2-pyrrolidinone (7c)

Eluent: CH2Cl2:MeOH (50:1). 48% (oil). HPLC tR = 6.28 min

(20 to 100% A in 20 min).1H NMR (CDCl3) d:7.27–7.10 (m, 5H,

H Ar), 5.35 (bs, 1H, 1-NH), 3.84 (dddd, 1H, J = 11.2, 6.5, 3.4,

0.8 Hz, 5-H), 3.64 (m, 1H 4-H), 3.28 (q, 1H, J = 6.9, 19-H), 2.95

(dd, 1H, J = 13.5, 3.4 Hz, 5-CH2), 2.55 (dd, 1H, J = 13.5,

11.2 Hz, 5-CH2), 2.47 (dd, 1H, J = 16.4, 7.3 Hz, 3-H), 2.28 (dd,

1H, J = 16.4, 8.1 Hz, 3-H), 1.69 (bs, 1H, 4-NH), 1.41 (s, 9H, tBu),

1.24 (d, 3H, J = 6.9, 29-H).13C NMR (CDCl3) d: 175.1, 174.8

(CO), 137.9, 129.1, 128.9, 126.8 (C Ar), 81.5 (C tBu), 58.9 (5-C),

55.2 (19-C), 54.5 (4-C), 36.6 (3-C), 36.2 (5-CH2), 28.1 (CH3
tBu),

19.4 (29-C). MS: 319.4 [M+1]+. Anal. cal. for C18H26N2O3: C

67.90, H 8.23, N 8.80, found C 67.63, H 8.10, N 8.55.

(4S*,5S*)-5-Benzyl-4-[(tert-butoxycarbonyl)methyl]amino-
2-pyrrolidinone (8a)

Eluent: CH2Cl2:MeOH (40:1). 40% (oil). HPLC tR = 6.29 min

(20 to 100% A in 20 min). 1H NMR (CDCl3) d: 7.27-7.11 (m, 5H,

H Ar), 5.38 (bs, 1H, 1-NH), 3.81 (dddd, 1H, J = 11.1, 6.6, 3.4,

0.8 Hz, 5-H), 3.56 (m, 1H, J = 8.4, 7.5, 6.6 Hz, 4-H), 3.28 (bs, 2H,

CH2 Gly), 2.94 (dd, 1H, J = 13.5, 3.5 Hz, 5-CH2), 2.56 (dd, 1H,

J = 13.5, 11.1 Hz, 5-CH2), 2.45 (dd, 1H, J = 16.5, 7.5 Hz, 3-H),

2.25 (dd, 1H, J = 16.4, 8.4 Hz, 3-H), 1.77 (bs, 1H, 4-NH), 1.42 (s,

9H, CH3
tBu), 13C NMR (CDCl3) d: 174.8, 171.1 (CO), 137.7,

129.1, 128.9, 126.8 (C and CH Ar), 81.3 (C tBu), 58.7 (5-C), 56.3

(4-C), 50.0 (CH2 Gly), 36.4 (3-C), 36.2 (5-CH2), 28.1 (CH3
tBu).

MS: 305.5 [M+1]+. Anal. cal. for C17H24N2O3: C 67.08, H 7.95,

N 9.20, found C 66.86, H 8.08, N 8.97.

(4R*,5S*)-5-Benzyl-4-[(tert-butoxycarbonyl)methyl]amino-
2-pyrrolidinone (8b)

Eluent: CH2Cl2:MeOH (40:1). 43% (oil).HPLC tR = 7.23 min

(20 to 100% A in 20 min). 1H NMR (CDCl3) d: 7.35–7.18 (m, 5H,

H Ar), 5.80 (bs, 1H, 1-NH), 3.67 (m, 1H, 5-H), 3.26 (m, 3H, CH2

Gly, 4-H), 3.00 (dd, 1H, J = 13.6, 4.9 Hz, 5-CH2), 2.67 (dd, 1H,

J = 13.6, 8.8 Hz, 5-CH2), 2.59 (dd, 1H, J = 17.0, 7.6 Hz, 3-H),

2.21 (dd, 1H, J = 17.0, 5.4 Hz, 3-H), 1.46 (s, 9H, CH3
tBu). 13C

NMR (CDCl3) d: 175.1, 171.1 (CO), 137.1, 129.0, 128.9, 127.0 (C

and CH Ar), 81.8 (C tBu), 61.89 (5-C), 58.8 (4-C), 49.3 (CH2 Gly),

41.3 (5-CH2), 37.5 (3-C), 28.0 (CH3
tBu). MS: 305.4 [M+1]+. Anal.

cal. for C17H24N2O3: C 67.08, H 7.95, N 9.20, found C 66.98, H

7.69, N 8.79.
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