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Non-coding RNAs (ncRNAs), which do not encode proteins, have pivotal roles in

manipulating gene expression in development, physiology, and pathology. Emerging data

have shown that ncRNAs can regulate lymphangiogenesis, which refers to lymphatics

deriving from preexisting vessels, becomes established during embryogenesis, and

has a close relationship with pathological conditions such as lymphatic developmental

diseases, inflammation, and cancer. This review summarizes the molecular mechanisms

of lymphangiogenesis in lymphatic development, inflammation and cancer metastasis,

and discusses ncRNAs’ regulatory effects on them. Therapeutic targets with regard to

lymphangiogenesis are also discussed.
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INTRODUCTION

Lymphangiogenesis are termed lymphatics deriving from preexisting vessels, and generally
progress through a number of stages: establishment of lymphatic endothelial cell (LEC) identity,
formation of the primary lymphatic structures, maturation, and remodeling of the lymphatic
vessels (1, 2). The normal growth and development of lymphatics contribute to their non-negligible
roles in the cardiovascular system, including maintaining tissue fluid homeostasis, directing the
trafficking of immune cells during immunosurveillance, and absorbing dietary lipids from the
digestive tract (3, 4). However, in developmental diseases such as lymphedema, lymphangiectasia,
and vascular malformations, or in inflammatory conditions such as infectious diseases, and after
surgical intervention, lymphatic function is impaired which might lead to swellings and edema (5).
In other pathological conditions, such as cancer, it might be essential to inhibit lymphangiogenesis,
thus preventing cancer metastasis (6). Our comprehension of lymphangiogenesis regulation is
mainly based on understanding the functions of proteins and their interactions, while it is widely
known that only 3–5% of our genome encodes proteins and protein-target therapy may cause drug
resistance (7). Therefore, the clinical regulation of lymphangiogenesis further requires other types
of targets for successful intervention.
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Currently, emerging studies have implicated connections
between lymphangiogenesis and non-coding RNAs (ncRNAs),
especially the well-known microRNAs (miRNAs), long non-
coding RNAs (lncRNAs), and the newly discovered circular RNAs
(circRNAs), which are transcribed from the vast majority of
human genome. ncRNAs, though most do not encode proteins,
contain genetic information or have functions in the biological
process of cells. ncRNAs include structural RNAs such as tRNAs
and rRNAs, which are abundant and have well-defined roles in
translation, and regulatory RNAs such as miRNAs, lncRNAs,
and circRNAs. These regulatory RNAs contain physiological
and pathological functions, by altering protein expressions,
interacting as signaling partners with specific proteins or acting
as scaffolds for protein complexes to change signaling pathways
(8, 9). Preclinical studies and increased success rates of ncRNA-
target therapy provide a possibility of targeting ncRNAs in
lymphangiogenesis-related disorders (10, 11).

Just as the old Chinese saying goes that “one stone
with three birds,” understanding the underlying mechanisms
important for ncRNAs targeting lymphangiogenesis in lymphatic
developmental diseases, inflammation and cancer metastasis
will help build new therapeutics when more than one
disorder exists. Here, we review the molecular mechanisms of
lymphangiogenesis in lymphatic development, inflammation and
cancer metastasis, emphasize the ncRNAs’ regulation on them,
and hope to harness this knowledge for translational medicine.

LYMPHATIC DEVELOPMENT

Lymphatic Development
In vertebrates, the first definitive sign of lymphatic development
is the presence of endothelial cells with the expression of PROX1,
considered to be the master regulator of LEC fate specification in
cardinal veins (12, 13). Prox1 deletion in mice led to a complete
absence of the lymphatic vasculature. PROX1-positive LECs bud,
sprout and migrate away from both the cardinal and intersomitic
veins to form the primary lymphatic plexus and sacs (14–16).
Once exiting the veins, primitive LECs exhibit LEC identity
including podoplanin, and increased levels of VEGFR-3 and
NRP2 (14–16). This exiting process is absolutely dependent on
VEGF-C, which acts via its tyrosine kinase receptor VEGFR-
3 and the non-signaling co-receptor NRP2 (16–18). PROX1-
positive LECs do not egress from the veins in embryos when
deficient in key regulators of VEGF-C/VEGFR-3 signaling, such
as collagen and calcium binding EGF domains 1 (CCBE1)
(16, 19, 20). As for the initiation of PROX1 expression in
venous endothelial cells, transcription factor SOX18 (21) and

Abbreviations: ncRNA, non-coding RNA; PROX1, Prospero homeobox 1; BMP2,
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endothelial growth factor C; NF-κB, nuclear transcription factor-κB; OSCC, oral

squamous cell carcinoma; NRP2, Neuropilin 2; Flt4, Fms-related tyrosine kinase

4; CXCL12a, Chemokine (C-X-C motif) ligand 12a; FoxO1, Forkhead box O1;

TNF-α, Tumor Necrosis Factor alpha; LYVE-1, Lymphatic vessel endothelial

hyaluronan receptor 1; WISP-1, WNT1-inducible signaling pathway protein-1;

ANRIL, antisense non-coding RNA in the INK4 locus; C21orF96, Chromosome

21 open reading frame 96.

NR2F2/COUP-TFII (22) are thought to be critical. Intriguingly,
PROX1 expression is induced in the cells of dorsolateral aspect
of veins, while its inducer/co-regulator, SOX18, and COUP-TFII,
are expressed throughout the cardinal vein endothelial cells (12,
23). Current explanation for this polarization involves retinoic
acid signaling (24), Notch signaling (25) and BMP2 signaling
pathway (26). They are all researched to regulate the emergence
of lymphatic endothelial progenitor cells from the veins.

After LECs migrating and forming primary lymphatic
vascular structures, major events involved in lymphatic
development includes formation of lympho-venous valves,
induction of platelet aggregation in valve regions, and
remodeling of the initial lymphatic plexus to form a hierarchical
lymphatic vascular tree (27, 28). Upregulation of FOXC2,
together with high levels of PROX1 and GATA2, exist
in the clusters of cells destined to form valves (29, 30).
FOXC2 and PROX1 coordinately control expression of
the gap junction protein connexin37 and activation of
calcineurin/NFAT signaling, which are required for the
assembly and delimitation of lymphatic valve territory during
development (31). And cell surface molecules including the
planar cell polarity pathway members, CELSR1 and VANGL2
(32), signaling pathways including Notch (33), BMP (34),
and Semaphorin/Neuropilin/Plexin axes (35), and mechanical
stimuli including disturbed flow are also important for valve
development (31). As for platelet aggregation, signaling induced
by podoplanin on the surface of LECs can bind to platelet C-type
lectin-like receptor2 (CLEC2) to prevent blood entering into the
lymphatics (27, 36). Both valves and platelet thrombi are crucial
for separating the blood and lymphatic vascular compartments.
In addition, signaling pathways such as angiopoietin/Tie
signaling (37, 38), EphrinB2 signaling (39), and Reelin signaling
(40), are significant for primitive lymphatic plexus remodeling to
form initial and collecting vessels.

miRNAs and Lymphatic Development
miRNAs (19–24 nucleotides) are endogenous, non-protein-
coding small RNAs that serve as post-transcriptional gene
regulators (41, 42). According to the miRBase (version 21.0),
over 60% of the protein-coding genes in human are targeted by
miRNAs (43). Recent studies have defined the critical roles of
miRNAs in lymphangiogenesis. Kazenwadel et al. demonstrated
that miR-181a, the first discovered miRNA that targets PROX1,
could bind to the Prox1 3′-UTR, resulting in translational
inhibition and transcript degradation (44). Increased miR-181a
in primary embryonic LECs led to the substantial reduced levels
of PROX1 and resulted in reversion of LEC identity toward
a blood vascular phenotype. Inhibition of endogenous miR-
181a in blood endothelial cells (BECs) leads to elevated PROX1
expression, therefore promoting the acquisition of LEC identity.
miR-31, as a novel BEC-specific miRNA, inhibited lymphatic
lineage-specific differentiation in BECs, at least in part by
repressing PROX1 in vitro, and impaired lymphatic development
and venous sprouting in vivo (45). miR-31 candidate targets
also include FOXC2, which is required for specification of
lymphatic capillaries vs. collecting lymphatic vessels (46, 47),
and RAMP2, which triggers lymphangiogenesis in response
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to adrenomedullin signaling (48). Recent evidence has shown
that BMP2 signaling, the negative modulator for lymphatic fate
during development, could promote both miR-181a and miR-
31 in a SMAD-dependent manner, thus negatively regulating
PROX1 expression at the post-transcriptional level. BMP2
signaling is therefore essential for constructing therapeutic
manipulation of lymphangiogenesis in development (26).

miR-182, which is induced by JunB and attenuates FoxO1
expression in zebrafish, is crucial for the formation of
parachordal lymphangioblasts and the thoracic duct. This
JunB/miR-182/FoxO1 axis is regarded as a novel key player in
governing lymphangiogenesis (49). A recent study has identified
miR-126a as a director of LECmigration and lymphatic assembly.
In vivo studies by Chen et al. reported that VEGF-C/FLT4
signaling acted as a cooperator of miR-126a, allowingmodulation
of lymphangiogenic sprout formation. miR-126a upregulated
CXCL12a by targeting its 5′-UTR, then inducing chemokine
signaling, resulting in parachordal lymphangioblast extension
along a horizontal myoseptum (50, 51). Subsequent research
confirmed miR-126 as a conserved modulator of lymphatic
development in vivo and in vitro, and put forward the potential
of miR-126 in preventing lymphedema, the most recognized
aspect of lymphatic system malfunction as a result of genetic
cause (52) (Figure 1).

INFLAMMATION

Lymphangiogenesis in Inflammation
Inflammation is a common feature of various conditions,
characterized by pathological neovascularization, including
hemangiogenesis and lymphangiogenesis. Hemangiogenesis
refers to the new outgrowth from pre-existing blood vessels, and
is an important pathological aspect of chronic inflammatory
diseases (53). Lymphangiogenesis in inflammation is often
induced by factors produced by macrophages and dendritic
cells, and its existence involves tissue edema reduction, immune
response initiation, and antigen clearance (54). Macrophages,
especially CD11b+ macrophages, play a pivotal role in the
inflammatory lymphangiogenesis mediated by VEGF ligands
(55, 56). The VEGF family consists of five members that bind to
and activate three distinct receptors. VEGF-A binds to VEGFR-1
and VEGFR-2; placental growth factor (PlGF) and VEGF-B bind
only to VEGFR-1; and VEGF-C and VEGF-D bind to VEGFR-2
and VEGFR-3. Generally speaking, ligation of VEGF-A to
VEGFR-2 induces only hemangiogenesis, while interactions
of VEGF-C/D and VEGFR-3 mediate lymphangiogenesis (57–
59). However, recent observations contradicted this notion
and found that there was some crosstalk between them.
VEGF-C produced by activated macrophages can induce local
proliferating and sprouting of preexisting lymphatic cells
(60, 61), while VEGF-A, expressed by activated leucocytes
in inflammatory context, can recruit VEGFR-1-expressing
macrophages, which are known to release VEGF-C/D, thus
inducing inflammatory lymphangiogenesis (62). Maruyama
et al. showed that VEGFR-3-expressing CD11b+ macrophages
could directly transdifferentiate into lymphatic endothelial
cells (LECs), forming cell aggregates that gradually developed
into sprouting lymphatic vessels (63). In addition to the two

ways of macrophages supporting lymphangiogenesis, dendritic
cells activated by IL-1β and TNF-α in inflammation milieu can
also migrate to lymphatic vessels, express VEGF-C, promoting
lymphangiogenesis (64).

miRNAs and Inflammatory
Lymphangiogenesis
The first example of the regulatory role of miRNA in
inflammatory lymphangiogenesis is miR-1236, which is
expressed in LECs and binds to VEGFR-3. Jones et al.
demonstrated that miR-1236, induced by IL-1β, could negatively
regulate VEGFR-3 expression and VEGFR-3-dependent
signaling Akt and ERK1/2, and attenuate VEGF-C/VEGFR-3
mediated LECs migration and tube formation in primary human
LECs in vitro. They also found that miR-1236 could reduce
lymphangiogenesis in vivo (65, 66). Considering the fact that
IL-1β contributes to initial lymphangiogenesis by inducing
VEGFs and also induces miR-1236, which in turn suppresses
VEGFR-3-dependent signaling, modulation of VEGFR-3 levels
using miR-1236 may be a promising approach for the treatment
of inflammatory diseases. Additionally, studies by Chakraborty
et al. revealed that miR-9 expressed on inflamed LECs, which was
induced by TNF-α, could inhibit NF-κB-mediated inflammation,
increase VEGFR-3 and induce LEC proliferation and tube
formation to activate VEGFR-3-mediated lymphangiogenesis
(67). Studies concerning inflammatory lymphangiogenesis
usually involved models of corneal lymphangiogenesis, as
cornea exhibited alymphatic feature under normal condition
and lymphangiogenesis under pathologic insults such as
inflammation. miR-466, miR-184, and miR-199a/b-5p have
all been reported to be significantly downregulated in corneal
inflammatory lymphangiogenesis, and accordingly, inhibit
corneal lymphatic growth in vivo and suppress LECs functions
of adhesion, migration, and tube formation in vitro. This
offers a clinical potential for lymphangiogenesis interference
and lymphatic-related diseases treatment (68–70). Wang et al.
revealed that miR-132 isolated from exosomes of VEGF-C-
treated adipose-derived stem cells could be directly transferred
to LECs and promote LECs proliferation, migration, and
tube formation by targeting Smad-7 and activating TGF-β/Smad
signaling, thus reversing acute to chronic inflammatory processes
in inflammatory bowel disease (71).

Recently, circular RNA (circRNA) cZNF609 could serve
as a sponge for miR-184 and subsequently elevated miR-
184-target gene heparanase in inflamed corneas, which
could significantly elevate VEGF-C expression and facilitate
lymphangiogenesis in vitro and in vivo. However, whether
cZNF609 intervention could act as a therapeutic strategy in
preventing inflammation-induced lymphangiogenesis and
treating ocular inflammatory diseases remains unknown,
therefore requires further investigation (72) (Figure 2).

CANCER METASTASIS

Lymphangiogenesis in Tumor
Cancer metastasis, the dissemination of cancer cells from
primary tumors to distant organs, is considered to be the primary
cause of cancer-related deaths. The majority of epithelial cancers
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FIGURE 1 | Identified ncRNAs regulating lymphangiogenesis in lymphatic development. The development of lymphatic vascular network starts with the cells of

cardinal vein losing blood endothelial characteristics and acquiring lymphatic endothelial cell (LEC) identity. LECs then bud off the cardinal vein and form lymphatic

sacs and plexus. Subsequently, remodeling of the primitive lymphatic vasculature begins, and becoming a hierarchical network. We described ncRNAs, mostly

miRNAs identified to-date, which influence different steps of developmental lymphangiogenesis.

FIGURE 2 | Identified ncRNAs regulating lymphangiogenesis in inflammation. Inflammatory cytokines such as IL-1β and TNF-α, stimulate macrophages, leucocytes,

and dendritic cells to express VEGF-C/D, leading to inflammatory lymphangiogenesis. We described ncRNAs, mostly miRNAs identified to-date, which influence

inflammatory lymphangiogenesis.

firstly developmetastasis through spreading via lymphatic vessels
(73). Tumor hypoxia microenvironment stimulates tumor cells,
tumor stroma cells, and tumor-infiltrating inflammatory cells

to express a series of lymphangiogenic factors, including the
well-known VEGF family, especially VEGF-A/C/D (74), and
other mediators such as PDGF-BB (75), IGF1/2 (76), FGF2
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(77–79), HGF (80, 81), angiopoietin-2 (82), sphingosine-1-
phosphate (83), adrenomedullin (84), and IL-7 (85, 86). In
response to these factors, lymphangiogenesis can start from
existing lymphatic vessels via sprouting, LEC proliferation, and
formation of intra- and peri-tumoral lymphatics. Additionally, it
can also derive from precursor LEC and bone marrow-derived
cells (87, 88). After disseminating into sentinel lymph nodes
(SLNs, the first tumor draining LN), lymphangiogenic factors
induce LN lymphangiogenesis prior to the arrival of cancer
cells. Besides inducing new lymphatic vessels, tumors can co-opt
existing lymphatics at the primary site (73).

Crosstalk between tumors and lymphatic vessels are
bidirectional. In addition to being influenced by tumors
mentioned above, lymphatic vessels in return can contribute
to cancer metastasis by secreting chemokines CCL21 (89)
or CXCL12 (90), which bind to CCR7 or CXCR4 receptors,
respectively, expressed in invading cancer cells, thus recruiting
cancer cells toward lymphatic vessels. Lymphatic vessels can also
provide a cancer stem cell niche (91) and modulate antitumor
immune responses (92, 93), affecting metastatic tumor cells.

miRNAs and Lymphatic Metastasis
The most established lymphangiogenic factor, VEGF-C, can
be targeted by miR-128 in human non-small cell lung cancer
(NSCLC) cells and human umbilical vein endothelial cells
(HUVECs). Hu et al. demonstrated that miR-128 could
directly suppress VEGF-C and simultaneously decrease
VEGF-A, VEGFR-2, and VEGFR-3 indirectly, thus reducing
the phosphorylation of downstream VEGFR signaling
pathways extracellular signal-regulated kinase (ERK1/2),
phosphatidylinositol 3-kinase(AKT), and p38, resulting in
tube formation inhibition in vitro. Furthermore, by analyzing
immunohistochemical staining with anti-LYVE-1 antibodies
of tumor tissues, they found out that miR-128 could suppress
lymphangiogenesis of tumor xenografts in vivo, suggesting the
therapeutic significance of miR-128 in NSCLC (94). VEGF-
C can also be indirectly targeted by miR-206. Keklikoglou
et al. revealed that, in pancreatic adenocarcinoma, miR-
206 suppressed lymphangiogenesis through abrogating the
expression of VEGF-C. Also, there was a striking reduction in
the number of capillary-like tubes and intratumoral lymphatics
coverage in the existence of miR-206, indicating that miR-206-
based therapy might have important translational implications in
pancreatic adenocarcinoma treatment (95). In chondrosarcoma,
a series of studies have indicated that miR-381, miR-507, miR-
27b, miR-624-3p, and miR-186 contributed to the inhibition
of VEGF-C-dependent lymphangiogenesis with different
mechanisms, all of which provided information on the potential
miRNA-based molecular diagnosis and treatment for VEGF-C-
mediated lymphangiogenesis in chondrosarcoma (96–100). In
oral squamous cell carcinoma (OSCC) cells, Lin et al. found that
decreased miR-300, which was suppressed by WNT1-inducible
signaling pathway protein-1 (WISP-1), could contribute to
VEGF-C-dependent lymphangiogenesis (101). And inhibited
miR-195-3p, targeted by chemokine CCL4, could also induce
VEGF-C and lymphangiogenesis in OSCC cells (102).

Besides VEGF-C, another member of VEGF family, VEGF-
A, could induce lymphangiogenesis apart from angiogenesis, and
accelerate nodal metastasis in OSCC (103). Research showed
that miR-126 negatively regulated VEGF-A, and thus decreased
lymphatic vessel density in OSCC specimens (104). Neuropilin-2
(NRP2), another important regulator of lymphangiogenesis, was
directly suppressed by miR-486-5p in colorectal carcinoma cells,
leading to the reduction of peritumoral lymphatic microvessels
in vivo, and thus demonstrating the suppressor role of miR-486-
5p in colorectal carcinoma (105). miR-93 was reported to inhibit
angiogenesis and lymphangiogenesis by targeting angiopoietin2,
and thus suppressed malignant pleural effusion, a sign of an
advanced tumor stage (106).

Conversely, there were also pro-lymphangiogenetic
miRNAs in cancer metastasis. miR-7 in gastric cancer cells
promoted p65-mediated aberrant NF-κB activation and its
downstream metastasis-related molecules including VEGF-C,
and thus facilitated metastasis by alleviating hemangiogenesis,
lymphangiogenesis, and inflammatory cells infiltration (107).
miR-548k acted as a pro-lymphangiogenic miRNA in esophageal
squamous cell carcinoma (ESCC) via promoting VEGF-C
secretion and stimulating lymphangiogenesis, highlighting
its crucial role as a new diagnostic and prognostic marker of
ESCC (108). miR-27a could be induced in LECs by co-culturing
with colon cancer cells, and promoted lymphangiogenesis via
targeting SMAD4, a pivotal member of the TGF-β signaling
and a tumor suppressor (109). Additionally, exosomes secreted
from cancer cells could mediate lymphangiogenesis. A recent
study showed that cervical squamous cell carcinoma (CSCC)-
secreted exosomal miR-221-3p could transfer into LECs to
promote lymphangiogenesis and lymphatic metastasis through
downregulation of VASH1, representing a novel diagnostic
biomarker and therapeutic target for metastatic CSCC patients
in early stage (110). Furthermore, circulating miR-10b and miR-
373 were shown to be potential biomarkers in detecting lymph
node metastasis of breast cancer (111). There have been some
studies focusing on miRNAs associated with lymphangiogenesis
in various cancers, such as gastric cancer (112), lung cancer
(113), and papillary thyroid cancer, of which the underlying
mechanisms need to be further elucidated (114, 115).

LncRNAs and Lymphatic Metastasis
Although the functional roles of miRNAs in lymphangiogenesis
are now established, relatively less is known about the regulatory
roles of lncRNAs (>200 nts) (116, 117). Known as the
“transcriptional noise,” lncRNAs rarely code for proteins, but
are regulated like that of protein coding RNAs, being subjected
to transcriptional regulation or even splicing (118, 119).
Unlike miRNAs acting mainly as post-transcriptional repressors,
functional lncRNAs can regulate gene expression at various
levels, such as chromatin modification, transcriptional and post-
transcriptional processing (120, 121). A number of findings
have indicated the contribution of lncRNAs in cancer metastasis
(122), while the question as to whether these lncRNAs are
involved in lymphangiogenesis and lymph node metastasis is still
being studied.
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FIGURE 3 | Identified ncRNAs regulating lymphangiogenesis in cancer metastasis. In tumor microenvironment, tumor cells, tumor stroma cells, and tumor-infiltrating

inflammatory cells express a series of lymphangiogenic factors, and thus lead to tumor lymphangiogenesis and lymphatic metastasis. We described ncRNAs, mostly

miRNAs identified to-date, which influence different steps of lymphangiogenesis in cancer metastasis.

Recent evidence has shown that antisense non-coding RNA
in the INK4 locus (ANRIL), a kind of lncRNA, induced
lymphangiogenesis and lymphatic metastasis in colorectal
cancer. ANRIL expression was correlated with the increased
expressions of VEGF-C, VEGFR3, LYVE-1, and tube formation
in both colorectal cancer cell lines and surgical specimens.
ANRIL downregulation reduced lymphatic metastasis rate,
lymphatic microvessel density (LMVD), and the expressions
of VEGF-C, VEGFR3, LYVE-1, representing the potential
role of ANRIL as a therapeutic target in colorectal cancer
(123). In addition, a lncRNA termed Lymph Node Metastasis
Associated Transcript 1 (LNMAT1), upregulated in lymph
node-positive bladder cancer and associated with lymph node
metastasis and prognosis, could epigenetically activate CCL2
expression and recruit macrophages into the tumor, which
promoted lymphangiogenesis via VEGF-C secretion. LNMAT1
may represent a potential therapeutic target for clinical
intervention in lymph node-metastatic bladder cancer (124).
Other lymphangiogenesis-related lncRNAs still need further
functional studies to verify their roles. For example, C21orF96
was overexpressed in positive lymph node and gastric cancer
tissues, and promoted tubular formation in gastric cancer cell
lines, while its pathogenesis was less well-characterized (125).
MALAT-1 (126), UCA1 (127), HOTTIP (128), and HOTAIR
(129) have all been proven to be associated with lymph
node metastasis in various cancers and might serve as novel
predictors, but well-designed studies are awaited to explain the
mechanisms underlying it for uncovering better therapeutic
strategies (Figure 3).

CONCLUSIONS AND FUTURE
PERSPECTIVES

In summary, ncRNAs, the dark matter of the genome, account
for >80% of total mature RNA and have many crucial,

but as yet, undefined roles in regulating lymphangiogenesis
concerning lymphatic developmental disorders, inflammatory
diseases, and cancer metastasis (130). The two major types of
regulatory ncRNAs, miRNAs, and lncRNAs, modulate inter-
related steps and mediators of lymphangiogenesis, therefore
exert their influence on lymphatic developmental disorders,
inflammatory diseases or cancer metastasis, if not all of
them. The identification of key pro-lymphangiogenic and anti-
lymphangiogenic ncRNAs is currently the aim of investigation
and will underpin the generation of novel therapeutic targets,
as well as potential targets on diagnosis, prognosis and response
prediction (Table 1).

The clinical potential function of ncRNAs as new targets
has been carried out. For example, antisense oligonucleotide
therapy can be applied to correct aberrant splicing (131,
132); via replacing or inhibiting ncRNAs especially miRNAs,
affecting levels or functions of ncRNAs (133). Loss of
MALAT1 with antisense oligonucleotide provided a potential
therapeutic approach to prevent lung cancer metastasis via
regulating gene expression, but not alternative splicing (134,
135). Though breakthroughs in targeted therapy have involved
ncRNAs, major challenges exist with limited examples and
acquired resistance.

Lymphangiogenesis has the potential to become the
therapeutic target (44), since lymphatic vessels are mostly
quiescent in adults and LEC identity is more plastic during
adulthood than during embryo. However, some problems still
need to be addressed. Interfering with tumor lymphangiogenesis
can decrease or prevent lymphatic metastasis through blocking
lymphatic drainage, while it may also lead to tissue fluid
accumulation and cause lymphedema. Is there a target to
solve both the metastasis and lymphedema? Furthermore,
in a radical operation that resects primary or metastatic
tumor, concurrent anti-lymphangiogenesis therapy could
postpone wound healing, as lymphangiogenesis does good
to inflammation in some conditions (136). That necessitates
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TABLE 1 | ncRNAs that mediate lymphangiogenesis in lymphatic development, inflammation, and cancer metastasis.

ncRNAs Micro-environment Lymphangiogenetic function Mechanisms of action References

miR-181a Lymphatic development Anti-lymphangiogenesis Inhibits PROX1 (44)

miR-31 Anti-lymphangiogenesis Inhibits PROX1, FOXC2, and RAMP2 (45)

miR-182 Pro-lymphangiogenesis Induced by JunB and inhibits FoxO1 (49)

miR-126a Pro-lymphangiogenesis Cooperated with VEGF-C/FLT4 signaling and enhances CXCL12a (50–52)

miR-1236 Inflammation Anti-lymphangiogenesis Induced by IL-1β and inhibits VEGFR-3 (65, 66)

miR-9 Pro-lymphangiogenesis Induced by TNF-α and increases VEGFR-3 (67)

miR-466 Anti-lymphangiogenesis Inhibits PROX1 (70)

miR-184 Anti-lymphangiogenesis Needs further investigation (69)

miR-199a/b-5p Anti-lymphangiogenesis Inhibits DDR1 (68)

miR-132 Pro-lymphangiogenesis Inhibits Smad-7 and activates TGF-β/Smad signaling (71)

cZNF609 Pro-lymphangiogenesis Elevates heparanase by sponging miR-184 (72)

miR-128 NSCLC Anti-lymphangiogenesis Inhibits VEGF-C directly (94)

miR-206 Pancreatic adenocarcinoma Anti-lymphangiogenesis Inhibits VEGF-C indirectly (95)

miR-381 Chondrosarcoma Anti-lymphangiogenesis Inhibits VEGF-C directly (99)

miR-507 Chondrosarcoma Anti-lymphangiogenesis Inhibits VEGF-C directly (98)

miR-27b Chondrosarcoma Anti-lymphangiogenesis Inhibits VEGF-C directly (97)

miR-624-3p Chondrosarcoma Anti-lymphangiogenesis Inhibits VEGF-C directly (96)

miR-186 Chondrosarcoma Anti-lymphangiogenesis Inhibits VEGF-C directly (100)

miR-300 OSCC Anti-lymphangiogenesis Suppressed by WISP-1 and decreases VEGF-C expression (101)

miR-195-3p OSCC Anti-lymphangiogenesis Suppressed by CCL4 and decreases VEGF-C expression (102)

miR-126 OSCC Anti-lymphangiogenesis Inhibits VEGF-A (104)

miR-486-5p Colorectal cancer Anti-lymphangiogenesis Inhibits NRP2 directly (105)

miR-93 Malignant pleural effusion Anti-lymphangiogenesis Inhibits angiopoietin2 directly (106)

miR-7 Gastric cancer Pro-lymphangiogenesis Promotes VEGF-C expression (107)

miR-548k ESCC Pro-lymphangiogenesis Promotes VEGF-C secretion (108)

miR-27a Colon cancer Pro-lymphangiogenesis Inhibits SMAD4 (109)

miR-221-3p CSCC Pro-lymphangiogenesis Inhibits VASH1 (110)

ANRIL Colorectal cancer Pro-lymphangiogenesis Correlates with increased VEGF-C, VEGFR-3, LYVE-1 (123)

LNMAT1 Bladder cancer Pro-lymphangiogenesis Increases CCL2 and recruits macrophage to secret VEGF-C (124)

C21orF96 Gastric cancer Pro-lymphangiogenesis Needs further investigation (125)

ncRNA, noncoding RNA; NSCLC, non-small cell lung cancer; OSCC, oral squamous cell carcinoma; ESCC, esophageal squamous cell carcinoma; CSCC, cervical squamous cell

carcinoma; PROX1, Prospero homeobox 1; FOXC2, Forkhead box C2; VEGFR-3, vascular endothelial growth factor receptor-3; VEGF-A, vascular endothelial growth factor A; VEGF-C,

vascular endothelial growth factor C; DDR1, Discoidin domain receptor 1; NRP2, Neuropilin 2; Flt4, Fms-related tyrosine kinase 4; CXCL12a, Chemokine (C-X-C motif) ligand 12a;

FoxO1, Forkhead box O1; LYVE-1, Lymphatic vessel endothelial hyaluronan receptor 1; WISP-1, WNT1-inducible signaling pathway protein-1; ANRIL, antisense non-coding RNA in the

INK4 locus; LNMAT1, Lymph Node Metastasis Associated Transcript 1; C21orF96, Chromosome 21 open reading frame 96.

the identification of tumor lymphatics-specific markers.
Recently, therapies aimed at blocking the VEGF-C/VEGF-
D/VEGFR-3 signaling axis have entered clinical trials in
some types of tumors, while these could not block metastasis
completely (137, 138). Olmeda et al. have reported that tumors
actually could induce lymphangiogenesis in distant organs
rather than just SLNs before tumor cells colonization by
secreting MIDKINE, and the molecular profiles and functions
of LECs in distant and local lymphatic vessels might vary
depending on which tissue they were in Olmeda et al. (139).
As ncRNAs also have tissue-specificity expressions, their
serving as a target to orchestrate lymphangiogenesis, even
in more than one pathological conditions when required, is
worth validation.
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