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Re-directing T cells via chimeric antigen receptors (CARs) was first tested in HIV-infected

individuals with limited success, but these pioneering studies laid the groundwork for the

clinically successful CD19 CARs that were recently FDA approved. Now there is great

interest in revisiting the concept of using CAR-expressing T cells as part of a strategy

to cure HIV. Many lessons have been learned on how to best engineer T cells to cure

cancer, but not all of these lessons apply when developing CARs to treat and cure HIV.

This mini reviewwill focus on how early CAR T cell studies in HIV paved the way for cancer

CAR T cell therapy and how progress in cancer CAR therapy has and will continue to

be instructive for the development of HIV CAR T cell therapy. Additionally, the unique

challenges that must be overcome to develop a successful HIV CAR T cell therapy will

be highlighted.

Keywords: T cell, lentiviral (LV) vector, immune escape and surveillance, clinical trials, immune privilege

HOW INITIAL HIV STUDIES PAVED THE WAY FOR SUCCESSFUL
CD19-DIRECTED CAR THERAPY

From a T cell perspective, controlling HIV replication and cancer growth share many of the
same challenges: antigen escape, antigen persistence resulting in T cell exhaustion, and active
mechanisms employed by both HIV and tumors to avoid T cell recognition and elimination. Thus,
the use of CARs to redirect T cells toward both HIV and cancer as a means to bolster T cell
control of these maladies was an attractive concept, which led to the preclinical studies using both
HIV and cancer models. In the 1990s when antiretroviral therapy (ART) was in its infancy and
not yet able to provide durable control of HIV replication, the rationale to treat HIV infection
with CAR T cell therapy advanced more rapidly, and in this setting, the first CAR T cell trials
were performed. These studies tested the ability of T cells expressing a major histocompatibility
complex (MHC)-unrestricted chimeric receptor consisting of CD4, as the natural ligand of the
HIV Envelope (Env) glycoprotein, and the CD3 zeta (ζ) chain (1) to suppress viral replication in
HIV–infected individuals (2–4). While clinical success was not achieved with these early efforts
in the just-emerging CAR T cell field, these efforts were not a “failure,” but in fact, successfully
laid fundamental groundwork that enabled success using CAR T cells to treat CD19-expressing
tumors. Several key observations and discoveries foundational to the overall field of CAR T cell
therapy were made during the clinical investigation of CD4-ζ CAR T cells. For one, the field
gained an appreciation that a combination of CAR-modified CD4 and CD8T cells, rather than
purified CD8T cells alone, resulted in a marked improvement in CAR T cell persistence (3).
This was ultimately confirmed by demonstration of >10 years of durable CD4-ζ CAR T cell
detection in treated subjects (5). Additionally, these early studies demonstrated that rapid and
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reproducible CAR T cell manufacturing could be achieved both
from uninfected and viremic HIV-infected subjects following 10-
day culture incorporating T cell co-stimulation with anti-CD3
and anti-CD28 immuno-magnetic beads. This manufacturing
process resulted in improved functional properties of CD4-ζCAR
T cells as well as stable and durable in vivo persistence (3–5).
Moreover, evidence in randomized trials suggested modest anti-
viral activity in HIV-infected subjects through demonstration of
trends in reduction of blood- and gut-associated HIV reservoirs,
and a reduction in transient viral rebound in plasma (or “blips”)
in aviremic subjects (2, 4). Finally, these studies demonstrated
a lack of immunogenicity of the fully human CD4-ζ construct
and an absence of depletion of MHC class II expressing cells,
suggesting that CD4-MHC class II interaction was not sufficient
to trigger CAR activity. Of note, these early trials with CD4-
ζ CAR T cells were performed with the first generation CAR
constructs using gamma-retroviral vectors and including only the
CD3-ζ cytoplasmic domain without the benefit of co-stimulatory
molecules, such as CD28 or 4-1BB, included in successful modern
CAR T cell trials. Additionally, these early HIV-specific CAR
T cells were not protected from HIV infection, a risk that
is further exacerbate by using CD4 as a retargeting domain.
Recently, a CD4-based CAR that was re-engineered (see details
below) to incorporate lessons learned from successful cancer
targeting CARs (6), was shown to confer greater antiviral activity
than widely-investigated broadly neutralizing antibody (BNAb)
based CARs. This CAR coupled with agents to protect the
CAR from HIV infection (7–10) has recently entered the clinic
(NCT03617198) to determine whether these changes augment
HIV CAR T cell activity and provide some durable control of
HIV replication and/or reduce the latent reservoir. The evolution
of CAR design is summarized in Table 1.

CANCER AND HIV: SHARED CHALLENGES
AND OPPORTUNITIES

Persistent Antigen and Exhaustion
Persistence of antigen at high levels drives exhaustion of T
cells, which limits the functional properties of T cells and is
characterized by high expression of immune checkpoint (IC)
molecules, such as programmed death-1 (PD-1), and cytotoxic T-
lymphocyte-associated antigen 4 (CTLA-4), ultimately hindering
clearance of tumors and chronic infections (13–16). An
advantage of CAR T cell therapy is that new, fully functional T
cells can be redirected toward HIV or tumor antigens. Once re-
infused, however, these CAR T cells are susceptible to becoming
exhausted if they are unable to clear the targeted antigen in
a timely manner. Thus, the reversal or prevention of T cell
exhaustion may represent a mechanism whereby dysregulated
immunity is prevented, allowing CAR T cells to have a longer
therapeutic window to control either HIV replication or tumor
cell growth.

Antibodies targeting ICs (e.g., PD-1, PD-L1 or programmed
death-ligand 1, and CTLA-4) have shown clinical responses in
multiple tumor types, including melanoma, renal cell carcinoma,
non-small cell lung cancer (17), and bladder cancer (18).

So far, there are six U.S. FDA-approved immune checkpoint
inhibitors (ipilimumab, nivolumab, pembrolizumab, avelumab,
atezolizumab, and durvalumab) and their objective response
rates have ranged from 27% in melanoma patients, to 30%
in non-small cell lung cancer patients, and 63% in Kaposi
sarcoma patients (19). However, there have been significant
immune-related toxicities, including onset of type 1 diabetes,
colitis, and dermatological issues (20) that may represent an
acceptable risk/benefit to advanced cancer patients, but may
be unacceptable to HIV-infected individuals whose viral load
is well-controlled by ART. Several clinical trials are currently
underway to explore the effect of anti-PD-1 based therapies in
HIV-infected individuals who also have tumors known to be
responsive to PD-1 blockade (NCT03367754, NCT02408861)
(19) and one trial is treating non-tumor bearing HIV-infected
individuals (NCT03787095). It will be interesting to see if and,
if so to what extent, anti- PD-1 therapies can re-invigorate the
HIV-1 specific immune response and whether side effects of this
anti-PD-1 therapy in this otherwise healthy population confer an
overall benefit/risk sufficient to permit wider exploration in HIV
Cure studies.

Furthermore, some studies show that PD-1 also contributes
to the establishment and maintenance of HIV latency, so
checkpoint blockade may be a promising approach to reverse
latency (21). In order for the remaining hidden pool of virus to
become recognized by HIV–specific T cells, it must be reactivated
first and this could be accomplished by various latency reversing
agents (LRAs) (e.g., histone deacetylase inhibitors (HDACis)
and protein kinase C class drugs) (22). IC blockades could
also function to reverse HIV latency through limiting inhibitory
signals sent from IC molecules into cells harboring latent HIV.
CTLA-4 blockade results in significant increases in plasma
viremia and T cell activation (23). Thus, the combination of
IC blockade coupled with HIV CAR T cell therapy may be an
effective “shock and kill” (24) strategy.

If systemic checkpoint inhibitor approaches prove too toxic
for routine use in HIV-infected individuals, specific targeting of
checkpoint genes within HIV-specific CAR T cells via clustered
regularly interspaced short palindromic repeats (CRISPR) or
small hairpin RNA (shRNA) technologies may prove an effective
and safe way to make HIV-specific CAR T cells exhaustion
resistant because only the HIV CAR T cells will have their
checkpoint genes disabled (25, 26). Here, cancer-based therapies
are paving the way for HIV-specific therapies. A clinical trial
using a CRISPR-based approach to disable PD-1 is currently
underway (NCT03399448) to determine if this improves the anti-
tumor efficacy of engineered New York esophageal squamous cell
carcinoma 1 (NY-ESO-1), a cancer-testis antigen expressed in a
wide range of tumor types -targeted T cells. If successful, this trial
could establish sufficient safety and feasibility to warrant coupling
HIV CARs with PD-1 CRISPRs. Other immune checkpoint
inhibitors, such as those targeting T-cell immunoglobulin
andmucin-domain containing-3 (Tim-3), lymphocyte-activation
gene 3 (LAG-3), and T-cell immunoreceptor with Ig and ITIM
domains (TIGIT), may also help enhance anti-HIV CAR T cell
therapy by overcoming T cell exhaustion, possibly with a more
acceptable safety profile (27–30).
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TABLE 1 | Evolution of CARs used in HIV and cancer cell and gene therapy.

Component First generation

HIV CARs (11)

CD19 CARs that led to

first FDA approval (12)

Current

HIV CARs being tested in

NCT03617198 (6)

Functional impact

Viral vector γ Retrovirus (MMLV-based) Lentivirus

(HIV-based)

Lentivirus

(HIV-based)

Safety, sustained expression

Promoter PGK EF1α EF1α Higher expression (MFI), sustained

expression

Hinge None CD8α CD8α Flexibility

Transmembrane CD4 CD8α CD8α Helps prevent infection, dimerization to

promote activation

Signaling

motifs

CD3ζ CD3ζ, 4-1BB CD3ζ, 4-1BB Improved in vivo expansion, survival, and

persistence

Extracellular domain CD4 EC domains scFv domains CD4 EC domains No immunogenicity or off target

recognition. HIV’s ability to escape will

likely be limited

Antigen Escape
Antigen escape and efforts to limit T cell recognition of targeted
cells are major hurdles for effective T cell-based HIV and cancer
control (13). Most common mechanisms of antigen escape in
cancers are (1) the immune selection of cancer cells, which
lack or mutate immunogenic tumor antigens or lose expression
of the antigens targeted by CAR T cells, (2) the acquisition
of defects or deficiencies in antigen presentation [e.g., loss
of major histocompatibility (MHC) expression], or (3) deficits
of antigen processing machinery (31–33). Multiple compelling
studies suggest that aberrant signal transducer and activator of
transcription 3 (STAT3) signaling plays a key role in facilitating
tumor escape from immune detection by impairing antigen
presentation and reducing production of immunostimulatory
molecules (34). Thus, STAT3 inhibition in concert with other
immunostimulatory agents, such as toll-like receptor (TLR)
3, TLR7, and TLR8 agonists like stimulator of interferon
genes (STING) or retinoic acid inducible gene (RIG)-I, could
provide promising combination immunotherapeutic strategies.
Additionally, a variety of CD19 mutations and alternative
splicing have been observed with development of acquired
resistance of acute lymphocytic leukemia (ALL) to CD19 targeted
CAR T cells (35). In this regard, CARs targeting distinct motifs
on the tumor surface may be an effective strategy to prevent
resistance through tumor escape. For example, Ruella et al.
demonstrated that the combination of CD123-targeted and
CD19-targeted CAR T cells prevented relapses caused by antigen
loss in preclinical models (36). Another study used bispecific
CARs that targeted both CD19 and CD20 in order to minimize
antigen escape from CD19-negative leukemia. Those bispecific
CAR T cells were able to eradicate heterogeneous populations of
leukemic cells in NSG mice (37).

In the case of HIV, the virus has evolved features to escape
from immune monitoring with quick selection for cytotoxic
T lymphocytes (CTL) escape mutations prior to antiretroviral
therapy (ART) due to an error prone reverse transcriptase (10).
Additionally, the HIV-1 negative regulatory factor (Nef) protein
modulates expression of MHC class I, CD28, and other proteins
involved in immune recognition to evade CTLs (38–40). As
a result, recent efforts have focused on introducing a potent

engineered immune response designed to overcomeHIV’s escape
mechanisms instead of solely relying on the endogenous immune
response to control HIV replication in the absence of ART (41–
43). One advantage of CARs to target HIV is that HIV Env
expression on the cell surface is not affected by Nef; thus, CAR T
cells may recognize HIV-infected cells better than natural HIV-
specific T cells. HIV can rapidly escape from a single BNAb
(44–46), and will likely escape from a CAR that uses a BNAb
as its targeting domain, though those targeting the CD4 binding
site seem to be more resistant to escape (47). However, like in
cancer, bi- or multi-specific HIV CARs have been constructed
and have demonstrated superior efficacy against several HIV-1
primary isolates in vitro, warranting further in vivo investigation
(8, 10, 48, 49). Moreover, it is not clear whether use of BNAb
is advantageous as a means to redirect T cells to HIV as
BNAb binding relative to non-BNAb binding promotes Env
internalization (50). Thus, in both HIV and cancer, loss of
target recognition by CAR T cells via antigen escape is an issue,
but through simultaneous targeting of multiple antigens or the
targeting of biologically important functions such as HIV binding
to CD4, this issue seems to be solvable.

Immune-Privileged Sites
Immune privileged sites are anatomical regions (CNS, testes, and
eyes) in which the immune response is purposely attenuated,
usually to protect sensitive tissue from immune-related, off-target
damage. These immune sanctuaries are often used by HIV and
some tumors to hide from the immune attack. To overcome
these issues, recent preclinical studies have shown the antitumor
efficacy and safety of intracranial administration of EGFRvIII,
HER2, and IL13Rα2 redirected CAR T/NK cells. Brown et al.
described a patient who received multiple infusions of IL13Rα2-
CAR T cells over 220 days via infusions to the resected tumor
cavity and the ventricular system (51, 52).

Immune privilege coupled with HIV latency is an even more
daunting problem for T cell-based therapies targeting HIV.
Recent data have highlighted the fact that the >99% of all
HIV-infected CD4+ T cells are found outside the vasculature
within secondary lymphoid organs (SLOs), gut, brain, lung, and
other tissues (53). Immunologic clearance of these infected cells
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is thought to largely involve cytotoxic CD8+ T cells, specifically
CD8+T cells with a fully differentiated “CTL” phenotype (CCR7-
CD62L-CD27-CD45RA+) (54–59). CTLs, however, do not bear
the markers (CCR7 and CD62L) necessary to enter lymphoid
tissue (60–63). Betts and colleagues recently demonstrated that
peripheral blood CTLs are rarely found in HIV-infected lymph
nodes, and instead lymph nodes are populated by HIV-specific
CD8+ T cells with very limited cytotoxic function (64, 65).
In addition, it has been demonstrated that intestinal mucosal
tissue is similarly populated with CD8+ T cells that have
limited cytotoxic function (66). HIV-infected CD4+ T follicular
helper cells (TFH cells) in B cell follicles of lymphoid tissue
are a major compartment for persistent virus replication during
combination ART (cART) (67–69). Even though virus-specific
CTLs have been detected in lymph nodes, they are largely absent
from the B cell follicles because they lack expression of CXC-
chemokine receptor 5 (CXCR5), which is responsible for the
trafficking of cells into the B cell zone along a CXC-chemokine
ligand 13 (CXCL13) concentration gradient (70, 71). Therefore,
the lack of CXCR5 expression on virus-specific CTLs is one
mechanism that promotes the persistence of infected CD4+ TFH

cells within an immune-privileged site (72). On the other hand,
increasing evidence suggests the existence of tissue-resident
macrophages as HIV-1 reservoirs (73, 74). Allers et al. found that
macrophages were significantly enriched in the gut of untreated
HIV patients (75). This also corresponds with a decrease in blood
monocytes and increased expression of gut homing receptors
(e.g., chemokine receptor CCR9 and integrin α4β7) on those
monocytes, suggesting that blood monocytes may be a major
source of macrophages that infiltrate gut mucosa. It has been
reported that α4β7 is able to bind HIV-1 Env protein gp120 and
is 3-fold larger than CD4 receptor, allowing it to capture HIV
efficiently (76). Lastly, it is unclear whether engineered T cells
will be able to transverse the blood brain barrier in HIV-infected
individuals in order to target the HIV reservoir hiding in the
CNS (77).

Taken together, there are at least three major issues facing
HIV CAR T cells: (1) Will the latent reservoir of HIV-infected
cells express sufficient levels of the target antigen (e.g., HIV
Env) to drive CAR T cell recognition after a latency reversal
agent is used? (2) Will the HIV CAR T cell be able to traffic
to the site where the HIV-infected cell is hiding? and (3) if it is
expressing antigen and the HIV CAR T cell is able to recognize
the infected cell, will the CART cell have the necessarymachinery
(perforin and granzyme) that may be lost as part of the T cell
exhaustion program to kill the HIV-infected cell and eliminate
the latent reservoir?

CANCER AND HIV: UNIQUE CHALLENGES
AND OPPORTUNITIES

Cancer CAR T Cells Are Infused When
Antigen Level Is High; HIV CAR T Cells Are
Infused When Antigen Level Is Low
Unless employed to prevent tumor relapse or treat minimal
residual disease, cancer-specific CAR T cells are generally infused
when there is abundant target antigen available. CAR T cells

that quickly recognize their target have an engraftment advantage
(78, 79). Moreover, CAR T cell recognition and killing of target
cells can result in massive expansion of CAR T cells. In one
celebrated case, a single CAR T cell whose vector integrated into
and disrupted the function of the Tetmethylcytosine dioxygenase
2 (Tet2) gene preferentially expanded to>90% of all of the CART
cells within the body and this clone was able to maintain durable
control of the targeted leukemia (80), indicating that CAR T
cells have massive expansion potential. Thus, for individuals with
established tumors, it may be possible to infuse a small number
of well-engineered T cells and let the body serve as the bioreactor
to generate enough T cells to eradicate the targeted tumor.
However, CAR T cells that enter a body without significant target
antigen may massively contract with a small subset becoming
memory T cells, similar to what happens in a natural T cell
response once antigen is cleared. Initial studies (NCT03617198)
propose to infuse HIV CAR T cells in individuals whose ART
has fully suppressed viral replication. It is unclear how well
these adoptively transferred T cells will engraft in the absence
of high levels of target antigen; however, it is reassuring that
first generation CAR T cells targeting CD4-ζ demonstrated brisk
expansion and prolonged persistence following infusion into
aviremic patients effectively managed with ART therapy (2). For
approaches that attempt to block viral rebound once ART is
removed, there needs to be a sufficient quantity of T cells present
that are widely distributed throughout the body to recognize
the vast majority of cells expressing HIV Env as soon as they
emerge. Thus, strategies such as infusion of very high numbers
of T cells or vaccination approaches that maintain high levels of
HIV-specific CAR T cells in the presence of minimal antigen may
be required for HIV-specific CAR T cells to be used as part an
HIV cure strategy (68).

HIV Can Be Specifically Targeted, but HIV
Can Target the CAR T Cells
The search for a CAR target that uniquely recognizes a tumor
has proven very challenging. Currently, targets fall into two
categories: (1) those with acceptable on-target/off-tumor toxicity,
i.e., loss of “expendable” tissue such as B cells in the case of
CART-19 therapies or (2) targets highly expressed on tumors
and weakly expressed on a limited set of healthy cells, which
may allow the CAR T cells to preferentially kill tumor with
minimal effects on healthy cells. On-target/off-tumor recognition
of CAR T cells has been observed in a variety of organ systems,
including gastrointestinal, hematologic, and pulmonary (81). A
fatal example of on target/off tumor CAR T cell recognition was
observed with the cancer-associated antigen HER-2/neu. Rapid
respiratory failure, multi-organ dysfunction, and subsequent
death was attributed to reactivity against pulmonary tissue
expression of HER-2/neu (82). Fortunately, for HIV CAR T cell
therapy, HIV is non-self and thus highly specific agents can be
developed that are unlikely to cross-react with human tissue.
However, while HIV can be uniquely targeted, there are some
challenges: (1) only the HIV Env protein is expressed on the cell
surface after latency reversal, making it the only target suitable
for CAR T cell therapy, and thus limiting some combinatorial
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approaches that may improve the efficacy and/or safety; (2)

extensive sequence diversity within Env making it challenging
to find antibody-based targeting agents that can bind all strains

of HIV. Consequently, the natural HIV ligand, CD4, is attractive

for use in a CAR construct, because HIV escape from binding to
CD4, would likely result in a virus with greatly reduced fitness;
(3) HIV Env expression levels are not fixed as in most cancer
targets. Rather, the number of HIV Env targets on the cell surface
increases over time as HIV replicates within the cell. However,
the best chance for HIV CAR T cells to control HIV replication
is to recognize and kill HIV-infected targets as soon as possible
after infection when there is minimal HIV Env on the cell surface
in order to limit the spread of the virus. Thus, CAR constructs
that can redirect T cells to recognize minute levels of HIV Env on

the cell surface will likely be very successful to limit HIV spread.

This race between the CAR T cell to recognize HIV and HIV’s

effort to infect new cells has no clear parallel to cancer CAR T
cells. It will therefore be interesting to see how this difference

impacts the ability of HIV CAR T cells to control HIV replication
in HIV-infected individuals.

Additionally, whereas tumors create hostile environments for
T cells to function (83), HIV actively infects and kills T cells.

While CD4 is a necessary binding receptor for most HIV strains,
CD8T cells can temporally express CD4 after T cell activation
permits making both CD4 and CD8 HIV-specific CAR T cells

susceptible to infection (6, 84, 85). For these reasons, HIV-
specific CAR T cells will need to be protected fromHIV infection.
A variety of strategies exist including chemokine co-receptor
disruption and fusion inhibitors that provide robust protection of
T cells from infection (41). The only challenge in these strategies
is the additional engineering that is required during the T cell
manufacturing process.

The Bar by Which Therapies Are Deemed
Successful Differs Considerably Between
HIV and Cancer Cell and Gene Therapy
Current cancer treatments such as chemotherapy, surgery,
and/or radiation, have significant side effects and in most cases
low rates of cure in advanced disease settings. CAR T therapies
are currently being explored in patients with advanced/refractory
malignancies and are FDA approved in chemotherapy refractory
leukemia and lymphoma. Clinical success and FDA approval
for Sipuleucel-T (Provenge), a dendritic cell-based therapeutic
vaccine, was based on ∼4 month increase in survival time for
prostate cancer patients. In contrast, ART is nearly universally
successful in compliant individuals with access to healthcare,
and those individuals whose virus remains undetected due to
ART have lifespans approaching those of non-HIV infected
individuals (86). Thus, both commercial and clinical success for
cancer therapies is measured by increasing mean survival time
whereas for HIV, only a cure, whether functional or sterilizing
(87, 88), is considered a success. Given that only two people
have been cured of HIV infection (89, 90), having a lifetime
cure as the only measure of success is quite a high bar. This
is why analytical treatment interruptions (ATIs) are crucial to
advance the HIV CAR T cell field. Here, individuals involved in
an IRB approved clinical trial voluntary stop taking ART after
receiving an experimental agent and the time to viral rebound is
measured.Most individuals reboundwithin 2–4weeks; therefore,
individuals who are part of an interventional study that is able
to limit the virus from replicating significantly longer provide
evidence that the experimental therapy is having some effect.
As the field matures and many approaches are studied, one
can then analyze ATI data to propose combination trials to
determine whether further delays in viral rebound occur. This

TABLE 2 | Synergy between HIV and cancer cell and gene therapy.

Advance Initial impact Impact on other disease

Bone marrow transplant Lifesaving approach to restore patient bone marrow after severe

cancer therapy that can induce graph v. tumor effects (96)

Part of the regimen of the individuals cured of HIV (89, 90)

Retroviral vectors The first time a genetically modified cell was infused into humans

was when neomycin was expressed by a retroviral vector in

cancer infiltrating T cells (97)

The clinical development of retroviral vectors in cancer paved the

way for the first CAR T cell trial in HIV (3, 4)

CD3/28 bead culture

system for T cell Stimulation

Development of a GMP compliant, robust method to expand

HIV-infected CD4T cells in the absence of ART due to CCR5

downregulation (98–101)

Used widely to manufacture T cells for cancer CAR therapy

including in the first indication that led to FDA approval

(12, 102–104) using SOPs initially developed for HIV

CAR T cell Fusion of CD4 with the CD3 zeta chain created the first CAR

construct tested in humans and demonstrated the long term

persistence of CAR T cells (5)

Manufacturing advances and safety data obtained from HIV CAR

T cell studies paved the way for development of the first FDA

approval of any gene therapy- and the first CAR T product

(12, 102, 105, 106)

Lentiviral vectors A lentiviral vector that expressed anti-sense HIV Env in transduced

T cells represented the first time lentiviral vectors were used in

humans (107)

Lentiviral vectors have preferred integration pattern (108),

improved expression (6), and are the preferred vector for cancer

CAR T cell therapy

Genome editing Infusion of CCR5 ZFN treated T cells into HIV-infected individuals

represented the first time genome edited T cells were employed

(109)

NYESO-1-specific T cells with disrupted TCR and PD-1 alleles

were recently infused into cancer patients (NCT03399448)

TCR enhanced affinity T cells expressing an affinity enhanced TCR specific for MAGE-A3

resulted in two treatment related deaths due to unexpected

off-target toxicity (110, 111)

A clinical trial using similar technology to redirect T cells to HIV was

stopped because the TCRs used did not undergo an improved

screen for off target recognition (NCT00991224)
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combinatorial, iterative approach is likely the best chance we have
to develop an effective and safe HIV Cure regimen. To date,
carefully monitored ATIs have not resulted in ART escape or
increased the viral reservoir (91–93), suggesting that there are
no long term adverse outcomes for individuals participating in
clinical trials that have ATIs (94).

OUTLOOK: RECENT LESSONS FROM
CANCER WILL INFORM THE NEXT
GENERATION OF HIV SPECIFIC–CARS

The development of cancer and HIV CAR T cell therapy
has a long, intertwined, and symbiotic relationship (95), and
this relationship is highlighted in Table 2. Exactly how did
success with cancer CAR T cell therapy inform the design and
implementation of HIV CAR T cell therapy? The initial CD4-ζ
CAR was housed in a murine gammaretroviral vector, contained
the CD4 transmembrane domain, lacked costimulatory domains,
and was driven by the phosphoglycerate kinase (PGK) promoter
(1, 112). In a side-by-side, step-by-step study, Leibman et al.
compared this first generationHIVCARwith the vector design of
CARs that achieved FDA approval for CD19-expressing tumors
(6). Surprisingly, the choice of vector delivery made a huge
difference in CAR expression and this translated into greater
control of HIV replication. Substituting the EF-1a promoter
resulted in both more stable and higher CD4 CAR expression.
Replacing the CD4 transmembrane domain with the CD8 hinge
region resulted in slightly less expression, but rendered the
HIV CAR T cells less susceptible to infection and improved
the overall efficacy of these T cells. Lastly, endowing the CD4
CAR with 4-1BB costimulation promoted both the survival
and expansion in vivo as previously observed in tumor models
(6, 113).

In a convergence of fields, much attention is now focused
on where a CAR vector integrates. Pioneering studies by
the Bushman lab demonstrated that HIV (and HIV-based
vectors) prefers to integrate in coding regions, whereas murine
gammaretroviruses target promoter regions (108, 114). More
recently, the site of HIV integration has been shown to play a role
in whether T cells will become part of the latent reservoir (115),
suggesting that the site of integration can impact a T cell’s long
term persistence and ability to homeostatically expand. Using
approaches to study howHIV integrates, Fraietta et al. uncovered
how a CD19 CAR vector fortuitously integrated into the TET2
locus, and this integration resulted in a central memory-like T
cell phenotype with an incredible ability to expand and function
(116). As genome engineering becomes more effective, safer and
less expensive (117), one can imagine that it will be possible to
specifically insert a CAR vector into a precise spot in the genome

to provide a functional advantage or survival benefit to either
HIV or cancer CAR T cells.

As mentioned in the beginning, the field of T cell
manufacturing was in its infancy when the first HIV CAR
T cell therapy trials were performed. The field has matured
considerably, but there is muchmore to learn in order to improve
how T cells are produced for use in adoptive T cell applications.
Cancer CAR T therapy has seen a strong correlation in how
well T cells expand ex vivo with their in vivo function and
persistence (118). Additionally, it has been demonstrated that
changes in T cell manufacturing such as expanding T cells in
the absence of human serum (119) improves the in vivo efficacy
of CAR T cells. Here, developers of cancer CAR and HIV CAR
can support each other as many of the developments in T cell
manufacturing are likely to benefit both fields. One possible
difference is that for HIV CAR T therapy large quantities of
HIV CAR T cells may be required to have enough effectors on
hand to prevent viral rebound after ART removal since there is
minimal antigen present to induce in vivo CAR T cell expansion.
In contrast, for cancer CAR T cell therapy, infusion of less CAR
T cells may be safer, less expensive and just as effective so the
manufacturing for these two therapies are reasonably similar now
but they may diverge considerably once we learn more about
what is required to obtain therapeutic responses. Lastly, HIV-
infected individuals are currently excluded from receiving CAR T
therapy in part because the commercial manufacturers have not
developed a process by which HIV-infected T cells can be GMP
manufactured. Perhaps one of the last gifts HIV CAR therapy can
give to cancer CAR therapy is to share the best practices by which
HIV CAR T cells are manufactured using T cells from HIV-
infected individuals so that HIV-infected individuals can benefit
from this life saving, cancer CAR T cell technology.
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