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Abstract: We compared patient cohorts selected for pharmacogenomic testing using a manual
method or automated algorithm in a university-based health insurance network. The medication
list was compiled from claims data during 4th quarter 2018. The manual method selected patients
by number of medications by the health system’s list of medications for pharmacogenomic testing.
The automated method used YouScript’s pharmacogenetic interaction probability (PIP) algorithm
to select patients based on the probability that testing would result in detection of one or more
clinically significant pharmacogenetic interactions. A total of 6916 patients were included. Patient
cohorts selected by each method differed substantially, including size (manual n = 218, automated
n = 286) and overlap (n = 41). The automated method was over twice as likely to identify patients
where testing may reveal a clinically significant pharmacogenetic interaction than the manual method
(62% vs. 29%, p < 0.0001). The manual method captured more patients with significant drug–drug
or multi-drug interactions (80.3% vs. 40.2%, respectively, p < 0.0001), higher average number of
significant drug interactions per patient (3.3 vs. 1.1, p < 0.0001), and higher average number of unique
medications per patient (9.8 vs. 7.4, p < 0.0001). It is possible to identify a cohort of patients who
would likely benefit from pharmacogenomic testing using manual or automated methods.

Keywords: pharmacogenetics; pharmacogenomic testing; Precision medicine; ambulatory care;
drug interactions

1. Introduction

Clinical information regarding the utility of pharmacogenomics (PGx) is widely avail-
able but the best way to identify patients who would benefit from testing is not well
defined [1–4]. Pharmacogenomic testing can predict medication-related adverse reactions,
indicate medication changes that can reduce such reactions, and identify the potential
for a poor response or treatment failure from a medication. Pharmacogenetic guidelines
for many drug–gene combinations are available from the Clinical Pharmacogenetics Im-
plementation Consortium (CPIC), providing support for the implementation of clinical
practice decisions based on pharmacogenomic test results [5–7]. As of September 2020,
CPIC has published 24 guidelines covering 62 different medications. In addition to CPIC,
pharmacogenetic guidance is present in hundreds of U.S. Food and Drug Administration
(FDA) approved medication package inserts and in other sources [8,9].
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Infrastructure resources and cost constraints may limit the ability of health systems
to perform pharmacogenomic testing on all patients [3,10–12]. Preemptively identifying
those patients who will benefit most from pharmacogenomic testing has been a goal of
healthcare institutions and the pharmacogenomics community, and ultimately may allow
for the most effective and efficient use of information technology, laboratory, and clinical
resources [13,14]. Though preemptive testing currently is performed by some health
systems, implementation is inconsistent. A recently published tutorial outlines the many
necessary steps required to transition from single gene testing when a medication is being
considered to a preemptive panel-based genotyping approach [15].

Methods used previously to identify patients for pharmacogenomic testing include
overall medication count, significant drug–drug interaction counts, and various spend
measures (e.g., ER visits or total healthcare spend) [3,8,10]. However, it is unknown if
these manual methods effectively identify the patient populations that will benefit most
from pharmacogenomic testing. Although additional validation is needed, the automated
algorithm was tested in a prospective randomized controlled trial of patients at high-risk
for readmission, where pharmacogenomic testing and YouScript algorithm information
were provided to pharmacists in the intervention arm. The automated algorithm in this
readmission study calculated a pharmacogenetic interaction probability (PIP) of 33.2% for
the intervention and 34.3% for the control group. The intervention arm showed a reduction
in the number of re-hospitalizations, ER visits, and composite number of re-hospitalization
+ ER visits at 60 days of 52% (p = 0.007), 42% (p = 0.045) and 48% (p = 0.01), respectively. An
85% reduction (p = 0.054) in mortality was also observed in the intervention group [16].

A limitation to more widespread implementation of preemptive pharmacogenomic
testing is uncertainty over which patients to test. It is now possible to use an algorithm
to determine which patients might benefit most from testing. The type and utility of the
algorithmic approach is dependent on the infrastructure and informatic tools available at a
given institution to create the algorithm, access the relevant data, and return usable results.
There are automated algorithms available that can analyze population-level data from an
institution or healthcare system, and rank the patients based on the likelihood that phar-
macogenomic testing will find clinically significant pharmacogenetic interactions [16–18].
Whether an automated method identifies the same or different patients as does a locally
developed manual identification method or is more useful in identifying relevant patients
than the manual identification method is unknown. Therefore, the objective of this project
was to compare two groups of patients identified as most likely to benefit from pharmacoge-
nomic testing by comparing the cohorts found using a locally developed manual algorithm
versus a commercially developed automated algorithm in a large university-based health
insurance program patient population.

2. Materials and Methods
2.1. Study Population

Prior to development of the patient cohort, the project was approved by the University
of Florida (UF) Health Sebastian Ferrero Office of Clinical Quality & Patient Safety, in
conjunction with the UF Institutional Review Board. Additionally, a data use agreement
was established between UF Health and YouScript that allowed for the sharing of data
between the two entities for the purposes of this study only.

The eligible patients were insured through GatorCare, a commercial employer- spon-
sored, self-funded medical and pharmacy benefit plan. Included patients were adults
≥18 years of age. Medical claims were extracted from the Blue Cross Blue Shield of Florida
and pharmacy claims data were extracted for the project from the Magellan Rx Management
System by the GatorCare program. Claims data included patient age, sex, number of ER
visits and associated costs, number of inpatient visits and associated costs, and pharmacy
claims data including prescription fill date, 11-digit NDCs, and additional prescribing and
prescription fill data.
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A total of 38,402 patients had prescription claims data between January 2017 and
December 2018. To identify patients most likely to be active in the health care system, the
patients were filtered to identify those with prescriptions filled in Q4 2018 (n = 20,365).
Further filtering was performed to exclude patients with no claims for the predefined list
of pharmacogenetic recommended medications (n = 13,441) and those without complete
demographic data (n = 8), resulting in an eligible cohort of 6,916 patients. Prescription data
was converted from 11-digit NDCs to RxCUI using the publicly available RxNorm API
from the National Library of Medicine [19]. NDCs that did not map to an RxCUI were
excluded. These primarily encompassed non-drug items such as lancets, test strips, and
certain OTCs.

2.2. Study Design

The objective of this study was to compare two different methodologies, a locally
developed manual method and a commercially developed automated algorithm, to identify
the patients most likely to benefit from pharmacogenomic testing. The patients in the
eligible cohort of 6916 patients were analyzed by the manual and automated method and
subjects identified up to a preset limit of ~250. The preset limit was set based on available
funds to provide genotyping. Identical pharmacy and medical claims data were used in
both methods. The manual method was conducted by members of the Precision Medicine
Program at UF Health in Gainesville, FL. The automated algorithm was completed by
YouScript, now Invitae, in Seattle, WA. The study was limited to the eight genes on the UF
Health pharmacogenomic test panel (Table 1). Both methods included medications affected
by these eight genes but differed in the criteria applied for determining relevant medications
for inclusion. The manual method used medications listed in columns C and D while the
automated method used medications listed in columns C and E. There are differences in
the number of drugs included by each method, the majority of included drugs (n = 34) are
included in both methods. The manual method includes an additional 9 medications while
the automated method included an additional 25 medications. The reason for this difference
is that the manual method medications are selected based on strength of evidence as well
as utilization of the medications in the clinics vs. the automated method medications drugs
which are selected by CPIC A or B evidence or actionable FDA labeling.

Table 1. Genes and medications included in the patient selection algorithms.

A. Gene B. Medication Class C. Both Methods D. Manual Only E. Automated Only

CYP2C19

antifungal voriconazole

antiplatelet cilostazol
clopidogrel

benzodiazepine clobazam

proton pump inhibitor

esomeprazole
dexlansoprazole

lansoprazole
omeprazole

pantoprazole
rabeprazole

SSRI
citalopram

escitalopram
sertraline

tricyclic antidepressant

amitriptyline
clomipramine

doxepin
imipramine

trimipramine
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Table 1. Cont.

A. Gene B. Medication Class C. Both Methods D. Manual Only E. Automated Only

CYP2D6

5-HT3 antagonist ondansetron

alpha adrenergic
blocker tamsulosin

alpha agonist clonidine

antiarrhythmic
flecainide
mexiletine
risperidone

anticholinergic benztropine

antiestrogen tamoxifen

antihistamine meclizine

antipsychotic
haloperidol
pimozide

propafenone

anxiolytic buspirone

atypical antipsychotic aripiprazole
brexpiprazole

beta blocker
metoprolol
nebivolol
timolol

CNS stimulant
lisdexamfetamine

methamphetamine

pain

codeine
hydrocodone

oxycodone
tramadol

phenothiazine promethazine

serotonin modulator vortioxetine

SNRI
atomoxetine
venlafaxine

SSRI
fluvoxamine
paroxetine

tricyclic antidepressant

amitriptyline
clomipramine
desipramine

doxepin
imipramine
nortriptyline

trimipramine

CYP2C9

angiotensin receptor
blocker azilsartan

anticoagulant warfarin

antiepileptic phenytoin

nonsteroidal
anti-inflammatory

celecoxib
mefenamic acid

sulfonylurea glimepiride

CYP3A5 immunosuppressant tacrolimus

CYP4F2 anticoagulant warfarin
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Table 1. Cont.

A. Gene B. Medication Class C. Both Methods D. Manual Only E. Automated Only

SLCO1B1 statin simvastatin

TPMT
immunosuppressant azathioprine

purine antagonist mercaptopurine
purine analog thioguanine

VKORC1 anticoagulant warfarin

Abbreviations: CNS, central nervous system; SNRI, serotonin-norepinephrine reuptake inhibitor; SSRI, selective
serotonin reuptake inhibitor. To compare the populations selected by the algorithms, two-sample t-tests were used
to test for differences in the following parameters: unique and average medication claim counts, drug interaction
count and severity, ER visit count, ER claim costs, inpatient visit count, and inpatient claim costs.

2.3. Manual Method

The manual method included medications in Table 1 columns C and D. These are med-
ications currently used for pharmacogenetic dosing guidance by the UF Health Precision
Medicine Program. This program provides evidence-based pharmacogenetic guidance on
drug and dose selection. The manual algorithm selected patients by ranking them based
on the number of unique medications on their profile (Table 1, columns C and D) during
Q4 2018. Ties were broken using the overall unique medication count. Any remaining ties
were broken randomly.

2.4. Automated Algorithm

The automated algorithm is a patented clinical decision support tool designed by
YouScript [20] that calculates the probability that pharmacogenomic testing will result in
the detection of one or more clinically significant pharmacogenetic interactions for that
patient (Pharmacogenomic Interaction Probability (PIP) score). The PIP score is similar to
other pre-test probability scores used to determine risk, such as the Diabetes Risk Score [21]
and has been utilized by payers and healthcare providers in numerous EHR-integrated
deployments to determine patients most likely to benefit from pharmacogenomic testing.

The PIP score is calculated using the patient’s current medication list, the prevalence
of certain pharmacokinetic and pharmacodynamic phenotypes in the North American pop-
ulation, and potential drug–gene interactions with a moderate or higher interaction level.
Although racial and ethnic variation is known to impact prevalence, race is an indistinct
construct not accurately recorded in medical records and therefore not incorporated in the
PIP score. Moderate interactions are the lowest drug–gene interaction level with clinically
actionable recommendations based on current published evidence (i.e., actionable FDA
labeling or CPIC level A or B). The medications that met this threshold at the time of the
study and thus were included in the automated method are listed in Table 1, columns C
and E.

The PIP score also accounts for phenoconversion. Phenoconversion is a phenomenon
where an individual’s genotype-predicted phenotype can be converted to another pheno-
type because of a drug interaction (e.g., conversion of genotypic normal metabolizers or
intermediate metabolizers into phenotypic poor metabolizers in the presence of a strong in-
hibitor), thereby potentially modifying their response to a medication [22]. The prevalence
of drug–gene interactions has been estimated at 14.7% and drug–drug–gene interactions at
19.2% in tested patients, highlighting the importance of simultaneously consideration of
both drug and gene interaction risk [23,24]. The YouScript PIP score usually includes 14
different high evidence genes. However, as the health system only tests for the eight genes
in Table 1, the YouScript algorithm was adjusted to include only those eight genes. This
change produced the modified PIP scores used in this study. The modified PIP score was
calculated for all patients, and the patients were ranked highest to lowest. Ties were broken
using number and severity of drug–drug interactions, then using unique medication count.

Patients were placed into four groupings based on PIP score: (1) high, PIP score greater
than 50%, which indicates that an actionable drug–gene or drug–drug–gene interaction is
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more likely to be detected than not, (2) low, the 1–25% and (3) moderate, the 26–50% groups
evenly split patients into less or more than 1 in 4 patients needed to test (NNT) to find
something actionable, respectively, and (4) none, the PIP score is 0%. A recent publication
using the same PIP groupings showed an increase in length of stay for hospitalized Medi-
care COVID 19 patients in higher PIP risk groups. Interestingly, Medicare risk adjustment
factor (RAF), a measure of health status, did not correlate [25].

A randomized controlled study showed that the PIP score for tested patients aligned
with gene interactions detected [17]. Descriptive Invitae internal data of over 30,000 patients
with medication regimen information provided at time of testing also supports PIP score
alignment with the number of substantial gene interactions found.

In addition to the PIP score, YouScript’s interaction algorithm calculated the count
and severity level (i.e., contraindicated, severe, moderate, minor, or minimal) of drug–
drug and multi-drug interactions for all patients. These counts did not include gene-
related interactions, as those interactions are not known until pharmacogenomic test results
are complete.

3. Results

The overall flow of patient and prescription claims data in the study is summarized in
Figure 1.
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Figure 1. Flow diagram of patients with pharmacy claims included in the study.

Patient demographics data are summarized in Table 2. Patients in the eligible cohort
were relatively young with an average age of 35 years and there was no significant difference
in age compared to the patients selected by the manual or automated method. Overall,
more females than males were included in both cohorts, in accordance with the distribution
of the eligible population.

Table 2. Patient demographics.

Eligible Patients
(n = 6916)

Manual Cohort
(n = 218)

Automated
Cohort (n = 286)

p-Value

Manual vs.
Eligible Cohort

Automated vs.
Eligible Cohort

Manual vs.
Automated

Age, years (mean, SD) 35 ± 17.4 33 ± 16.8 34 ± 17.5 0.09 0.31 0.57

Sex (n, %)
0.07 0.03 0.95Male 2647, 38% 97, 45% 128, 45%

Female 4269, 62% 121, 55% 158, 55%
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3.1. Manual Method Results

The manual method generated a cohort of 218 patients, which was the selection point
closest to the 250-patient goal. The 218 patients had claims for three or more medications in
the list. Using a cutoff of two or more medications identified a total of 1128 patients, which
exceeded the target of 250.

3.2. Automated Algorithm Results

The automated algorithm generated a cohort of 286 patients based on the inclusion
of patients with the highest PIP scores of 51% and above. A cohort size of 286 was the
natural selection point closest to the 250-patient goal in the PIP score results. As the PIP
score is a whole-number percentage, multiple patients may have the same PIP score based
on medication lists with similar probabilities. Patients in the selected cohort (n = 286) had a
mean PIP score of 61.6% with a range of 51–81%.

3.3. Comparison of Cohorts

Forty-one (19%) of patients were selected by both methods. These patients had both
medication claims for three or more medications and PIP scores in the high (>50%) range.
Figure 2a shows the PIP breakdown for patients from both methods. The majority of the
manual cohort had PIP scores in the low (1–25%) range (n = 95) followed by the moderate
(26–50%) range (n = 65). All automated method patients were in the high (>50%) range
(n = 286). Figure 2b shows the number of patients taking a medication included in the
manual medication list (Table 1, D. Manual Only). Most of the patients in the automated
cohort had claims for at least one medication on the medication list used in the manual
method (n = 263, 92%). A total of 126 (47%) patients had claims for one medication and 96
(36%) had claims for two medications.

Average unique medication counts were higher in the manual cohort (9.8 vs. 7.4,
p < 0.0001) (Table 3). Compared to patients identified by the manual method, the patients
identified by the automated method had significantly lower average drug interaction
counts (3.3 vs. 1.1, p < 0.0001) and a lower proportion of patients with at least one moderate-
or-higher severity drug interaction (80.3% vs. 40.2%, p < 0.0001). The manual method also
selected significantly higher average unique medication counts compared to the automated
method (9.8 vs. 7.4, p < 0.0001). Compared to the automated method, the manual method
selected more patients with ER (26.6% vs. 11.2%, p < 0.0001) or inpatient visits (19.3% vs.
6.6%, p < 0.0001). The average cost was significantly higher for ER visits (USD 558 vs. USD
253, p = 0.001) in the manual method but not for inpatient visits (USD 4,423 vs. USD 3,607,
p = 0.68) (Table 3).

Table 3. Comparison of selected cohorts.

Metric Manual Cohort
n = 218

Automated Cohort
n = 286 p Value

Average unique medication count per patient, mean ± SD 9.8 ± 4.1 7.4 ± 3.9 <0.0001
Drug interactions mean (moderate-or-higher severity), mean ± SD 3.3 ± 2.6 1.1 ± 1.9 <0.0001

Drug interactions (moderate-or-higher severity), % patients 80.3% 40.2% <0.0001
Average Pharmacogenetic Interaction Probability (PIP) score, % (range) 29% (0–81%) 62% (51–81%) <0.0001

At least one ER Visit Q4 2018, % patients 26.6% 11.2% <0.0001
ER visit claim cost, overall, mean ± SD USD 558 ± 1150 USD 253 ± 873 0.001

Inpatient visit(s) Q4 2018, % patients 19.3% 6.6% <0.0001
Inpatient claim cost, overall, mean ± SD USD 4423 ± 16,981 USD 3607 ± 27,006 0.68



J. Pers. Med. 2022, 12, 161 8 of 13J. Pers. Med. 2022, 12, x FOR PEER REVIEW 8 of 14 
 

 

 
(a) 

 
(b) 

Figure 2. (a) Comparison of automated pharmacogenetic interaction probability (PIP) in two co-
horts. (b) Comparison of manual PGx impacted medication count in two cohorts. 

Figure 2. (a) Comparison of automated pharmacogenetic interaction probability (PIP) in two cohorts.
(b) Comparison of manual PGx impacted medication count in two cohorts.

3.4. Medication Usage

In descending order, Figure 3 lists the total number of patients with a claim for an
included medication in Q4 2018. Metoprolol, ondansetron, and sertraline were the most
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frequently prescribed medications. A total of 73.3% of patients had at least one pharmacy
claim for at least one unique, included medication. A majority of patients (57%) had claims
for one, 13.1% had claims for two, 2.5% had claims for three, and fewer than 1% had claims
for four or more unique, included medications.
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4. Discussion

This study demonstrated the differences between a manual and an automated method
to select patients for pharmacogenomic testing in a university-based healthcare system.
The differences found between our two methods are important references for clinical
informatics consideration, especially when implementing preemptive pharmacogenomic
testing programs. To our knowledge, this is the first study to compare these two approaches.

The case has been made for preemptive pharmacogenomic testing for all patients as
greater than 99% of patients have been found to have one or more actionable pharmaco-
genetic variants [26,27]. A recent publication of almost half a million patients in the UK
biobank project showed that on average, patients had an atypical response to over 12 drugs
with CPIC guidance. This has the potential to impact one in 11 new prescriptions [24].
Even if preemptive testing is provided to all patients, operational or budgetary constraints
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may require some method for selecting patients most likely to benefit so limited resources
can be allocated.

The goal for both methods in this project was to identify patients for pharmacoge-
nomic testing who would benefit from genotype-guided medication management. The
primary characteristics considered in each method were very different from each other. Un-
surprisingly, the resulting chosen patient cohorts were significantly different, with minimal
overlap. In fact, among the 218 patients identified by the manual method and 286 by the
automated method, only 41 were identified by both methods. Other methods previously
used to select patients for pharmacogenomic testing have included overall medication
count, significant drug interaction counts, and various spend measures (e.g., ER visits
or total healthcare spend) [8–11]. Our project worked to improve upon these previously
used techniques by selection methodologies specifically focused on current medications
where pharmacogenomics may provide clinical improvements as well as targeting the
genes available at a specific site.

Both methods targeted patients where pharmacogenomic testing may result in clini-
cally actionable recommendations based on the patient’s current medications (e.g., FDA
labeling or CPIC level A or B). This was the primary approach for the automated method
and the number of medications included by the automated approach was much larger
than the manual approach. While the number of medications from the manual cohort list,
taken by the two cohorts, differed considerably they appear higher in the manual method
(Figure 2b). This is likely because the automated method included a much longer list of
medications than are accounted for in the manual count subset. Additionally, the manual
method treats all medications equally so would default to the highest number whereas the
automated method weights medications according to the likelihood that testing will reveal
an actionable gene-based interaction which varies by gene, what phenotypes have interac-
tions, and whether or not the patient is also taking an inhibitor or inducer. In addition, this
method considered both the population phenotype frequency and clinical actionability of
the drug–gene interactions into account, as well as including a larger range of medications.
Expanding the selection criteria to include these additional elements likely accounts for the
resulting patient identification with higher PIP scores. Given the complexities related to
phenotype probabilities, it would be difficult to include these elements in a manual method.

While the manual method correlated with higher rates of healthcare utilization, this
may be attributable to the higher medication count for that group. As the cost data came
from the same quarter (Q4 2018) as the medications, it is not surprising that patients with
more healthcare spending had higher medication counts. It is likely that the healthcare
event increased the medication count instead of vice versa. Recently discharged patients
often have more medications [28]. As expected, we did not see as strong of a cost correlation
with the automated method as PIP score is less strongly correlated to medication count.

Results may have been affected by the different medications included in each method.
Most medications with significant usage were used in both approaches with the exception
of warfarin and metoprolol. The automated method does not include warfarin because
dosing for patients already started on warfarin is commonly managed by a blood test that
reflects therapeutic levels, rather than management by pharmacogenomic results, unless
the patient is unstable. The primary benefit is typically seen in patients who complete phar-
macogenomic testing before they begin warfarin [29]. Thus, warfarin is not included in the
PIP score. This allows healthcare systems to focus limited testing dollars on other patients
who may benefit more. The manual method does not include metoprolol as there was no
CPIC published guideline at the time the project was ongoing. The automated method does
include metoprolol as there is a significant drug exposure change according to the FDA
product insert which states that “poor CYP2D6 metabolizers exhibit several-fold higher
plasma concentration of [metoprolol] than extensive metabolizers” [30]. Other publications
have shown that, to realize the full benefit of pharmacogenomic testing, identification
of testing candidates should be automated inside each health system’s EHR, providing
guidance when patients are testing candidates and alerting the clinician when there are
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relevant drug–gene interactions after testing. As prescription medication lists change regu-
larly, a static pharmacogenomic lab report is quickly outdated and does not provide the
benefits shown by real-time alerting [1]. A study comparing use of a bioinformatic tool to a
clinically established counseling process for medication reviews including pharmacoge-
nomic testing, found that the tool reduced patient review time from 3 to 6 h to 10 to 15 min.
Although there are costs involved to integrate and license automated tools, time savings
could potentially quickly recoup any investment needed. Matching pharmacogenomic
testing selection criteria to a specific site helps make patient selection more relevant for
that location. In this quality improvement project, we demonstrated that, even within the
gene panel that a site uses, medications from the site list may not contain all medications
that have clinically actionable drug gene interactions according to current guidelines, as
new evidence is published regularly. These additional medications, in combination with
phenotype probability calculations, significantly changed the makeup of the patient group
selected for testing.

This study was limited to investigating the differences in how two patient selection
methods ranked a single patient population. Testing results were not available to determine
the number of actual drug–gene interactions found by pharmacogenomic testing. Future
studies examining testing results will help to inform the scenarios in which one method
may be preferable for patient selection.

A limitation of our study was the use of retrospective claims data instead of medication
lists reconciled by a pharmacist. It is possible that certain patients who might have benefited
from testing were missed if they did not submit all medication claims to the insurance
carrier used in the study. However, the use of retrospective claims data did allow for cost
information that would have otherwise been lacking. Another limitation of our study
is the available North American phenotype prevalence data. This data is unfortunately
often heterogenous in terms of ethnicity. We anticipate results from in process large-scale
research studies will help improve this limitation.

A formal time study was not conducted as a part of this project. However, in general,
we predict that the automated method is faster, especially in large patient populations, as
the work is done programmatically. We also did not conduct error testing, which is another
potential pitfall for non-validated manual methods.

Our findings have several practical applications. We showed an efficient method to
select patients most likely to benefit from pharmacogenomic testing with clinical actionable
information directly applicable to their current care and medication list. Our selection
method differs from methods commonly used to choose pharmacogenomic testing can-
didates (i.e., prescription count, ER costs, and drug interaction counts). We showed the
feasibility of using site-customizable algorithms to tailor an automated approach to a local
site. Future research is warranted to evaluate the post-test benefits of each selection method
for both the patients and the healthcare system.

5. Conclusions

It is possible to identify a cohort of patients who would likely benefit from pharma-
cogenomic testing. Automated methods reduce the number needed to test for actionable
findings, but the method used to identify a specific cohort should be based on site-specific
genotype availability as well as program goals. The optimal approach for choosing which
patients should undergo pharmacogenomic testing is an ongoing discussion. Health
systems and insurers must balance testing patients currently taking multiple pharmacoge-
nomic medications with the longer-term value of predictive testing, which allows better
future medication decisions. Staying current with new and updated CPIC guidelines is
challenging for sites who build their own alerts and testing panels as pharmacy resources
are always limited. Automating tasks such as patient selection for pharmacogenomic test-
ing, can assist in solving these challenges, freeing up clinician time to focus on providing
clinical care.
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