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In order to produce effective antibodies, B cells undergo rapid
somatic hypermutation (SHM) and selection for binding affinity to
antigen via a process called affinity maturation. The similarities
between this process and evolution by natural selection have led
many groups to use phylogenetic methods to characterize the
development of immunological memory, vaccination, and other
processes that depend on affinity maturation. However, these
applications are limited by the fact that most phylogenetic models
are designed to be applied to individual lineages comprising
genetically diverse sequences, while B cell repertoires often consist
of hundreds to thousands of separate low-diversity lineages. Further,
several features of affinity maturation violate important assump-
tions in standard phylogenetic models. Here, we introduce a hierar-
chical phylogenetic framework that integrates information from all
lineages in a repertoire to more precisely estimate model parameters
while simultaneously incorporating the unique features of SHM. We
demonstrate the power of this repertoire-wide approach by charac-
terizing previously undescribed phenomena in affinity maturation.
First, we find evidence consistent with age-related changes in SHM
hot-spot targeting. Second, we identify a consistent relationship
between increased tree length and signs of increased negative
selection, apparent in the repertoires of recently vaccinated subjects
and those without any known recent infections or vaccinations. This
suggests that B cell lineages shift toward negative selection over
time as a general feature of affinity maturation. Our study provides
a framework for undertaking repertoire-wide phylogenetic testing
of SHM hypotheses and provides a means of characterizing dynam-
ics of mutation and selection during affinity maturation.
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B cell receptors (BCRs) are membrane-bound immunoglobu-
lins (Ig) expressed on the surfaces of B cells that bind to

antigen and may be released as antibodies to fight infection.
BCRs are generated through the shuffling of Ig gene segments by
V(D)J recombination and, if the cell expressing them is acti-
vated, by a second process of BCR modification called affinity
maturation (1). Affinity maturation consists of repeated rounds
of somatic hypermutation (SHM) of the BCR, cell proliferation,
and selection for antigen binding affinity (1). These processes give
rise to clonal lineages of B cells that each descend from a pro-
genitor cell, from which they differ predominately by point mu-
tations. The BCR sequence, and the nature of the mutations
introduced during affinity maturation, can be investigated in detail
using high-throughput next-generation BCR sequencing (2–4).
The fact that affinity maturation is a form of evolution by

natural selection suggests that methods from molecular evolu-
tionary biology, particularly phylogenetics, could have broad utility
in studying affinity maturation. This has stimulated the develop-
ment of methods of evolutionary sequence analysis designed spe-
cifically for BCR sequences, particularly phylogenetic approaches

(5–8). These methods have shown promise in elucidating infor-
mation about the adaptive immune response in humans, such as
the sequence of mutations that occur during antibody coevolution
with HIV (9) and the migration of B cells in multiple sclerosis (10).
There are a number of challenges in adapting phylogenetic tech-

niques to B cell clonal lineage analysis. Phylogenetic techniques are
typically used to analyze individual, genetically diverse B cell lineages
(9, 11). However, B cell repertoires are typically profiled by next-
generation sequencing and consist of many—potentially thou-
sands of—expanded clonal lineages, each of which may contain
only a few unique sequences (12, 13). In light of this, many analyses
have used nonphylogenetic summary statistics to characterize BCR
repertoires, such as the distribution of sequences per clone (14–
16). For example, 2 recent studies have used frequency-based
statistics (17) and a generalized McDonald–Kreitman test (18, 19)
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for characterizing B cell selection. Other nonphylogenetic ap-
proaches have been developed to study SHM biases (20) and sig-
natures of clonal selection (21) by representing B cell clonal
lineages using a single representative sequence. By explicitly mod-
eling shared ancestry among sequences within the same clone,
phylogenetic approaches offer a potentially more powerful means
of understanding SHM and affinity maturation by using the full set
of substitutions inferred to have occurred in a repertoire. However,
standard phylogenetic approaches are limited to single lineages
and give imprecise parameter estimates, except when applied to
unusually large or highly diverse B cell lineages (7). Even when
analyzing individual clonal lineages, the biology of affinity matu-
ration violates fundamental assumptions in most phylogenetic
substitution models, such as independent change at each nucleo-
tide site and time reversibility of substitution rates (22).
We propose here that it is possible to combine some of the

benefits of phylogenetic and summary statistic approaches of B
cell repertoire analysis by using hierarchical phylogenetic mod-
els. These approaches contain multiple levels of parameters,
some of which are shared among lineages, while others are es-
timated for each lineage individually (23). For example, Rodrigo
et al. (24) applied one such hierarchical phylogenetic approach
to a set of HIV sequences from infected patients in order to
jointly estimate both the virus substitution rate and the proportion
of individuals that did not respond to antiretroviral therapy.
However, previous applications of hierarchical phylogenetic mod-
els to virus genomes do not address the abovementioned model
assumptions that are violated by the biology of B cell affinity
maturation.
A hierarchical approach that is specifically tailored to B cell

sequence evolution has the potential to dramatically improve
accuracy of parameter estimation. Toward this end, we propose a
“repertoire-wide” phylogenetic framework, a hierarchical ap-
proach in which all parameters are constrained to be identical
among lineages within a repertoire. By assuming that B cell
lineages within a particular repertoire experience broadly similar
patterns of substitution (e.g., hot- and cold-spot sequence motifs
that experience altered mutation rates under SHM), a repertoire-
wide approach is able to share information across B cell lineages
and thereby take advantage of the genetic diversity of the entire
repertoire, despite the fact that each individual lineage within the
BCR repertoire data may exhibit low diversity. This repertoire-
wide phylogenetic framework is capable of characterizing entire B
cell repertoires by jointly estimating parameters and lineage tree
topologies for all lineages within a repertoire. We first introduce a
phylogenetic substitution model that accounts for both context-
sensitive mutation and changing codon frequencies during affin-
ity maturation and validate our repertoire-wide approach through
simulation. We then apply this framework to characterize the ef-
fects of aging on B cell repertoire development and B cell re-
sponses to influenza vaccination. We demonstrate that repertoire-
wide approaches can quantify variation in SHM features both
across individuals and within the same individual through time.
Our results reveal previously uncharacterized immunological
phenomena underlying aging and vaccination. We discover 1)
evidence of changes in SHM hot-/cold-spot mutation biases as-
sociated with age, 2) evidence of negative selection acting on
complementarity-determining regions (CDRs) associated with the
human immune response to influenza vaccination, and 3) a con-
sistent relationship between increased lineage tree length and
signatures of negative selection across our datasets.

Methods
A Nonstationary, Nonreversible Phylogenetic Substitution Model for B Cell
Evolution. The process of nucleotide change along a given phylogenetic
tree is modeled as a Markov process, such that the rate of transitioning into
any state at each instant in time is dependent only on the current state of the
model (11). Here, we characterize codon change in Ig sequences using the

HLP19 substitution model (SI Appendix, section S1), a 61- × 61-element
matrix (Q matrix) that describes the instantaneous rates of change between
all nonstop codons. These instantaneous rates are parameterized by the
nonsynonymous/synonymous mutation rate ratio (ω), transition/transversion
mutation rate ratio (κ), a vector of 61 nonstop codon frequencies (π), and a
vector of modified substitution rates h = (hWRC, hGYW . . ., h(a)) where each
value a is an SHM hot- or cold-spot motif, such as WRC (ref. 25; W = A/T, R =
A/G; only the underlined base experiences increased substitution).

Most phylogenetic substitution models make a salient approximation that
nucleotide or codon frequencies are constant over time at a stationary dis-
tribution (26). However, the codon composition of B cell sequences begins
substantially far away from equilibrium and changes over time (27), making
this assumption inappropriate. A previous model of affinity maturation,
HLP17 (7), attempted to address this problem by using maximum likelihood
(ML) to estimate codon frequencies. While this approach may be better than
empirical estimates of codon frequencies, at least in some instances, it more
than doubles the number of model parameters. In contrast, the HLP19 model
introduced here (SI Appendix, section S1) uses the predicted codon frequencies
at the midpoint of phylogeny in question. Overall, HLP19 has less than half the
number of free parameters as HLP17 and exhibits improved branch length
estimates, generally better estimates of certain substitution model parameters
such as ω (SI Appendix, section S3), and significantly improved run time and is
structurally more similar to other nonreversible substitution models (28, 29).

Repertoire-Wide Phylogenetic Models. Under standard ML phylogenetics (11),
a single multiple sequence alignment X is specified, and the goal is to find
the tree topology and branch lengths T, and the set of substitution pa-
rameters, that maximize the likelihood of X. For B cell lineage phylogenies,
the sequence alignment is supplemented with a predicted germline se-
quence G that acts as an outgroup and adds direction to the tree. In this
study we extend this approach by calculating the likelihood of the entire B
cell repertoire, which we define as the product of the tree likelihoods for
each of n lineages, using each lineage i’s tree topology (Ti), substitution
parameters (ωi, κi, hi), sequence data (Xi), and predicted germline sequence
(Gi) (Eq. 1). This approach therefore assumes that mutations in each lineage
are independent from each other:

Lrepertoire = ∏
n

i=1
LðTi ,ωi , κi ,hi jXi ,GiÞ . [1]

The goal of our phylogenetic repertoire analysis is to find the tree topologies,
branch lengths, and substitution parameters that maximize Eq. 1, whereas
the goal of typical ML phylogenetic analysis is to maximize individually each
phylogenetic likelihood on the right-hand side. In a repertoire-wide model,
parameters are constrained to be identical across lineages, allowing them to
be estimated at the repertoire level. For instance, we may estimate a
repertoire-wide transition/transversion rate ratio by constraining κ1 = κ2 = . . .

κn. Constraining parameters in this way will lower the overall likelihood of the
repertoire compared to optimizing parameters for each lineage individually
(because there will be fewer degrees of freedom) and will mask any true
variation among lineages but will decrease the number of parameters and
thereby reduce parameter estimation variance. For the analyses presented
here, we constrain all substitution parameters to be identical across lineages
within a repertoire.

B Cell Repertoire Datasets. We use repertoire-wide phylogenetic models to
characterize B cell repertoires in 2 previously published datasets obtained
from peripheral blood samples. The first dataset (Age) consists of samples
taken from 27 healthy individuals without any known recent infections or
vaccinations in 2 consecutive years (30). Subjects varied in age from 20 to
81 years old and both male and female subjects were included. Our second
dataset (Vaccine) consists of samples from 3 male donors aged 30 (subject
hu420139), 34 (420IV), and 55 (PGP1) years old at 10 time points: −8 d, −2 d,
−1 h, +1 h, +1 d, +3 d, +7 d, +14 d, and +28 d relative to seasonal influenza
vaccination (31). Each of these sequence datasets was produced from total
messenger RNA from unsorted peripheral blood mononuclear cells. Quality
control and data processing for both of these datasets is detailed in SI Ap-
pendix, section S1. Samples from each time point in the Vaccine dataset had
between 141 and 15,763 (mean 6,272.7) unique sequences in nonsingleton
clones (i.e., clones containing >1 unique sequence). Because of this large
variation and the computational complexity of our methods, the reper-
toires in the Vaccine dataset were subsampled to a depth of 3,000 sequences
in nonsingleton clones (SI Appendix, section S1). Sequence depth in the Age
dataset was more even, with between 370 and 2,065 (mean 1,126) unique
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sequences in nonsingleton clones, so the repertoires in the Age dataset were
not subsampled.

Phylogenetic Model Parameter and Topology Estimation. We used a single-
linkage hierarchical clustering approach, detailed in SI Appendix, section
S1, to assign sequences into clonal lineages, each of which was assumed
to descend from a single naïve B cell ancestor. Because we were not able to
reliably predict the junction regions of germline sequences (32), we removed
the CDR3 from all sequences analyzed. We then used the repertoire-wide
phylogenetic model described above to quantify effects of BCR mutation
and selection in the Age and Vaccine datasets.

Phylogenetic model parameters are an important source of information
about evolutionary dynamics. For example, the amino acid replacement vs.
silent mutation rate ratio (ω) can be used to distinguish positive and negative
selection (33), while the relative rate of transitions to transversions (κ) can be
informative about mutation biases. We first estimated ML tree topologies
and branch lengths for each B cell lineage using the GY94 (33, 34) substi-
tution model, in which single, shared ω and κ parameters were estimated for
each repertoire, and codon frequencies were set to their empirical fre-
quencies across all sequences within each repertoire. For computational ef-
ficiency, we used these estimated topologies to estimate branch lengths and
substitution parameters of the HLP19 model at the repertoire level; namely,
we estimated κ, ωFWR, and ωCDR [separate ω values for CDRs and framework
regions (FWRs)] and h values (altered relative mutation rate) for WRC, GYW,
WA, TW, SYC, and GRS hot- and cold-spot motifs (see SI Appendix, section S1
for details on these parameters).

Hypotheses concerning substitution model parameter estimates can be
tested in a phylogenetic framework using a likelihood ratio test (35). For
models that differ only by one free parameter, a P value of 0.05 corresponds
to a log-likelihood difference of 1.92 between the alternative (ML esti-
mated) and null (fixed value) model (35). The log-likelihood ratio test allows
estimation of 95% CIs for parameter estimates using profile likelihood
curves. Each point on a profile likelihood curve is created by calculating the
ML obtained when the parameter of interest is fixed to a particular value
and all other parameters are optimized. We used a straightforward binary
search approach to estimate the 95% CI either side of the ML estimate.

Dataset Simulation. As a means of validation, simulations (detailed in SI
Appendix, section S2) were performed to test 1) the performance of the
HLP19 model relative to the previous HLP17 and GY94 models (SI Appendix,
section S3) and 2) the effects of estimating parameters using a repertoire-
wide phylogenetic model compared to inference from individual lineage
trees (SI Appendix, section S4). To verify that the trends we observe in the
Age and Vaccine datasets are not simply the result of biases in our param-
eter estimation procedure, we performed simulations using prespecified
substitution parameters (κ = 2, ωFWR = 0.5, ωCDR = 0.7, hWRC = 4, hGYW = 6,
hWA = 4, hTW = 2, hSYC = −0.6, and hGRS = −0.6) and the same tree topologies
and branch lengths as the empirical trees from the Age and Vaccine data-
sets. We then repeated the analyses performed in each section on these
simulated datasets (SI Appendix, section S6). We further compared model
performance under simulations employing the S5F empirical model of SHM
motif mutability (20). Again, empirical tree topologies and branch lengths
were used during simulation (SI Appendix, section S7).

Results
Repertoire-Wide Phylogenetic Models Improve Parameter Estimation.
Phylogenetic substitution model parameters can be an important
source of information about the evolutionary dynamics of line-
ages; for instance, the amino acid replacement vs. silent mutation
rate ratio (ω) is used to characterize natural selection operating
on genetic sequences (33). The HLP19 model parameters are
informative about the process of B cell affinity maturation. The
model includes separate ω parameters for the FWRs and CDRs
(ωFWR and ωCDR), the transition/transversion rate ratio (κ), and a
set of altered substitution rates at SHM hot-/cold-spot motifs
(hWRC, hGYW, hWA, hTW, hSYC, and hGRS; nucleotides represented
using the International Union of Pure and Applied Chemistry
coding scheme, only underlined bases experience altered rates).
The small size of most B cell lineages poses a problem for

accurate estimation of phylogenetic model parameters for indi-
vidual B cell lineages. Namely, the size distributions of clonal
lineages within B cell repertoires, particularly those derived from
blood samples, typically follow a power-law distribution and are

dominated by many lineages that each carry only a few unique
sequences (12, 13). We confirmed this pattern using blood
sample-derived BCR repertoires from 27 healthy subjects (Age
dataset; ref. 30). Across these subjects 88 to 96% (mean: 92.3%)
of lineages comprised a single unique sequence, and between 98
and 99.8% (mean: 99.3%) of lineages contained <5 unique
sequences.
Mutation and selection in B cell lineages can be analyzed at

multiple levels; we may be interested in the dynamics of specific
lineages or in repertoires as a whole. Individual lineages may be
characterized using the parameter estimates of a substitution
model; however, these estimates will be highly inaccurate for
small lineages (Fig. 1), which typically make up the majority of
lineages in a repertoire (12, 13). Whole B cell repertoires may be
characterized by estimating model parameters for each lineage
individually and then averaging these values across lineages
(hereafter termed the mean individual estimate), although these
estimates will still be affected by the inaccuracy of small lineages.
Alternatively, we propose to link all lineages within a repertoire
to estimate a single set of repertoire-wide parameter values
(Methods). This approach has the potential to reduce the error
and variance of parameter estimates used to characterize B cell
repertoires.
We used a model of SHM and empirically derived tree to-

pologies to simulate realistic repertoire datasets and thereby test
the performance of our approach (SI Appendix, section S4).
Simulated datasets consisted of 289 lineages in total (≥2 se-
quences) of which 34 lineages had ≥10 sequences and 4 lineages
had ≥30 sequences. We first simulated datasets with identical
parameters among lineages and then reestimated HLP19 model
parameters at the repertoire and individual-lineage level.
Repertoire-wide estimates had lower variance compared to mean
individual estimates in all comparisons performed. Averaging
across all parameters, repertoire-wide estimates showed lower bias
(repertoire-wide = −0.04, best mean individual = −0.05), variance
(repertoire-wide = 0.01, best mean individual = 0.16), and mean
squared error (MSE; repertoire-wide = 0.11, best mean individ-
ual = 0.29) than mean individual estimates (SI Appendix, Table
S4B). Further, repertoire-wide estimates had lower MSE than
mean individual estimates in all instances except one (mean hGYW

estimates from lineages with ≥10 sequences; SI Appendix, Table
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Fig. 1. Proportional error of repertoire-wide and individual lineage esti-
mates. (A) Proportional error in estimates of the ωCDR parameter under the
HLP19 model. (B) Proportional error in estimates of the ωFWR parameter
under the HLP19 model. In A and B the black dots show the values estimated
from each individual lineage B cell lineage and the red dotted lines show the
estimate obtained from all lineages combined using a repertoire-wide
model. Data were generated from a simulated repertoire using tree topol-
ogies from subject 97 in the Age dataset and identical parameters among
lineages (see SI Appendix, section S4 for full details and results). Note that
14% and 3% of lineages for A and B, respectively (all with ≤18 sequences),
had proportional error higher than the range displayed in these plots. See SI
Appendix, Fig. S4D for the full range.
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S4B). In contrast, repertoire-wide estimates had lower bias for
only 4 of 9 parameters when compared to mean individual esti-
mates obtained from larger lineages (≥10 or ≥30 sequences).
Thus, under these simulation conditions repertoire-wide esti-
mates are superior to mean individual estimates. Repertoire-wide
estimates were not always less biased than mean individual esti-
mates from large lineages, but they were less variable and had
lower overall error rates.
We next relaxed the assumption that all lineages have the

same parameter values by performing simulations in which ωCDR
and ωFWR varied among lineages (SI Appendix, section S4). As
before, repertoire-wide estimates of ωCDR and ωFWR had sub-
stantially lower bias, variance, and MSE compared to mean in-
dividual estimates obtained by averaging across all lineages.
Repertoire-wide estimates also had lower variance and MSE
than mean individual estimates obtained from larger lineages
(i.e., ≥10 or ≥30 sequences), but not always lower bias (SI Ap-
pendix, Table S4C). We also tested how well repertoire-wide
estimates characterized lineage-specific values of ωCDR and
ωFWR (while constraining all lineages to have the same parameter
values reduces variance we hypothesized it may introduce a bias
at the lineage level). Surprisingly, repertoire-wide estimates of
lineage-specific ωCDR and ωFWR were less biased than mean in-
dividual estimates when all lineages within the repertoire were
considered. However, estimates of lineage-specific parameters
obtained from larger lineages (≥10 and ≥30 sequences) were less
biased than repertoire-wide estimates (SI Appendix, Table S4C).
Overall, we find that a repertoire-wide phylogenetic approach
has substantial benefits even when the underlying parameters
vary among lineages.
To test the strengths and weaknesses of different phyloge-

netic models in our repertoire-wide framework, we compared
the performance of 3 codon substitution models: GY94 (33, 34),
which does not include SHM hot- or cold-spot motifs, HLP17
(7), which is a modification of the GY94 model that incorporates
hot- and cold-spot biases, and HLP19, which is introduced herein
(SI Appendix, section S1) that differently incorporates the dy-
namics of codon frequencies during affinity maturation and is
more formally similar to previous nonreversible models (29). In
HLP19, the relative probability of a substitution depends only on
whether the substitution is a replacement or silent mutation, a
transition or transversion, and its probability of occurring in an
SHM motif (SI Appendix, section S1), whereas in HLP17 sub-
stitution from codon a to codon b additionally depends on the
frequency of codon b. Simulation analyses performed using
multiple tree topologies and parameter values (SI Appendix,
section S3) revealed that parameter estimates under HLP19 had
a lower mean absolute bias across all parameters (0.03) than
HLP17 (0.08) and GY94 (0.16; SI Appendix, section S3). HLP19
and GY94 models had similar absolute bias in branch lengths
(<0.002), which was lower than that of HLP17 (0.11; SI Appen-
dix, section S3). HLP17 performed worse than GY94 in branch-
length estimation, which is surprising given that Hoehn et al. (7)
showed that the HLP17 model improved branch-length esti-
mates compared to GY94. However, we have since determined
that the simulations performed in ref. 7 were unintentionally but
unfairly biased toward the HLP17 model (see detailed explana-
tion in SI Appendix, section S2). The simulations performed here
do not have this issue and show that HLP19 largely addresses the
weaknesses of on HLP17 in branch-length estimation (SI Ap-
pendix, section S3). Perhaps most importantly, for parameters
relating to selection (ωFWR and ωCDR) HLP19 showed signifi-
cantly lower mean absolute bias (0.02) compared to HLP17 (0.1)
and GY94 (0.29; SI Appendix, section S3). Mean bias of ωCDR
estimates were especially high under the GY94 model (range:
0.38 to 0.59) and increased in simulations with higher hot-spot
mutation rates and longer branch lengths (SI Appendix, section
S3). This echoes previous findings; models that fail to account

for altered mutation rates of SHM motifs (e.g., GY94) can sig-
nificantly bias estimates of ω (dN/dS) in BCR lineages toward
detecting positive selection in the CDRs (36, 37). Simulations
under an empirical model of SHM context sensitivity (20) and
empirically estimated tree topologies confirm that ωCDR and
ωFWR estimates from HLP19 remain less biased than estimates
under HLP17 and GY94 under alternative substitution regimes
(SI Appendix, section S7). Overall, we found the HLP19 model
shows superior performance compared to the GY94 and HLP17
models, particularly when estimating ωCDR and branch lengths,
respectively.
To further compare the appropriateness of the GY94, HLP17,

and HLP19 models when applied to BCR repertoire data, we
estimated how well each model fit our empirical datasets using
the Akaike information criterion (AIC; ref. 38). The AIC uses
the maximum log-likelihood estimated using a model, penalized
by the number of freely estimated parameters. Smaller AIC values
are generally interpreted as better model fit. To make AIC values
comparable among the 3 models, we altered the HLP17 and
HLP19 models slightly by multiplying the partial likelihood of
each possible codon at the root by the frequency of that codon (π),
as is typically done for reversible models (11). In all 27 subjects
AIC was highest under GY94 and lowest under HLP19, indicat-
ing that the HLP19 model had a significantly better fit to all
subjects compared to the GY94 and HLP17 models (SI Appen-
dix, section S5).

Variation of Model Parameters within and among Subjects. We
tested whether repertoire-wide parameter estimates can repro-
duce known features of SHM targeting, such as hot-/cold-spot
targeting (20) by estimating HLP19 model parameters from
BCR repertoire data that were obtained from 27 healthy indi-
viduals of varying age and sex (Age dataset; ref. 30). While the
values of parameter estimates varied, all subjects exhibited the
same overall pattern in model parameters that relate to SHM
targeting (Fig. 2). In all subjects, GYW motifs exhibited the
largest substitution rate increases of the all motifs considered
(hGYW values were 4 to 6), followed by the WRC (hWRC ∼3), WA
(hWA ∼3), and TW (hTW ∼1) motifs. Symmetrical SYC and GRS
motifs were estimated to be mutational cold spots (hSYC and
hGRS ∼ −0.6). We compared these parameter estimates to mu-
tability estimates under the S5F model (20), which describes the
relative mutation rate of sequence pentamers during SHM in an
independent and separate cohort of healthy subjects. When av-
eraging over pentamers within particular SHM motifs under
uniform pentamer frequencies, the S5F model predicts the same
ranking as we obtained using the HLP19 model: GYW (mean
mutability = 2.46) > WRC (1.87) ∼ WA (1.71) > TW (1.19) >
SYC (0.23) ∼ GRS (0.22). The transition/transversion rate ratio
(κ) estimated by our repertoire-wide model was ∼2, which is also
consistent with previous findings (39, 40). Overall, these results
show that repertoire-wide parameter estimates obtained using a
repertoire-wide phylogenetic approach are broadly consistent
with previous expectations in healthy individuals.

Age Is Associated with Changes in SHM Mutation Biases.Age and sex
are associated with substantial differences in the immune system;
for example, older individuals are more vulnerable to infection
(41, 42), while females are at a higher risk of developing auto-
immune diseases (43). We sought to investigate whether the mu-
tation and selection processes underlying SHMmight contribute to
these differences.
To investigate potential age- and sex-related differences in

SHM targeting, we analyzed the 27 subjects surveyed by Wang
et al. (Age dataset; ref. 30), which included both male and fe-
male subjects with an age range of 21 to 88 years at the time of
sampling. We used multiple linear regression to investigate the
effects of age and sex on estimated model parameters. Age and
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sex were modeled as interaction variables against the estimated
substitution rate biases of SHM motifs (i.e., the HLP19 model h
values; SI Appendix, section S1). Because we conducted 20 tests
in all (2 dependent and 10 independent variables), we used
Benjamini–Hochberg (44) multiple hypothesis test correction to
adjust P values. Substitution rates in WA (hWA) were significantly
negatively associated with age in both male (coefficient = −0.011;
adjusted P = 0.0012) and female subjects (coefficient = −0.006;
adjusted P = 0.034). Neither ωCDR (adjusted slope P = 0.58 and
0.76 for males and females, respectively), mean tree length (ad-
justed slope P = 0.58 for males and females), nor any other pa-
rameter investigated showed a significant relationship with age in
either sex after Benjamini–Hochberg correction (44). These re-
sults are consistent with a model in which older individuals have
reduced mutation bias toward WA hot spots, possibly reflecting a
difference in SHM mechanism in these individuals.
We performed simulation analyses to test whether the ob-

served trends between hWA and age could be due to biases in our
parameter estimation procedure (Methods and SI Appendix,
section S6). For all 20 simulated repetitions of the Age dataset,
the hWA slope coefficients for males and females were closer to
zero than their respective empirical estimates (SI Appendix, Fig.
S6A). These results demonstrate that these trends are due to fac-
tors other than biases in parameter estimation, given the underlying
structure of our datasets and predicted germline sequences.

Variation in Signatures of Selection Is Uncorrelated with Age, Sex,
Epstein–Barr Virus, and Cytomegalovirus Status. Antigen-driven
selection plays a major role in shaping BCR repertoire diver-
sity. In molecular evolutionary biology, selective dynamics are
often characterized by estimating the relative rate of substitu-
tions that change amino acids versus those that do not, often
called dN/dS or ω (33). Low ω values are indicative of fewer
amino acid changes than expected, which is generally interpreted
as resulting from negative selection. We estimate ω separately
for the CDRs and FWRs. Estimates of ωFWR are expected to be
lower than those of ωCDR because FWRs are more structurally
constrained than CDRs (45), which are primarily used in antigen
binding (1, 21). Consistent with this expectation, we found that
in the Age dataset estimated ωCDR values (range: 0.52 to 0.87,
mean: 0.68) were higher than estimated ωFWR values (range: 0.44
to 0.56, mean: 0.51) in all 27 subjects (P < 0.001; paired Wilcoxon

test; Fig. 2 and SI Appendix, Fig. S10). ωCDR estimates were also
more varied among subjects than ωFWR values, perhaps repre-
senting different individual histories of antigenic stimulation.
However, we were unable to find a clear biological correlate of
ωCDR in the Age dataset among the variables provided with the
data (30). Specifically, values of ωCDR did not show a significant
relationship with age (slope P = 0.66; least squares regression;
Fig. 3 and SI Appendix, Fig. S10), sex (P = 1.0; Wilcoxon rank sum
test), Epstein–Barr virus seropositivity (P = 0.19; Wilcoxon rank
sum test), or cytomegalovirus seropositivity (P = 0.19; Wilcoxon
rank sum test).

Postinfluenza Vaccination Repertoires Show Signs of Negative
Selection and Longer Tree Length. Influenza vaccination substan-
tially perturbs the B cell repertoire. A large, antigen-specific
plasmablast response is observed in the blood ∼7 d postvaccination
which subsides ∼1 wk later (46, 47). To investigate the selective
dynamics of this process, we estimated HLP19 substitution model
parameters using the repertoires of 3 subjects who were sampled
10 times over the course of influenza vaccination, beginning 8 d
prior to vaccination and ending 28 d afterward (31). These sub-
jects otherwise had no other known recent infections or vaccina-
tions. Because we were primarily interested in selection and
genetic diversity of these samples, we focused on changes in ωCDR,
the relative rate of nonsynonymous/synonymous substitutions, and
tree length (the total expected substitutions per codon site within
an individual lineage phylogeny).
We found a variety of responses among the subjects. PGP1,

the oldest subject of the 3, did not show any clear patterns of
change over time, in either mean tree length or ωCDR. Notably,
this subject at day +14 had only 141 sequences and consequently
very wide 95% CIs, illustrating the importance of correctly es-
timating model uncertainty in analysis of BCR sequence data.
In contrast to PGP1, subjects 420IV and hu420143 both

showed increased mean tree length at day +7 compared to 1 h
prior to vaccination (−1 h), consistent with the expected burst of
BCR genetic diversity 7 d postvaccination (46). The estimated
mean tree length within a sample was highest at day +7 for
subjects 420IV and hu420143, with a fold increase of 2.38 and
1.18 compared to 1 h prior to vaccination (−1 h) (Fig. 4). Con-
sistent with this, multiple large clones in subjects 420IV and
hu420143 arose at day +7 (SI Appendix, Fig. S8). In addition to

−
8d

−
1h

  1
h

  7
d

  2
8d

hu420143MaleFemale

FWR

CDR

WRC

GYW

WA

TW

SYC

GRS

P
ar

am
et

er

Age dataset

−
8d

−
1h

  1
h

  7
d

  2
8d

PGP1

−
8d

−
1h

  1
h

  7
d

  2
8d

420IV

Time post-vaccinationAge (years)

23 27 61 88 21 30 61 8573

0

2

4

6

MLE

0.5

0.8

Vaccine dataset

Fig. 2. Variation of parameter estimates by subject and time in the Age and Vaccine datasets. (Left) HLP19 parameter estimates from each subject in the Age
dataset, ordered by sex and age. (Right) HLP19 parameter estimates for the Vaccine dataset, ordered by subject and sample time relative to influenza
vaccination. The upper box in both panels shows the model parameters that relate to SHM (motif targeting, transition/transversion ratio). The lower box
shows estimates of ωCDR and ωFWR, which relate to selection. The 95% CIs for these estimates are shown in SI Appendix, Fig. S10. Note that values in the lower
box are scaled differently from those in the upper box (see keys on the right-hand side).

22668 | www.pnas.org/cgi/doi/10.1073/pnas.1906020116 Hoehn et al.

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1906020116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1906020116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1906020116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1906020116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1906020116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1906020116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1906020116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1906020116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1906020116/-/DCSupplemental
https://www.pnas.org/cgi/doi/10.1073/pnas.1906020116


increased tree length, day +7 was associated with a significant
decrease in ωCDR in both these subjects (Fig. 4). For 420IV at −1 h,
ωCDR = 0.64 (95% CI: 0.6, 0.66) and at day +7 ωCDR = 0.47 (95%
CI: 0.45, 0.50). For hu420143 at −1 h, ωCDR = 0.57 (95% CI:
0.54, 0.59) and at day +7 ωCDR = 0.49 (95% CI: 0.46, 0.51).
Interestingly, although 420IV and hu420139 had different pre-
vaccination estimates of ωCDR (0.64 and 0.57, respectively) their
estimates were similar at day +7 (0.47 and 0.49), day +14
(0.62 and 0.61), and day +21 (0.60 and 0.60; Fig. 4). Overall, this
indicates that, at the expected date of peak vaccine response, the
repertoires of these 2 subjects were characterized by an increase
in BCR lineages with large numbers of mutations and signatures
of increased negative selection.
We performed simulation analyses to test whether decreased

ωCDR at day +7 in subjects hu420139 and 420IV were due to
biases in our parameter estimation procedure (Methods and SI
Appendix, section S6). None of the 20 simulation repetitions
performed using the Vaccine dataset was able to reproduce the
observed change in ωCDR at day +7 compared to the prevaccina-
tion time point (−1 h; SI Appendix, Fig. S6 B and C), demon-
strating that these trends are due to factors besides biases in
parameter estimation, given the underlying structure of our data-
sets and their predicted germline sequences.

Increased Tree Length Is Associated with Signatures of Negative
Selection. Our analysis of the Vaccine dataset indicated that, in
2 subjects, there was a concurrent increase in mean tree length
and decrease in ωCDR at day +7 following influenza vaccination.
We hypothesized that this relationship between ωCDR and tree
length might be more general and tested this hypothesis using
log-linear regression across all 27 subjects of the Age dataset and
all 30 samples (10 time points from 3 subjects) of the Vaccine
dataset. Across both datasets we observed a consistent and sig-
nificant negative relationship between both ωCDR and ωFWR and
mean repertoire tree length (i.e., the average expected substi-
tutions per codon site across all lineages within the repertoire;
Fig. 5). This trend was surprisingly similar between datasets, with
slopes of linear regressions having overlapping 95% CIs, and was
particularly strong in the CDRs. For the Age dataset, the slope
of a linear regression of ωCDR against the ln(mean tree length)
was −0.24 (95% CI = −0.35, −0.14; P < 6 × 10−5), while for the
Vaccine dataset the corresponding slope was −0.26 (95%
CI = −0.29, −0.23; P < 4 × 10−16). Overall, these regressions
predicted a 32.1% and 41.4% decrease in ωCDR over the range of
mean tree length observed in the Age and Vaccine datasets, re-
spectively. A similar, if weaker, relationship was found between
ωFWR and ln(mean tree length) (Fig. 5; details in legend). This
indicates that repertoires with longer lineages (i.e., those with
more mutations) are associated with signatures of increased
negative selection, particularly in the CDRs.

We performed simulation analyses to test whether the ob-
served trends between ω and mean tree length were due to biases
in our parameter estimation procedure (Methods and SI Ap-
pendix, section S6). In none of 20 simulations, using both data-
sets, did we observe a significant relationship between ωCDR and
mean tree length or ωFWR and mean tree length (SI Appendix,
Fig. S6 D and E). However, the simulations in SI Appendix,
section S6 were performed under a fully context-dependent
version of the HLP19 model, which does not completely repre-
sent the biased nature of SHM. To test whether a richer model of
SHM could potentially reproduce our results, we performed
simulations using the S5F model (20), using the tree topologies
and branch lengths estimated using maximum parsimony (dnapars
v3.679; ref. 48) and the predicted germline sequences of the Age
dataset (detailed in SI Appendix, section S7). None of 50 such
simulation repetitions showed a negative slope between either
ωCDR or ωFWR and mean tree length as large as that observed for
the empirical data (SI Appendix, Fig. S7A). We therefore conclude
that the negative relationship between mean tree length and ωCDR
observed in Fig. 5 is not due simply to inherent biases in our
parameter estimation procedure.

Discussion
Phylogenetic techniques have been used to study B cell lineages
for many years (49) and continue to be a powerful tool in un-
derstanding affinity maturation (50). Two fundamental issues
that arise from the application of phylogenetic techniques to B
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cell repertoires are 1) the biology underlying B cell affinity mat-
uration violates key assumptions of most phylogenetic models and
2) phylogenetic models are designed typically to work on lineages
originating from a common ancestor, but B cell repertoires are
composed of multiple lineages with separate ancestries, many of
which are composed of only a few unique sequences. If such
lineages are each analyzed independently then parameter esti-
mates will be noisy and highly uncertain. Here we introduce a
repertoire-wide approach to B cell phylogenetics that addresses
these issues. We extend phylogenetic models of SHM evolution
so that they are consistent with the known biology of B cell af-
finity maturation and can share parameters of the sequence
evolution process across all lineages within a repertoire. This
approach outperforms the alternative of averaging parameters
estimated for each lineage individually and provides a principled
framework for testing evolutionary hypotheses about mutation
and selection in B cell repertoires. By applying our approach to
empirical data we find evidence consistent with dysregulation of
SHM in older subjects, increased signatures of negative selection
associated with influenza vaccine response, and a relationship
between mean tree lengths and signatures of negative selection.
Our methods are implemented in the program IgPhyML (https://
igphyml.readthedocs.io).
We first used our repertoire-wide framework to demonstrate a

negative association between age and the estimated mutability of
WA hot-spot motifs in males and females. Previous studies have
shown that aging is associated with a decrease in the affinity,
specificity, and diversity of antibodies produced (51–54), as well
as with a number of changes at the repertoire level, including
longer CDR3s, higher levels of SHM, and persistent clonal line-
ages in the blood (30). It is possible that age-related dysregulation
of SHM machinery plays a role in phenomena associated with
immunosenescence. Our finding that older individuals tend to
have altered mutability of WA motifs is consistent with this hy-
pothesis. SHM at A/T sites is thought to be driven by error-prone
DNA polymerase η (55), so dysregulation of pathways relating to
this protein could form a basis for this pattern. No significant
relationship was found between age and any other variable in-
vestigated, including ωCDR and mean tree length (Fig. 3). This is

consistent with a recent large study that found no difference
between young and elderly subjects in either mean total mutation
frequency or the ratio of nonsynonymous-to-synonymous mutations
(56). While statistically significant, the negative relationship we
observed between WA mutability and age was modest in size
and is based on a single cohort. It is possible this trend is driven
by other confounding factors we have not considered, and future
analyses with more subjects will be needed to validate this trend
generally.
We further used our repertoire-wide phylogenetic approach to

characterize BCR molecular evolution during vaccination. BCRs
during affinity maturation are subject to multiple selective
pressures: positive selection to introduce new affinity-increasing
amino acid variants (higher ω) and negative selection to remove
affinity-decreasing variants (lower ω). The balance of these
forces, and therefore the overall ω, may vary over time. Muta-
tional fitnesses are often visualized as a fitness “landscape” in
which the sequence space surrounding optimal variants is rep-
resented as a “peak” (57). A population ascends a peak by ac-
cumulating advantageous mutations and avoids descending by
removing deleterious mutations through negative selection.
However, as the population nears the summit, the proportion of
replacement mutations that can increase fitness declines, hence
overall ω lowers. A priori, we might expect positive selection to
predominate during vaccine response. However, in our analysis
we found that lineages present at the time of peak influenza
vaccine response show signs of decreased positive selection
(lower ω) on CDRs. We suggest this is because B cell lineages
with a history of affinity maturation during influenza infection or
vaccination will likely have already evolved effective or nearly
effective neutralization at the time of vaccination [no subject was
naïve to the vaccine antigens (31)], resulting in a greater pro-
portion of amino acid changes being deleterious or neutral (58).
This would result in lower ωCDR values. This effect may be
particularly marked during influenza vaccine response because B
cells activated by influenza vaccination in adults are expected to
derive from reactivated memory B cell lineages (59), depending
on the extent to which subjects have been previously exposed to
the epitopes in the vaccine (60).
We also observed a negative relationship between tree length

and ωCDR across both of our datasets (Fig. 5). This relationship is
remarkably consistent given that our combined datasets contain
a total of 30 subjects of different age, sex, and treatment status.
None of the simulation analyses performed under a null model
were able to reproduce this result (SI Appendix, sections S6 and
S7), so this relationship is unlikely to be due to a bias or intrinsic
correlation between these variables in our estimation procedure.
In the absence of other obvious confounding factors, we posit a
simple biological explanation: As B cell clones accumulate mu-
tations through repeated rounds of affinity maturation, their
binding affinity to target antigen increases and consequently the
benefit of random amino acid changes (i.e., new mutations)
decreases (58). This idea that the rate of fitness-increasing mu-
tations decreases is a straightforward implication of a population
nearing a “peak” within a fitness landscape detailed earlier (57).
Sheng et al. (27) demonstrated evidence of this process (which
they termed the “affinity maturation selection” model) in anti-
HIV broadly neutralizing antibody (bnAb) lineages. This expla-
nation is also consistent with the findings of Yaari et al. (61)
showing that mutations earlier in B cell lineage trees from
healthy subjects show clearer signs of positive selection than
more recent mutations. Our results suggest that decreased rates
of nonsynonymous mutations relative to synonymous mutations,
as observed in HIV bnAb lineages (27), BCR repertoires during
vaccine response (Figs. 4 and 5), and even in healthy subjects
with no obvious signs of infection (Fig. 5 and ref. 61), are all
special cases of a general feature of affinity maturation.
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Fig. 5. Negative relationship between ω and mean tree length. (Left) Linear
regression between estimates of ωCDR (purple) and ωFWR (orange) and the
natural log of mean tree length for each subject in the Age dataset. The
slope and intercept of ωCDR against ln(mean tree length) were −0.24 (95%
CI = −0.35, −0.14) and 0.39, respectively (P < 6 × 10−5 for both). The corre-
sponding slope and intercept of ωFWR were −0.09 (95% CI = −0.14, −0.04)
and 0.4 (P < 0.002 for both). (Right) Linear regression between estimates
of ωCDR (purple) and ωFWR (orange) and the natural log of mean tree length
for each sample in the Vaccine dataset (3 subjects, 10 samples each). The
slope and intercept of ωCDR against ln(mean tree length) were −0.26 (95%
CI = −0.29, −0.23) and 0.36, respectively (P < 4 × 10−16 for both). The cor-
responding slope and intercept of ωFWR were −0.08 (95% CI = −0.1, −0.05)
and 0.43 (P < 4 × 10−7 for both). Gray shaded areas in both panels show SE
estimates of the log-linear regression.
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While the repertoire-wide phylogenetic method introduced
here has several advantages over previous approaches, other
techniques for characterizing selection and SHM in BCR se-
quences are available, and ultimately the most appropriate ap-
proach will depend on the hypothesis and data being tested. For
quantifying selection pressure in B cell lineages, one popular
approach is BASELINe (21), a nonphylogenetic method that
characterizes selection pressure by detecting an excess (or lack)
of replacement to silent mutations (R/S) between a sequence
and its predicted germline. Unlike phylogenetic techniques,
BASELINe represents clonal lineages using single representative
sequences. This may lower statistical power and, depending on
the technique used to generate the representative sequence, may
bias inference of selection. Representing a clone using a single
sequence also has the disadvantages that 1) codons with multiple
mutations may be ignored and 2) all mutations are assessed in
the sequence context of their predicted germline sequence rather
than an immediate ancestor. Both of these issues are dealt with
naturally in our phylogenetic framework. McCoy et al. (62) used
a Bayesian regularization technique to derive site-wise estimates
of ω, giving a more finely resolved interpretation. Like BASELINe,
their technique used individual sequences paired with predicted
germline ancestors, rather than modeling phylogenetic lineage
structure, and likely has similar limitations. In some cases the
biased nature of SHM motifs, rather than selection, is the primary
interest (20, 40). To characterize SHM in this study we used pre-
viously defined SHM motifs marginalized over codon boundaries
using a mean field approximation. By contrast, Feng et al. (63)
used a survival analysis framework to infer SHM motifs de novo
from individual sequence datasets. That method, however, did
not estimate ω so was limited to studying biased mutation motifs.
In summary, we argue that the field will be best served by having
access to a variety of methods with nonoverlapping assumptions
that can best characterize different aspects of the complex affinity
maturation process.
One drawback in using phylogenetic models to characterize B

cell lineage evolution is that the relationship between the strength
of selection and within-population estimates of ω can vary by
timescale (64), which can make interpretation of estimates diffi-
cult. However, the issues outlined in ref. 64 are less of a problem
for B cell lineages because their ancestral (i.e., germline) states are
knowable a priori, which makes it possible to distinguish between
conserved ancestral positions and fixed derived sites resulting
from selective sweeps. Computational complexity can be a sig-
nificant limitation when using phylogenetic parameter estimation
in a repertoire-wide framework. The method becomes increasingly

impractical with more than a few thousand sequences, necessi-
tating subsampling of larger datasets. Perhaps the most obvious
disadvantage of repertoire-wide parameter estimation is that by
constraining parameter values so that they are identical for all
lineages within a repertoire we mask any potential parameter
variation among lineages. Thus, repertoire-wide estimates should
not be used to make statements about individual lineages.
However, our proposed framework easily accommodates the
possibility of designating some parameters whose values could be
estimated for each lineage individually as would be done in a
more general hierarchical model (23). This may be useful for
parameters such as ωCDR, which might reflect lineage-specific
histories of antigen-driven selection (17). As an example of this
approach, we explored heterogeneity in estimates of ωCDR among
lineages of different sizes for one repertoire (SI Appendix, section
S9). This analysis revealed significantly lower ωCDR in groups of
larger clones, compared to smaller clones within the same repertoire.
It is unclear whether estimation of individual κ and h values would
yield useful insights, since these parameters relate primarily to
biases resulting from SHM, and there is little a priori reason to
believe they might vary among B cell lineages within an individual.
However, it is clear that estimating parameters (e.g., ωCDR) for
each lineage individually will lead to issues with overfitting (e.g.,
when all CDR mutations within a lineage are nonsynonymous).
Further work will be needed to resolve lineage heterogeneity
within individual repertoires.
A repertoire-wide phylogenetic approach to BCR phylogenetics

is justified theoretically and provides a principled statistical
framework for the analysis of B cell repertoires. Our methods are
implemented in the program IgPhyML (v1.0.7; https://igphyml.
readthedocs.io), which is freely available and integrated into the
Immcantation suite (http://immcantation.org).
All primary data used in this study was previously made publicly

available through ref. 30 (Age dataset) and ref. 65 (Vaccine
dataset), which resequenced samples from ref. 31. Scripts used to
generate simulated datasets and perform analyses are available at
Zenodo (https://doi.org/10.5281/zenodo.3479844) (66).
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