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Abstract: (1) Background: New cuffless technologies attempting blood-pressure measurements (BPM)
offer possibilities to improve hypertension awareness and control. The aim of this study was to
compare a smartphone application (app)-based algorithm with office BPM (OBPM). (2) Methods: We
included consecutive patients with an indication for ambulatory BPM. The smartphone app (RIVA
digital) acquired the pulse wave in the fingers’ arterial bed using the phone’s camera and estimated
BP based on photoplethysmographic (PPG) waveforms. Measurements were alternatingly taken
with an oscillometric cuff-based device and smartphone BPM (AppBP) on two consecutive days.
AppBP were calibrated to the first OBPM. Each AppBP was compared to its CuffBP (mean of the
previous/following OBPM). (3) Results: 50 participants were included, resulting in 50 AppBP values
on Day 1 and 33 on Day 2 after exclusion of 225 AppBP due to insufficient quality. The mean ± SD of
the differences between AppBP and CuffBP was 0.7 ± 9.4/1.0 ± 4.5 mmHg (p-value 0.739/0.201) on
Day 1 and 2.6 ± 8.2/1.3 ± 4.1 mmHg (p-value 0.106/0.091) on Day 2 for systolic/diastolic values,
respectively. There were no significant differences between the deviations on Day 1 and Day 2
(p-value 0.297/0.533 for systolic/diastolic values). Overall, there were 10 (12%) systolic measurement
pairs differing by >15 mmHg. (4) Conclusions: In this pilot evaluation, the RIVA Digital app shows
promising results when compared to oscillometric cuff-based measurements, especially regarding
diastolic values. Its differences between AppBP–CuffBP have a good stability one day after calibration.
Before clinical use, signal acquisition needs improvement and the algorithm needs to undergo formal
validation against a gold-standard BPM method.

Keywords: blood-pressure measurement; arterial hypertension; smartphone application; new
technologies; diagnostic techniques; monitoring; blood-pressure monitoring

1. Introduction

Arterial hypertension (AHT) is the most important preventable risk factor for cardio-
vascular disease (CVD), all-cause mortality and morbidity worldwide [1,2]. Despite the still
high prevalence of AHT, there are encouraging improvements in awareness and treatment
of AHT in both sexes, but especially in women [3]. Nevertheless, only between a third
and a half of those with AHT are aware of their condition or have their blood pressure
(BP) adequately controlled [4,5]. Therefore, continuous improvement in the diagnosis and
treatment of AHT remains important.
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To date, the following methods are used to diagnose AHT: conventional office blood
pressure measurement (OBPM), unattended automated OBPM, and out-of-office blood
pressure measurements [6]. Out-of-office blood pressure measurements refer to the use
of either home blood-pressure monitoring (HBPM) or ambulatory 24 h blood-pressure
measurement (ABPM), the latter usually over 24 h [6]. An advantage of both measurement
methods is that they can detect masked and white-coat hypertension, and therefore prevent
over- and under-treatment, whereas the reported discomfort with both methods may be
a disadvantage [6,7]. Nevertheless, HBPM has the potential to improve BP control by
providing simple and patient-friendly solutions [8].

As information technology and the use of smartphones continues to grow, so do the
opportunities to find new ways to measure BP, such as smartphone-based applications
(apps). The use of smartphones has increased massively over recent years. It is estimated
that over 6.8 billion mobile phones will be used worldwide by 2022 [9]. In the context of
HBPM, smartphone technology is used with contrasted success to provide more effective
and comfortable methods. However, this is mainly (70%) for documentation purposes
of HBPM, and only less than 2% of apps claim to measure BP [10]. There are different
technologies involving smartphones claiming to be able to estimate BP. Most commonly,
this is undertaken by using the in-built smartphone camera to assess photoplethysmo-
graphic (PPG) recordings of pulse wave [11]. Other technologies, for example, involve the
combination of PPG with smartphone-case-based single-channel ECG [12], an oscillometric
finger-pressing method [13], the combination of heart rate and modified normalized pulse
volume based on PPG [14] or assessment of facial blood-flow data [15]. The app tested
in this study is the RIVA Digital Blood Pressure app using a PPG technology, which was
created to raise awareness of AHT and the importance of BP monitoring among the Swiss
population, and to incentivize people to achieve and maintain a healthy lifestyle [16]. Stud-
ies testing PPG-based apps have shown mixed results [17]. There are apps which clearly
fail validation, such as the InstantBP app [18] or the app analysed in the iPARR trial [11,19].
A recent systematic review on smartphone and smartwatch BPM states that technology is
clearly improving, and opens a possibility to enable valid BPM using smartphone technol-
ogy [20]. They have found a single app passing AAMI/ESH/ISO validation, which applies
transdermal optical imaging (TOI) instead of PPG technology [15]. Since the publication of
this review, other apps have been released and tested which show promising results, such
as the OptiBP app, which uses the same algorithm as the app tested in our study, but uses
different pre-processing [21,22].

The aim of this study was to compare BP values determined by this RIVA Digital
smartphone app-based HBPM method with conventional oscillometric cuff-based OBPM.

2. Materials and Methods

For this pilot study, BP values estimated by the RIVA Digital Blood Pressure app were
compared against conventional cuff-based OBPM. The app acquires the pulse wave in the
finger’s arterial bed using the phone’s camera and estimates BP based on the analysis of
the PPG waveform.

2.1. Patient Selection

Consecutive patients older than 18 years of age and referred for an ambulatory blood-
pressure measurement (ABPM) at the Medical Outpatient Department at the University
Hospital Basel were able to participate in this study. Patients with missing informed consent
or physical conditions precluding BP measurements such as missing arms were excluded
from the project.

2.2. Study Procedure

The participants were present on two consecutive days. The study measurements
were taken before and after the ABPM, the latter being not part of the analysis. After fitting
of the cuff-based BPM device and the smartphone, the participants were sitting quietly, and
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relaxed and rested for 3–5 min before the measurements started [6]. No conversations were
allowed with the participant during the procedure [6].

BP was measured every minute, alternating between the two methods, and starting
with cuff-based BPM (OBPM). Six OBPM and five app measurements (AppBP) were taken
on the first day (Day 1). To evaluate the stability of the calibration over time, on the second
day (Day 2), four OBPM and three AppBP measurements were taken (Figure 1).
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blood-pressure measurement; AppBP: app-based blood-pressure measurement; CuffBP: cuff-based
blood-pressure measurement: mean between two adjacent OBPM.

2.2.1. Conventional Measurement, OBPM

For the measurements with the conventional device, later referred to as OBPM, a
conventional (cuff-based) BP monitor (Welch Allyn Connex® Spot Monitor, with the
SureBP® algorithm) was used. This device differed in mean ± standard deviation (SD)
by −2.15 ± 7.44 mmHg (systolic) and −0.55 ± 5.98 mmHg (diastolic) from auscultation
BPM during its validation study [23]. The correct cuff size for each arm size was used, as
measured with a measuring tape [6]. The fitted BP cuff was placed on the upper arm on
the non-dominant side. The operator remained in the room for all measurements.

2.2.2. App-Based Measurements, AppBP

The Riva Digital app was installed on six different iPhone 6S (Apple) phones provided
by Centre Suisse d’Electronique et de Microtechnique (CSEM). Every iPhone had the same
iOs version (version 15.1). The Riva Digital app differed from the publicly available version,
as it did not show any BP values, to keep the study staff blinded. The working principle of
the app’s BP measurement algorithm is detailed in Section 2.2.5.

For the measurements with the app, the smartphone was placed next to the participant
with the screen facing the table, so that they could place their finger on the camera (Sup-
plemental Figure S1). Either the index, the middle, or the ring finger was used depending
on which was most comfortable for the participant. However, the same finger was used
consistently throughout the measurements. The non-dominant arm was used, thus the
same arm as where the cuff was attached. The settings on the app were handled by the
study staff. This ensured that the participants only had to lift their finger and place it on
the camera and flashlight of the smartphone, allowing them to remain calmly seated with
the arm placed in the same relaxed position on the table during all alternating OBPM and
app measurements.
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2.2.3. Merging of the Measurements

All participants were given a unique identification number, which was automatically
registered by the app. This number was sent to CSEM to identify study participants. The
acquired PPG signals first underwent a quality check (see details in Section 2.2.5), and
recordings which did not meet the quality requirements were excluded. All other PPG
signals, “uncalibrated AppBP values” were computed by CSEM (see details in Section 2.2.5).
These values were then sent to the study staff at the University Hospital Basel, where the
received uncalibrated AppBP values were added to the database for each participant. The
study staff at CSEM were blinded to the OBPM.

In a second step, the study staff at the University Hospital Basel sent the first OBPM
measurement (OBPM1 in Figure 1) to the study staff at CSEM, which was then used to
calibrate the AppBP estimates for each patient (see details in Section 2.2.5); the latter were
referred to as “calibrated AppBP values” and added to the database of the University
Hospital Basel. The CSEM staff remained blinded for all other OBPM measurements.

2.2.4. Cuff-Derived Values, CuffBP

For each AppBP value, the cuff-derived value used for comparison was the mean
value—hereafter referred to as “CuffBP”—of each adjacent OBPM, that is the OBPM taken
before and after the AppBP value (see also Figure 1).

2.2.5. Working Principle of the App

In order to estimate a BP value, as a first step, the app averages the pixels from the
green channel of the central region of each image in the video sequence recorded by the
smartphone camera to obtain a PPG signal. Each pulse in the PPG signal is given a quality
index according to its similarity to its neighbouring pulses, resulting in less weight given to
pulses with aberrant morphologies. All pulses are then averaged to obtain a representative
pulse wave shape. An acceptance criterion based on the average quality of the pulses and
the waveform of the averaged pulse is computed, which allows for automatic rejection
of average pulses with un-physiological morphology or those obtained from PPG signals
with low-quality pulses (e.g., in cases of excessive finger movement, poor positioning or
excessive finger–camera pressure). The acceptance threshold on the quality index was
derived empirically from previous studies as a trade-off between data acceptance rate and
BP accuracy. Each accepted average waveform is analysed by the algorithm [24], which
characterises the morphological variations of the pulse at various time resolutions from
derivative-based features. The features are mapped to uncalibrated BP values through
a dedicated model which has been previously trained on a different dataset [25]. The
BP values calculated by the algorithm are uncalibrated (hereafter, “uncalibrated AppBP
values”) in the sense that the algorithm arbitrarily assumes the initial BP of the user to be
120/80 mmHg, and then calculates all following BP measurements as variations around
that initial measurement. Therefore, the app is designed in such a way that the user can
input his/her own true initial BP instead of using the default 120/80 mmHg values. In that
case, these BP measurements are referred to as “calibrated AppBP values”.

2.3. Statistical Analyses

All calculations were performed separately for systolic and diastolic values. Continu-
ous data were reported as “mean ± standard deviation” (SD) or as “median (inter-quartile
range (IQR))”, as applicable. We used the Shapiro–Wilk Test to test for normality. Each
AppBP value was compared to its corresponding CuffBP by calculating the difference
as AppBP–CuffBP. We tested for association using the related-samples Wilcoxon signed
rank-test and Bland–Altman plots, which were designed according to the requirements
of the AAMI/ESH/ISO validation protocol [26]. All calculations were performed over
all measurements, as well as on a participant level, when we started by calculating the
mean difference for each participant and continued using the results per participant. The
differences between Day 1 and Day 2 were calculated using the Mann–Whitney-U test.
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All statistical analyses were performed using SPSS version 22 and R version 3.6.0 [27].

Comparison Based on Standards

There is currently no internationally accepted standard for evaluating the accuracy and
precision of cuffless BP monitors. Moreover, existing standards for cuff-based devices, such
as the European Society of Hypertension International Protocol for the validation of blood
pressure measuring devices in adults, published in 2010 (ESH-IP 2010) [28], or the Universal
Standard for the validation of blood pressure measuring devices (AAMI/ESH/ISO) [26,29],
require auscultatory measurements as a gold-standard reference for determining the accu-
racy and precision of the device under test. For these reasons, in the present study, these
standards can only be taken as points of comparison but cannot be formally applied. This
study is—before anything—a method-comparison pilot study, and is not by any means a
validation study. Nevertheless, for research purposes, we will try to apply these standards
as faithfully as possible in our analysis, by considering the oscillometric cuff-based BP
measurements of a formally validated device (CuffBP) as gold-standard reference values,
and the app-based measurements (AppBP) as those of the device under test.

The ESH-IP 2010 requests the inclusion of 33 participants with 99 measurement
pairs [28]. A device will fail the ESH-IP 2010 if more measurement pairs differ by more than
5, 10, or 15 mmHg, respectively, than the number stated in Table 1 [28,30]. For example, if a
test device delivers four measurements with a difference of >15 mmHg and 13 measure-
ments with a difference of >10 mmHg to the CuffBP value, it cannot pass the ESH-IP 2010
validation criteria. In addition, if, for example, the test device delivers seven measurements
with a difference of >15 mmHg to the CuffBP, it cannot pass the ESH-IP 2010 validation
criteria. The AAMI/ESH/ISO standard published in 2018 requests the inclusion of at least
85 participants and at least 255 measurement pairs with (a) a cohort-wise mean difference
(bias) within ±5 mmHg and an SD of the differences of ≤8 mmHg over all measurement
pairs, and (b) an SD of the per-participant averages of the pairs of measurements smaller
than a given threshold [26,29]. The threshold for this SD value depends on the cohort-wise
bias, and is, for example, 4.79 mmHg for a bias of 5 mmHg [26,29]. As stated earlier, it is
important to remember that these figures and limits only apply when the device under test
(AppBP in our study) is compared to an accepted BP reference device (auscultatory method
measurement), which it is not in this pilot study. Thus, the (AppBP–CuffBP) differences
reflect the disagreement between both devices rather than the inaccuracy and impreci-
sion of AppBP only, as they are also affected by the oscillometric cuff’s own inaccuracy
and imprecision.

Table 1. Fail criteria if less than 33 participants with 99 measurement pairs are included. For the “two
of” criterion, the test device will certainly fail if the stated number of observed biases is reached in
two of the stated categories, and for the “either” criterion, if the stated number of observed biases is
reached for any of the categories. Adapted after [30].

>5 mmHg >10 mmHg >15 mmHg

Two of ≥27 ≥13 ≥4

Either ≥35 ≥19 ≥7

Finally, as less than the required number of participants were included in our pilot
study according to the AAMI/ESH/ISO protocol, we estimate a “best-case scenario SD” to
predict the possibility of passing the AAMI/ESH/ISO protocol, where CuffBP would be
considered a gold-standard measurement. The SD is the square root of the variance, which
is the sum of the squared differences of each data point (i.e., each difference AppBP–CuffBP)
with the cohort-wise bias (mean of all differences AppBP–CuffBP) [31]. We modelled a
best-case scenario SD by calculating the SD over all pairs of measurement from our results
(Criterion 1 for individual BP readings [29]) for different assumed biases between −5 and
5 mmHg, assuming that all missing measurements to reach 255 pairs of measurements
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would be equal to the assumed mean [30]. Similarly, we proceeded with the mean of
all measurement pairs of each participant (Criterion 2 for individual subjects [29]) but
used assumed missing values to reach 85 participants [30]. The results were displayed
graphically by drawing the maximally allowed SD and the calculated best-case scenario
SD from the AppBP–CuffBP differences for each assumed mean.

2.4. Ethics

The local ethics committee (Ethikkommission Nordwest- und Zentralschweiz/Ethics
Committee Northwestern and Central Switzerland, Basel, Switzerland, EKNZ, EKNZ2020-
00009) approved this trial. This trial was registered on ClinicalTrials.gov (NCT04461834)
and was compliant with the Declaration of Helsinki. All patients gave informed writ-
ten consent.

3. Results
3.1. Baseline Characteristics

In total, 50 consecutive participants were included in this trial, of which 24 were
women (48.0%). Furthermore, 44 participants (88.0%) were measured on the left-hand side,
42 (84.0%) were measured at the second (index) finger, and 8 (16.0%) at the third (middle)
finger. In addition, 38 participants (76.0%) had known AHT and 30 (60.0%) were receiving
antihypertensive treatment. This resulted in 400 valid CuffBP values. The post-recording
quality threshold was not met in 225 app-based measurements, which had to be excluded.
This left us with 175 uncalibrated values and 83 calibrated values.

Systolic BP ranged from 89 to 202 mmHg for all 400 CuffBP values, with a mean of
126 ± 16 mmHg. Diastolic BP ranged from 48 to 96 mmHg, with a mean of 79 ± 8.7 mmHg.
Furthermore, 17 (4.25%) systolic CuffBP values were ≤100 mmHg, 59 (14.75%) were
≥140 mmHg, and 11 (2.75%) were ≥160 mmHg [29]. Additionally, 11 (2.8 %) diastolic CuffBP
values were ≤60 mmHg, 110 (27.5%) were ≥85 mmHg, but none were ≥100 mmHg [29].

3.2. Results for Uncalibrated AppBP Values

Due to insufficient signal quality, 225 (56.25%) uncalibrated AppBP values had to be
excluded, resulting in 175 valid uncalibrated AppBP values from 43 (86.0%) participants.
Furthermore, 6 participants (12.0%) had one valid AppBP value, 7 (14.0%) had two, 3 (6.0%)
had three, 6 (12.0%) had four, 10 (20.0%) had five, 6 (12.0%) had six, 4 (8.0%) had seven,
1 (2.0%) had eight, and 7 (14.0%) had no valid uncalibrated AppBP values over the 2 days
of measurement.

Systolic uncalibrated AppBP values (median 120.0 (IQR 117.0–122.4) mmHg) were
significantly lower than the corresponding systolic CuffBP values (median 126.0 (IQR
116.5–133.0) mmHg, p-value < 0.0005, z-value −5.325). Diastolic uncalibrated AppBP values
(median 80.0 (IQR 78.8–81.1) mmHg) did not significantly differ from the corresponding
diastolic CuffBP values (median 79.5 (IQR 74.0–85.5) mmHg, p-value 0.316, z-value 1.002).

Mean, SD and range of the differences between the uncalibrated AppBP and the
CuffBP can be found in Table 2, as well as deviation categories for the absolute differences.
Bland–Altman plots are depicted in Figure 2, panels (A) and (B), showing an overestimation
of lower BP and underestimation of higher BP values.

ClinicalTrials.gov
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Table 2. Differences between uncalibrated and calibrated AppBP and CuffBP, stated as mean, standard
deviation, minimum, maximum and in categories for the absolute differences.

Difference AppBP vs.
CuffBD

Uncalibrated AppBP n = 175 Calibrated AppBP n = 83

Systolic Diastolic Systolic Diastolic

Mean −5.9 0.7 1.4 1.1

Std. deviation 13.6 8.1 8.9 4.3

Minimum −43.8 −19.7 −24.3 −9.0

Maximum 33.8 25.8 31.0 15.33

≤5 mmHg, n (%) 40 (23.4) 81 (46.3) 42 (50.6) 60 (72.3)

≤10 mmHg, n (%) 94 (53.7) 139 (79.4) 64 (77.1) 81 (97.6)

≤15 mmHg, n (%) 133 (76.0) 167 (95.4) 73 (88.0) 82 (98.8)

>15 mmHg, n (%) 42 (24.0) 8 (4.6) 10 (12.0) 1 (1.2)

3.3. Results for Calibrated AppBP Values
3.3.1. Day 1 and Day 2 Combined

Only AppBP sets with a valid first AppBP measurement could be included, as it is
the one used for calibration. After calibration, the first measurement had to be excluded,
resulting in 83 calibrated AppBP values from 19 (38.0%) participants. No participant had
only 1 calibrated AppBP value, 2 participants (4.0%) had two, 3 (6.0%) had three, 5 (10.0%)
had four, 5 (10.0%) had five, 3 (6.0%) had six, 1 (2.0%) had seven, and 31 (62.0%) had no
calibrated AppBP values.

Systolic calibrated AppBP values (median 127.6 (IQR 113.8–135.3) mmHg) did not
significantly differ from the corresponding systolic CuffBP values (median 125.0 (IQR
115.0–132.0) mmHg, p-value 0.234, z-value 1.190). Diastolic calibrated AppBP values (me-
dian 79.3 (IQR 74.0–83.6) mmHg) were significantly higher than the corresponding diastolic
CuffBP values (78.5 (IQR 72.0–82.5) mmHg, p-value 0.041, z-value 2.039).

Mean, SD and range of the differences between the calibrated AppBP and the CuffBP
can be found in Table 2, as well as deviation categories for the absolute differences. Bland–
Altman plots are depicted in Figure 2, panels (C) and (D).

3.3.2. Day 2

From Day 2, 33 calibrated AppBP values from 15 participants (30.0%) were available.
Overall, 3 participants (6.0%) had only 1 calibrated AppBP value on Day 2, 6 participants
(12.0%) had two, 6 (12.0%) had three, and 35 (70.0%) had no calibrated AppBP values on
Day 2.

Systolic calibrated AppBP values (median 123.0 (IQR 114.6–137.1) mmHg) did not
significantly differ from the corresponding systolic CuffBP values (median 120.5 (IQR
113.8–132.0) mmHg, p-value 0.106, z-value 1.617). Diastolic calibrated AppBP values (me-
dian 79.1 (IQR 73.8–82.2) mmHg) did not significantly differ from the corresponding
diastolic CuffBP values (median 78.5 (IQR 70.8–81.5) mmHg, p-value 0.091, z-value 1.689).

Mean, SD and range of the differences between the calibrated AppBP and the CuffBP
for Day 2 can be found in Table 3, as well as deviation categories for the absolute differences.
Bland–Altman plots are depicted in Figure 2, panels (G) and (H).

The differences between the calibrated AppBP and the CuffBP did not differ sig-
nificantly between Day 1 and Day 2 for systolic (p-value 0.297) and diastolic values
(p-value 0.533).
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3.3.3. Day 1

From Day 1, 50 calibrated AppBP values from 19 (38.0%) participants were available.
Overall, 2 participants (4.0%) had only 1 calibrated AppBP value on Day 1, 7 participants
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(14.0%) had two, 6 (12.0%) had three, 4 (8.0%) had four, and 31 (62.0%) had no calibrated
AppBP values on Day 1.

Systolic calibrated AppBP values (median 128.8 (IQR 113.5–134.5) mmHg) did not
significantly differ from the corresponding systolic CuffBP values (median 125.5 (IQR
116.1–132.1) mmHg, p-value 0.739, z-value 0.333). Diastolic calibrated AppBP values (me-
dian 80.0 (IQR 74.1–84.2) mmHg) did not significantly differ from the corresponding
diastolic CuffBP values (median 78.8 (IQR 72.4–83.0) mmHg, p-value 0.201, z-value 1.279).

Mean, SD and range of the differences between the calibrated AppBP and the CuffBP
for Day 1 can be found in Table 3, as well as deviation categories for the absolute differences.
Bland–Altman plots are depicted in Figure 2, panels (E) and (F), showing an improved
systematic error with less overestimation of low and underestimation of high BP values.

Table 3. Differences between calibrated AppBP and CuffBP, separated for Day 1 and Day 2, stated as
mean, standard deviation, minimum, maximum and in categories for the absolute differences.

Difference
Day 1 n = 50 Day 2 n = 33

Systolic Diastolic Systolic Diastolic

Mean 0.7 1.0 2.6 1.3

Std. deviation 9.4 4.5 8.2 4.1

Minimum −24.3 −7.0 −17.2 −9.0

Maximum 31.0 15.3 22.7 10.1

≤5 mmHg, n (%) 24 (48.0) 36 (72.0) 18 (54.5) 24 (72.7)

≤10 mmHg, n (%) 38 (76.0) 49 (98.0) 26 (78.8) 32 (97.0)

≤15 mmHg, n (%) 45 (90.0) 49 (98.0) 28 (84.8) 33 (100)

>15 mmHg, n (%) 5 (10.0) 1 (2.0) 5 (15.2) 0 (0)

3.3.4. Differences at Participant Level

After calculating the mean difference between AppBP and CuffBP for each participant,
we calculated the average per-participant mean, SD, minimum and maximum AppBP–
CuffBP difference (Supplemental Table S1).

3.4. Comparison Based on Standards
3.4.1. ESH-IP 2010 Validation Protocol

For the uncalibrated AppBP, there are more measurement pairs than requested by
the ESH-IP 2010 validation protocol [28]. Therefore, we cannot give a definite statement
on the passing or failing potential of this approach. However, with 24% AppBP values
deviating >15 mmHg from the CuffBP, it is unlikely that the uncalibrated AppBP would
pass the ESH-IP 2010 protocol, considering CuffBP as a valid reference.

Regarding the calibrated AppBP results combined from Day 1 and Day 2 (n = 83),
we have >7 systolic AppBP measurements deviating >15 mmHg from the corresponding
CuffBP value. If CuffBP was as accurate as a gold-standard reference, this would also
preclude a passing result according to the ESH-IP 2010 protocol.

3.4.2. AAMI/ESH/ISO Validation Protocol

To estimate if the AppBP app would have a potential to pass the AAMI/ESH/ISO
validation protocol, we assumed that all values missing to complete the validation protocol
would lead to a difference in AppBP–CuffBP which is exactly equal to the mean of all
differences, and that CuffBP is as accurate as a gold-standard reference. To pass, the first
criterion stated by the validation protocol is that the mean of all these differences must be
between −5 and 5 mmHg, which we therefore assumed. With these assumptions, we find
that all minimally reachable SD would be higher than the maximally allowed 8 mmHg
(second criterion of the validation protocol) for the uncalibrated systolic AppBP (Figure 3,
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panel (A) and (B)). Therefore, if the CuffBP values could be considered as a valid reference,
the uncalibrated AppBP version would not pass the AAMI/ESH/ISO validation protocol.
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The calibrated AppBP results, however, do not surpass the maximally allowed SD
of 8 mmHg using all assumptions stated above (Figure 3, panel (C) and (D)); therefore,
we cannot preclude that the calibrated version of the AppBP app would pass criterion
1 of the AAMI/ESH/ISO validation protocol. In addition, regarding criterion 2 of the
AAMI/ESH/ISO validation protocol, we found that the minimally possible SD by applying
the assumptions above does not exceed the maximally allowed SD (Figure 3, panel (E) and
(F)). Therefore, based on criterion 2, we can once again not preclude that the calibrated
version of the app would pass criterion 2 of the AAMI/ESH/ISO validation protocol.

4. Discussion

BPM devices are usually validated according to specific protocols [26,28,29]. To date,
these validation protocols are not intended for continuous or cuffless monitors [29]. Fur-
thermore, validation studies according to recommended validation protocols are very
expensive due to the high number of staff needed for every measurement (two observers
and one supervisor) and the high number of patients needed to fulfil all requirements.
Already, the 1990 British Hypertension Society protocol for the evaluation of automated
and semi-automated BP-measuring devices have suggested the use of a stepwise approach
to minimize unnecessary testing [32]. Therefore, we planned the present study to examine
the AppBP as a pilot project using a similar stepwise approach.

In this pilot study, we compared a novel PPG-based BPM algorithm used in a smart-
phone app (RIVA Digital) as AppBP against OBPM (CuffBP) over 24 h. Our results show
that PPG assessment was insufficient to meet a quality threshold in more than 50% of the
participants. Using those AppBP values meeting the quality threshold, we found that,
without calibration, there were differences between AppBP and CuffBP of −5.9 ± 13.6/
0.7 ± 8.1 mmHg for systolic and diastolic BP values, respectively. The agreement between
AppBP and CuffBP was improved (especially for systolic BP) by calibrating the AppBP
values using the first OBPM value, leading to differences of 1.4 ± 8.9/1.1 ± 4.3 mmHg
for systolic/diastolic values, respectively. However, there were several (AppBP-CuffBP)
differences over 15 mmHg, especially for systolic values. Importantly, we found that there
were no significant differences regarding the (AppBP–CuffBP) differences on the second
day in comparison to the first day.

Our results suggest that this PPG-based algorithm with a single point calibration has
a potential to pass the AAMI/ESH/ISO standard for BPM devices, should it in the future
be approved for non-cuff-based BPM [26,29]. Indeed, while the SD of 8.9 mmHg on the
systolic differences is above the threshold of 8 mmHg required by the standard, this value
encompasses both the imprecision of AppBP and CuffBP in our study, as the latter is derived
oscillometrically and not via the auscultatory method. The oscillometric cuff showed a
disagreement of −2.15 ± 7.44 mmHg against reference auscultatory measurements in its
validation study [23], and it is therefore very likely that the disagreement observed in
our study between AppBP and CuffBP is at least partially imputable to the oscillometric
cuff’s imprecision. The same applies regarding the observed number of AppBP–CuffBP
differences over 15 mmHg, which would prevent the passing of the ESH-IP 2010 validation
protocol [28], had the CuffBP values been obtained from an auscultatory reference.

Another important aspect that needs to be pointed out is the PPG data rejection rate.
Considering the large number of exclusions of AppBP measurements due to insufficient
PPG quality, a clear indication of a post-recording quality check is crucial. Further exam-
ination of the AppBP and potential adaptation of the algorithm is necessary, eventually
according to formal validation protocols. If the app delivers consistent results, this would
serve as a baseline for further research as well as allowing healthcare professionals and
patients to profit from the benefits of an easy-to-apply technology. Nevertheless, the pro-
portion of recordings with insufficient quality remains a limiting factor for its clinical use
and bears the risk of misinterpretation of results. The use of more recent smartphones
might help with improving the data acceptance rate as they tend to provide videos—and
therefore PPG signals—with higher frame rates (which were 60 frames per second in the
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present study), and improved illumination (flashlight) and measurement (camera) stability
and quality.

To our knowledge, this is the first study using the RIVA Digital app. In 2021, an
extensive systematic review on smartphone- and smartwatch-based BPM was published,
which showed impressively, that to the date of its publication, no PPG-based app has been
tested which could be recommended [20]. Besides the inaccuracies detected in the app BPM,
this review warned also that even wrist-worn cuff BPM devices show large inaccuracies in
regular home self-measurement despite training, and that this effect could be even more
pronounced in BPM taken with smartphone apps [17,20]. However, the authors state that
the results are improving over time [20]. Indeed, after the publication of this review, an
app called OptiBP was launched, which uses the same algorithm as the app tested in this
study [21,22]. In its validation study according to the AAMI/ESH/ISO protocol, the mean
difference between the OptiBP and the reference BP were 0.5 ± 7.7 mmHg for systolic
and 0.4 ± 4.6 mmHg against an auscultatory method [22]. The OptiBP acceptance rate
was 85% [22]. It has to be criticized though, that the protocol was not strictly followed,
and many more than the 255 measurements required in the protocol were included (in
some participants up to 9). This may lower the SD, which is at 7.7 mmHg for systolic
values close to the failing threshold. Part of this discrepancy may be caused by their use
of an auscultatory method and our use of a SmartBP technology as a comparison, and the
difference in the apps using the algorithm.

Considering the high prevalence of AHT, and that a relevant proportion of people
suffering from AHT are unaware of this diagnosis, easily available measurements are
an important, unmet need [4,33]. However, imprecise measurements, referring to both
under- and over-estimation, are associated with specific risks [33,34]. Underestimation of
BP leads to missed diagnoses and therefore missed opportunities to treat AHT to reduce
risk of cardiovascular events [35]. Overestimation of BP leads to false diagnoses with
a potential of labelling healthy people as sick [36,37], wasting healthcare expenses on
unnecessary diagnostics or treatment [38] and putting patients at risk of side-effects from
medications given without indication [39]. Conventional BP-monitoring procedures such
as ambulatory (ABPM) and home BP monitoring (HBPM) have their disadvantages, such as
discomfort, sleep disturbance, lack of availability and high costs [7]. Devices using modern
technology such as smartphone applications or wearables are generally unvalidated and
unregulated [7]. Additionally, usual validation protocols are not designed and approved for
the evaluation of cuffless BPM [29]. Nonetheless, smartphone-based BPM has a potential
to increase availability of BPM and thus improve BP control [22].

Current cut-off BP values for the definition of hypertension are based on large meta-
analyses and clinical trials including thousands of patients [6,35,40]. They are defined as
values at which the benefits of treatment unequivocally outweigh the risks [6]. Since an
approach including thousands of smartphone users to find the correlation between mea-
surements and cardiovascular events is not practicable at this stage, a primary comparison
with well-known measurement methods makes most sense. Many outcome studies used
OBPM for their assessment [6,34]. OBPM has an independent and continuous relation to
the incidence of cardiovascular endpoints such as stroke or myocardial infarction [6,35].
However, considering the correlation of OBPM with cardiovascular endpoints, adapted
versions of the protocols may make sense to test for comparability of BPM to conventional
OBPM, especially to discourage acceptance of low-accuracy methods.

4.1. Limitations

Our protocol is not suitable for validation according to international protocols and
should therefore not be mistaken with a proper validation of the algorithm, though such
protocols are not available for cuffless devices. Due to the low number of patients and
the high number of PPG readings with insufficient quality resulting in the exclusion of
a relevant number of pairs of comparisons, and even all readings in some participants,
we have a limited number of comparisons. Furthermore, some participants had only
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one AppBP available, which limits the interpretation of the results on participant level.
Furthermore, we used an oscillometric device for comparison instead of a mercury device
with double stethoscope. Despite its validation for clinical use, this oscillometric device’s
own inaccuracy and imprecision may at least in part contribute to the inaccuracy and
imprecision attributed to the app-based BPM in the present study [23].

4.2. Perspectives

In summary, we show that a smartphone-based PPG algorithm provides BP values
which do not differ significantly from cuff-based OBPM readings in this pilot study. This
app has a potential to pass validation protocols. Smartphone-based BP measurements may
in the future help to improve AHT awareness and BP control.

5. Conclusions

In comparison to oscillometric cuff-based measurements, the RIVA Digital smartphone
app, which was calibrated to a single-point conventional BP measurement, shows promising
results in this first-step pilot trial, especially regarding diastolic values. Its differences
between AppBP–CuffBP have a good stability one day after calibration. Before clinical use,
however, as a second step, this algorithm needs to undergo formal standardized validation
against an auscultatory reference BPM method. Furthermore, PPG signal assessment needs
to be improved.

6. Patents

M.P. and M.L. are the inventors of the algorithm tested in the present study, for which
there is a patent application (WO2016138965A1).

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/diagnostics12030749/s1. Figure S1: Correct positioning of the
patient’s finger during the measurement; Table S1: Average per-participant AppBP–CuffBP for
calibrated AppBP.
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