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Nonlinear dynamics underpin a vast array of physical phenomena ranging from interfacial motion to
jamming transitions. In many cases, insight into the nonlinear behavior can be gleaned through exploration
of higher order harmonics. Here, a method using band excitation scanning probe microscopy (SPM) to
investigate higher order harmonics of the electromechanical response, with nanometer scale spatial
resolution is presented. The technique is demonstrated by probing the first three harmonics of strain for a
Pb(Zr1-xTix)O3 (PZT) ferroelectric capacitor. It is shown that the second order harmonic response is
correlated with the first harmonic response, whereas the third harmonic is not. Additionally, measurements
of the second harmonic reveal significant deviations from Rayleigh-type models in the form of a much more
complicated field dependence than is observed in the spatially averaged data. These results illustrate the
versatility of nth order harmonic SPM detection methods in exploring nonlinear phenomena in nanoscale
materials.

N
onlinear systems are ubiquitous in nature, ranging from optics1 to electronics to chemical reactions2. An
important subset of these phenomena concerns the study of nonlinear dynamics as manifested in solids,
such as the motion of interfaces in ferroic materials3,4, onset of superconductive5 and polar phases6,

jamming transitions7, and electrochemical reactions8. These phenomena are an inherent part of technologically
important materials and systems such as batteries, fuel cells, martensites, ferroics, and many more. As such,
understanding sources and mechanisms of nonlinear responses and their role in emergent materials functionality
is a key challenge of science.

One well known method of exploring nonlinear responses is to examine the higher order harmonics of the
response of the material to an applied stimulus. For example, the use of second harmonic generation for probing
crystal structures, surface states and magnetic structure9, whilst force-based scanning capacitance microscopy
(which also utilizes the second harmonic) has been prevalent since the early 90’s10. Despite this recognition of the
role of higher order harmonic analyses, full understanding of the nonlinear dynamics over a variety of length
scales has been stymied by a lack of suitable techniques. Presently, there is a lack of understanding of how effects
driven by extremely local materials phenomena (in the nm- mm range) translate collectively into a much larger
device-level impact.

Recently we have shown that the individual behavior of domain walls in ferroelectrics at the local level is
different from that expected from the traditional Rayleigh framework11. Here, a new SPM technique using nth

order harmonic detection and band-excitation is demonstrated that allows decoupling of responses in microscale
volumes. A well-characterized ferroelectric material, namely epitaxial PZT, is used as a model system. It is found
that the response of the second harmonic has locally non-monotonic behavior that forms spatial clusters which
were thus far ‘‘invisible’’ when using methods limited to collecting spatially averaged data. It is speculated that
these departures arise from local frozen disorder. These studies discover a rich spectrum of emergent spatially-
inhomogeneous behaviors that may have broad implications for study of nonlinearity in other systems.

The basis for our approach rests on the fact that system responses can be approximated as linear for small
stimuli. Either increasing the amplitude of the driving force or probing second and higher order harmonic
responses permits exploration of nonlinear phenomena12,13. Many phenomena, such as Joule heating14, electro-
striction15, and electrostatic actuation10, rely on the second harmonic of the stimulus (e.g. electric field), whereas
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primarily linear phenomena (such as intrinsic piezoelectric coup-
ling) have much smaller higher order harmonic terms. As a result,
the decomposition of the total response into harmonic components
offers a path to decoupling individual response contributions to the
total signal.

Seminal work on ferroelectrics capacitors was undertaken by
Turik16 in the 1960s. Since then, research into the nonlinear prop-
erties of ferroelectric capacitor structures has been studied theoret-
ically by Boser17,18, (developing earlier statistical physics analyses by
Kronmüller19) and extended with experimental investigations by
Damjanovic20–22 and Trolier-McKinstry et al.23,24. Other significant
experimental25–27 and theoretical28 studies on harmonic analysis have
also been reported. However, these measurements have generally
been performed on macroscopic systems, e.g. using top-electroded
capacitor structures which sample large volumes of material. Hence,
spatial resolution and therefore, the ability to correlate the response
with microstructural features, have been unavailable. As a second
challenge, higher order harmonics can be very small, with low sus-
ceptibility constants when compared to the linear couplings present.
Finally, instrument-dominated contributions to the higher order
harmonics are not uncommon.

As a model for nonlinear interaction mapping, we explore the first
three harmonics of the strain response in a ferroelectric PZT capa-
citor. Similar capacitors have been well-studied macroscopically21,23,24,
and the theoretical framework for the harmonic responses has been
developed recently29–31. Furthermore, the technological applications
of ferroelectric capacitors, to act as transducers32 and actuators33,
necessitate a more thorough understanding of the nonlinear dyna-
mics in these systems.

In polycrystalline ferroelectrics, the strain and polarization res-
ponses at low to mid-range driving fields often follow the phe-
nomenological Rayleigh Law, which can be expressed as:

d33~dinitzaDE ð1Þ

x Eð Þ~ dinitzaDE0ð ÞE+ aD

2
E2{E2

0

� �
ð2Þ

where d33 is the piezoelectric coefficient, x is the strain, E 5 E0

sin(vt) is the applied field, E0 is the maximum field in the sweep,
aD is the irreversible Rayleigh coefficient, and dinit is the reversible
piezoelectric Rayleigh coefficient. The ‘1’ refers to the reverse
(decreasing) branch of the voltage sweep, and ‘-’ refers to the forward
(increasing) branch.

While the Rayleigh law has been shown to be largely valid for
ferroic systems (under appropriate conditions, such as a Gaussian
distribution of restoring forces acting on the domain wall18, low
driving fields34, a random distribution of pinning centers20, and rela-
tively small domain wall displacements18), the detailed mechanisms
through which nanoscopic behavior (e.g. at a single domain wall)
leads to Rayleigh behavior have remained mostly elusive. Physical
descriptions of this phenomenological relationship have been offered
since the works of Néel35 and Kronmüller36, and though theoretical
models of enhancements in piezoelectric coefficients from domain
wall motion are considerable in scope, the experimental evidence at
small length scales remained rather limited37,38. Detailed experi-
mental investigations for ferroelectric capacitors were undertaken
by Damjanovic and Trolier-McKinstry et al., beginning in the
1990’s. Their research indicated that many polycrystalline ferroelec-
trics obey the Rayleigh relationships (for both piezoelectric and
dielectric coefficients). It was shown that the extrinsic contributions
to the dielectric and piezoelectric coefficients are consistent with
irreversible domain wall motion in the sample, as confirmed by
recent high-resolution in situ x-ray diffraction studies39,40.

The Rayleigh relations provide the simplest mathematical frame-
work to study the nonlinear dynamics in this system. To investi-
gate the expected response from higher order harmonics, Fourier

expansion of the Rayleigh equation (2) can be carried out; this leads
to only odd-order harmonic components that contribute to the
strain41. Furthermore, the third and higher order harmonic terms
are characterized by a quadratic dependence of the strain on the
driving field22. In many ferroelectrics, extrinsic contributions to the
piezoelectric coefficients arise primarily from the motion of ferroe-
lastic domain walls42,11. However, certain samples in which ferroe-
lastic walls were not active still exhibited a linear dependence of the
piezoelectric coefficient on the driving field43. To explain the discrep-
ancy, the Rayleigh model was modified by Bassiri-Gharb et al.30 to
include the effect of a domain wall (or any other interface) moving
nearly-reversibly under applied fields in a ‘dynamic poling’ model. In
such a situation, the dinit, which was originally constant, becomes
time and field-dependent, i.e. dinit~d0 1z bzb0E0ð Þ sin vtð Þ½ �,
reflective of a domain wall moving in-phase with the applied (sinus-
oidal) bias, and with the displacement linearly proportional to the
applied field. Substituting this into equation 2, and developing the
Fourier expansion30 produces the higher order harmonics and their
field dependencies, which are organized in the table above for the
first three harmonics (Note: static terms have been neglected, as they
are not measured). It should also be noted that an additional contri-
bution to the second harmonic arises from electrostriction.

Note that a similar analysis to that given above can be performed
for more complex cases that include electrostrictive and spontaneous
contributions to the total strain31 (see Supplementary S1).

From Table 1, it is clear that measurement of harmonic terms
independently will allow decoupling of contributions to the strain
from reversible and irreversible domain wall motions, providing the
intrinsic electrostrictive strain is separately accounted for. A deter-
mination of the 3rd order harmonic term (expected to scale as E2), will
allow the contributions from the irreversible motions of the domain
walls to be determined, while the electrostrictive-like contributions
to the strain from the reversible domain wall motions (which will add

Table 1 | Expected harmonic terms from the ‘Dynamic Poling’
model resulting from nearly reversible displacement of domain
walls

Linear in E Quadratic in E

1st order harmonic d0E0 sin vtð Þ aDE2
0 sin vtð Þz 4aDE2

0

3p
cos vtð Þ

2nd order harmonic
bd0E0

2
cos 2vtð Þ b0d0E2

0

2
cos 2vtð Þ

3rd order harmonic 0
4aDE2

0

15p
cos 3vtð Þ

Figure 1 | General operating principle for nth harmonic detection. Using

the band excitation method, a band of frequencies centered around v0/n is

excited, and the nth harmonic response is (simultaneously) measured at

the contact resonance v0.
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to the real electrostrictive term) can be determined by calculating the
2nd order harmonics. Furthermore, b and b’ can be separated if the
field-dependencies of the response are measured. However, it is not
yet clear whether such macroscopic models remain valid in the meso-
scopic scale, and the length limits11 of these models have not been
tested. In the next section, a technique to resolve these higher order
harmonics, analyze the field dependencies, and correlate them locally
at the nanoscale is discussed.

Results
The band-excitation (BE-) scanning probe microscopy technique
for determining the first-order harmonic electromechanical res-
ponse (piezoresponse) has been reported elsewhere44. Briefly, a band
of frequencies is excited around the contact resonance of the can-
tilever (Figure 1, red square), and the response across the band is

simultaneously measured and Fourier transformed to yield the sys-
tem’s total response. The BE-response is then fit to a simple har-
monic oscillator (SHO) function to extract the response amplitude,
phase, resonance and quality factor of the cantilever. The BE-
response is measured as a function of AC voltage. By judicious selec-
tion of the excitation function, it becomes possible to decouple the
sample nonlinearity from the nonlinearity of the tip-surface junc-
tion45. This procedure is repeated across a grid of points on the
sample, and the data can be fit to a predefined function at each point,
to yield coefficient maps of the various fitting parameters. An exten-
sion to this technique (Figure 1) is the measurement of the nth har-
monic (n 5 1,2,3,…), where instead of exciting the band of
frequencies at the contact resonance v0, the excitation is around
v0/n. The measurement is still performed at the contact resonance;
note that this technique has been demonstrated in a limited fashion

Figure 2 | Piezoresponse amplitude for 1st, 2nd and 3rd harmonics, and mean response. The mean response for the three harmonics is shown in (a). The

second and third harmonics are plotted on the right axis, and are two orders of magnitude weaker than the first. (b–d) The 50 3 50 grid (5 mm 3 5 mm)

spatial maps of the piezoresponse amplitude (a.u.) at Vac 5 2 V are shown for (b) first, (c) second and (d) third harmonics. The white pixels in

these spatial maps are points where a proper SHO fit was not possible.

www.nature.com/scientificreports
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for n 5 2 previously, though only for constant AC amplitude46.
Measurement of higher order harmonics in this manner has two
key advantages. First, there is a significant enhancement of the signal
due to electromechanical coupling to the contact resonance of the
cantilever; secondly, for higher order harmonics, if the excitation was
at the contact resonance, then the detection would likely be in the
MHz range, which is beyond the range of many SPM-based lock-in
amplifiers.

The domain structure of the tetragonal PZT capacitor was initially
explored through Piezoresponse Force Microscopy (PFM), see
Supplementary S2. The sample is a ,611 nm thick (001) tetragonal
Pb(Zr0.45,Ti0.55)O3 epitaxial film grown on (001) SrTiO3 substrate by
pulsed laser deposition. X-ray diffraction indicated the sample is
phase-pure. The film has a coercive field Ec 5 ,44 kV/cm.

The response of the first three harmonics was then investigated as
a function of probing voltage (Vac), which in increments of 0.0625 V
ranged from Vac 5 0.0625 V to Vac 5 2 V (corresponding to mea-
surement up to 0.75Ec), on a 50 3 50 grid in a 5 mm 3 5 mm area
yielding a spatial resolution of 100 nm per grid point. Maps of the
piezoresponse and resonance as a function of Vac for all three har-
monics are provided in Supplementary S3 and are also included as
videos. The average response as a function of the applied voltage, for
all three harmonics is plotted in Fig. 2(a). Error bars are plotted in
black. The first harmonic signal appears largely linear, whereas the
second and third harmonics can be better described by higher order
polynomial functions. It is clear that the second and third harmonics
of the piezoresponse are two orders of magnitude smaller than the
first harmonic (Supplementary S4).

The voltage slices for the first piezoresponse of the three harmon-
ics, i.e. the spatial maps, are shown for Vac 5 2 V in Fig. 2(b–d). The
spatial maps for the resonance are given in Supplementary S5. The
white pixels in these spatial maps are points where the response is
close to zero, and thus were not amenable to fitting. The third har-
monic in particular shows only a small number of spatial points that
exhibit a measurable response. Interestingly, these tend to group in
clusters. The second harmonic spatial map appears to show some
correlation with the regions of high response in the first harmonic
spatial map. The dynamic poling model, coupled with the obser-
vation that the second harmonic is spatially inhomogeneous, sug-
gests that a portion of the second harmonic could be due to nearly
reversible domain wall motion. That is, if the high local linear piezo-
electric coefficient is enhanced by the existence of a contribution
from nearly reversible domain wall motion, then it is reasonable that
the second harmonic signal is high in the same regions of the sample.

Spatial correlations with the third harmonic and the other two har-
monic response maps, however, are not evident.

In order to study the local responses, i.e. piezoresponse amplitude
at a particular (X,Y) coordinate, in more detail, the dependence of the
first harmonic piezoresponse amplitude on the probing voltage (Vac)
was investigated. The local response was found to be a linear function
of VAC (P 5 a1Vac 1 c1) in some regions, and a quadratic function of
Vac (P~a1V2

acza2Vaczc1) in others. A ‘fit-type’ map based on these
two model response types considered shows these regions in
Fig. 3(a). The majority of the studied area is linear (blue), but small
clusters exhibiting quadratic behavior (green) also exist. However,
the nonlinearity is relatively small for this film, suggesting that any
domain walls that are contributing to the signal are doing so prim-
arily in a reversible manner. The average response from the linear
and quadratic regions is plotted in Fig. 3(b). The relatively small
nonlinearity observed in this film may be the cause of the weak 3rd

harmonic signal, which should be locally correlated with the irre-
versible Rayleigh coefficient (Table 1). The effective piezoelectric
coefficient deff shown in Fig. 3(c), was calculated from the expression,

deff ~
DP
DVac

~
P Vacð Þ{P Vrð Þ

Vac{Vr
, ð3Þ

where DP and DVac are, respectively, the change in the overall aver-
age piezoresponse and AC probing voltage from the reference con-
dition (P(Vr),Vr) where Vr 5 0.0625 V. The plot of deff vs. probing
field reveals that for Vac,0.6 V (corresponding to Vac,0.22Ec), the
deff is changing linearly with respect to applied field, suggesting that
the measurements are within the Rayleigh regime.

Discussion
A first attempt was made to use the dynamic poling model to describe
the quadratic function of the piezoelectric responses. It was found
that since the majority of the data for higher harmonics were taken at
voltages that exceed the Rayleigh regime, the results were not accept-
able, i.e. the quality of the power-law fitting was such that the ana-
lytical model cannot be considered to be descriptive. Additional
features in the local response at a particular (X,Y) coordinate shown
in Fig. 4(a) appear very different from the average second harmonic
response shown in Fig. 2(a). This type of response is clearly not
amenable to quadratic fits (unlike the average second harmonic res-
ponse), and it is comprised of a jagged response which we refer to as
‘fine structure’ overlaid on a monotonic increase. It is noted here that
these fine structure features are found at nearly every point in the
(X,Y) spatial map for the second harmonic, not just at this particular

Figure 3 | Investigation of first harmonic response. (a) Fit-type map displaying regions which show linear, (P 5 a1Vac 1 c1), (blue) and quadratic,

(P~a1V2
acza2Vaczc1), (green) behaviors. (b) Average 1st harmonic piezoresponse from blue and green points in (a) along with the overall average

piezoresponse of the whole region inspected. (c) Effective piezoelectric coefficient deff.

www.nature.com/scientificreports
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point. Therefore, to study these fine structure features in more detail,
a background was constructed using the bottom half segment of the
convex hull of the data points to represent the monotonically increas-
ing trend as shown by the red line in Fig. 4(a). (Supplementary S6).
This background (B) was calculated for the second harmonic
response at each (X,Y) position, and was subtracted from the raw
second harmonic piezoresponse (P) to produce a Fine Structure
matrix F, i.e. F 5 F(X, Y, Vac). Here, the aim is to capture the
portion of the data that represents deviation from a monotonically
increasing trend, i.e. the convex hull of the data points. Principal
Component Analysis (PCA)47, a convenient technique for visualizing
trends in multidimensional datasets, was then performed on F,
yielding a set of N eigenvectors wi(Vac) with associated eigen-
values ai(X, Y) which allows the dataset F to be expressed as
F X,Y ,Vacð Þ~

PN
i ai X,Yð Þwi Vacð Þ. PCA is a decomposition, carried

out in such a way that the first eigenvector (principal component) w1

accounts for the highest statistical variation in the dataset, the second
component w2 accounts for the highest variation with the constraint
it be orthogonal to the first eigenvector, and so on until the entire
dataset can be described from the new set of eigenvectors. The cor-
responding loadings (eigenvalues) can be plotted spatially. For the
PCA on F (Supplementary S7), the first eigenvector w1 contains one
peak and corresponds to exactly one fine structure feature (1FS)
appearing in the second harmonic response, the second eigenvector
w2 contains one peak and one valley and corresponds to two features
(2FS), and so on for the first five eigenvectors (higher order eigen-
vectors are dominated by noise). The number of fine structure fea-
tures is equal to the total number of peaks and valleys present in the
eigenvector. The data F(X, Y, Vac) obtained at each point (X,Y) can be
associated with the eigenvector wi for which the eigenvalue ai is the
largest one at that point (i.e., the largest projection). In this manner,
fine structure features (1FS to 5FS) can be determined for each point
(X,Y) and plotted spatially to obtain an FS mask (or regional decon-
struction) as shown in Fig. 4(b).

Interestingly, this regional deconstruction shows that the fine
structure features tend to cluster, and is particularly evident for
points which display one (blue), two (green) and three (red) fine
structure features. The associated plots of the average second har-
monic response from each of these colored regions are given in
Fig. 4(c) along with their overall average response. More information

on the local cluster behavior can be found in Supplementary S8.
Surprisingly, averaging of all the local responses leads to an overall
average response [solid black line in Fig. 4(c)] that can be better
approximated by a polynomial function, in stark contrast to the local
response. However, the sum average of the second harmonic appears
to be much more closely aligned with the expected macroscopic
response, indicating that the fine structures are in fact arising from
local, frozen disorder in the material.

In summary, a generalized scanning probe microscopy technique
to explore nonlinear dynamics, through nth-order harmonic detec-
tion with nanometer spatial resolution is presented. For the first time,
the appearance of fine structure features in the second harmonic are
identified and suggested to arise from local frozen disorder. The
novel technique used here potentially allows the length scales of
macroscopic theories to be tested, and furthermore sheds light on
how properties develop at the nanoscale. This study reveals the
potential of harmonic detection in uncovering nonlinear dynamics
in material systems.

Methods
The nth harmonic detection system was implemented on a commercially available
AFM platform (Cypher Model, Asylum Research) equipped with in-house band-
excitation performed with National Instruments PXI-based electronics with Labview
and Matlab-based scripts. The sample is a ,611 nm thick (001) tetragonal
Pb(Zr0.45,Ti0.55)O3 epitaxial film grown on (001) SrTiO3 substrate by pulsed laser
deposition. X-ray diffraction indicated the sample is phase-pure. The film has a
coercive field Ec 5 ,44 kV/cm. Numerical analysis was performed with Matlab v7.

1. Boyd, R. W. Nonlinear Optics. (Academic Press, 2008).
2. Silberberg, M. S. Chemistry: The Molecular Nature of Matter and Change.

(McGraw-Hill Higher Education, 2008).
3. Parkin, S. S. P., Hayashi, M. & Thomas, L. Magnetic Domain-Wall Racetrack

Memory. Science 320, 190–194 (2008).
4. Scott, J. F. & Paz de Araujo, C. A. Ferroelectric Memories. Science 246, 1400–1405

(1989).
5. Dubi, Y., Meir, Y. & Avishai, Y. Nature of the superconductor-insulator transition

in disordered superconductors. Nature 449, 876–880 (2007).
6. Kutnjak, Z., Petzelt, J. & Blinc, R. The giant electromechanical response in

ferroelectric relaxors as a critical phenomenon. Nature 441, 956–959 (2006).
7. Keys, A. S., Abate, A. R., Glotzer, S. C. & Durian, D. J. Measurement of growing

dynamical length scales and prediction of the jamming transition in a granular
material. Nat. Phys. 3, 260–264 (2007).

8. Hamann, C. H., Hamnett, A. & Vielstich, W. Electrochemistry. (Wiley-VCH,
2007).

Figure 4 | Fine-structure analysis in 2nd harmonic. An example of how the ‘Fine Structure’ (FS) in the 2nd harmonic piezoresponse at a single (X,Y) point

was obtained is shown in (a). The error bars shown correspond to 99% confidence intervals of the data points. The difference between the raw

piezoresponse (P) and the background (B) constructed gives the FS data (black line, F5P-B). Subsequent analysis as explained in the text allows

construction of an FS mask (b), which shows the most dominant eigenvector wi (i.e. fine structure feature) at each (X,Y) coordinate in the studied region.

Color code employed: blue, green, red, yellow and purple, respectively, for w1 (i.e. 1FS) to w5 (i.e. 5FS). (c) Average 2nd harmonic response for the different

colored regions in (b) with the overall average piezoresponse of the whole region inspected. The number of points stands for the total number of points

populating the corresponding region in FS mask shown in (b).

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 3 : 2677 | DOI: 10.1038/srep02677 5



9. Fiebig, M., Pavlov, V. V. & Pisarev, R. V. Second-harmonic generation as a tool for
studying electronic and magnetic structures of crystals: review. J. Opt. Soc. Am. B
22, 96–118 (2005).

10. Martin, Y., Abraham, D. W. & Wickramasinghe, H. K. High-resolution
capacitance measurement and potentiometry by force microscopy. Appl. Phys.
Lett. 52, 1103–1105 (1988).

11. Vasudevan, R. K. et al. Nanoscale origins of nonlinear behavior in ferroic thin
films. Adv. Func. Mat. 23, 81–90 (2013).

12. Wilson, J. R., Sase, M., Kawada, T. & Adler, S. B. Measurement of Oxygen
Exchange Kinetics on Thin-Film La0.6Sr0.4CoO3-d Using Nonlinear
Electrochemical Impedance Spectroscopy. Electrochemical and Solid-State Letters
10, B81–B86 (2007).

13. Wilson, J. R., Schwartz, D. T. & Adler, S. B. Nonlinear electrochemical impedance
spectroscopy for solid oxide fuel cell cathode materials. Electrochimica Acta 51,
1389–1402 (2006).

14. Seeger, K. & Maurer, W. Nonlinear electronic transport in TTF-TCNQ observed
by microwave harmonic mixing. Solid State Commun. 27, 603–606 (1978).

15. Lehmann, W. et al. Giant lateral electrostriction in ferroelectric liquid-crystalline
elastomers. Nature 410, 447–450 (2001).

16. Turik, A. Theory of polarization and hysteresis of ferroelectrics. Sov Phys-Sol State
5, 885–886 (1963).

17. Boser, O. Electromechanical resonances in ceramic capacitors and evaluation of
the piezoelectric materials’ properties. Advanced Ceramic Materials 2, 167–172
(1987).

18. Boser, O. Statistical theory of hysteresis in ferroelectric materials. J. Appl. Phys. 62,
1344–1348 (1987).

19. Kronmüller, H. & Angew, Z. Statistical Theory of Rayleigh’s Law. Physik 30, 9
(1970).

20. Damjanovic, D. Stress and frequency dependence of the direct piezoelectric effect
in ferroelectric ceramics. J. Appl. Phys. 82, 1788–1797 (1997).

21. Damjanovic, D. Logarithmic frequency dependence of the piezoelectric effect due
to pinning of ferroelectric-ferroelastic domain walls. Phys. Rev. B. 55, R649 (1997).

22. Damjanovic, D. in Science of Hysteresis Vol. 3 (eds Giorgio. Bertotti & Isaak D.
Mayergoyz) 337–465 (Elsevier Inc., 2005).

23. Xu, F., Chu, F. & Trolier-McKinstry, S. Longitudinal piezoelectric coefficient
measurement for bulk ceramics and thin films using pneumatic pressure rig.
J. Appl. Phys. 86, 588–594 (1999).

24. Xu, F. et al. Domain wall motion and its contribution to the dielectric and
piezoelectric properties of lead zirconate titanate films. J. Appl. Phys. 89,
1336–1348 (2001).

25. Leary, S. P. & Pilgrim, S. M. Harmonic analysis of the polarization response in
Pb(Mg1/3 Nb2/3)O3-based ceramics-A study in aging. IEEE T. Ultrason. Ferr. 45,
163–169 (1998).

26. Sherlock, N. & Meyer, R. Large signal response and harmonic distortion in
piezoelectrics for SONAR transducers. J. Electroceram. 28, 202–207 (2012).

27. Hemberger, J., Lunkenheimer, P., Viana, R., Böhmer, R. & Loidl, A. Electric-field-
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