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Abstract: Magnesium-doped zinc oxide “ZnO:Mg” nanocrystals (NCs) were fabricated using a
sol gel method. The Mg concentration impact on the structural, morphological, electrical, and
dielectric characteristics of ZnO:Mg NCs were inspected. X-ray diffraction (XRD) patterns display
the hexagonal wurtzite structure without any additional phase. TEM images revealed the nanometric
size of the particles with a spherical-like shape. The electrical conductivity of the ZnO NCs, thermally
activated, was found to be dependent on the Mg content. The impedance spectra were represented
via a corresponding circuit formed by a resistor and constant phase element (CPE). A non-Debye type
relaxation was located through the analyses of the complex impedance. The conductivity diminished
with the incorporation of the Mg element. The AC conductivity is reduced by raising the temperature.
Its plot obeys the Arrhenius law demonstrating a single activation energy during the conduction
process. The complex impedance highlighted the existence of a Debye-type dielectric dispersion.
The various ZnO:Mg samples demonstrate high values of dielectric constant with small dielectric
losses for both medium and high-frequency regions. Interestingly, the Mg doping with 3% content
exhibits colossal dielectric constant (more than 2 × 104) over wide temperature and frequency ranges,
with Debye-like relaxation. The study of the electrical modulus versus the frequency and at different
temperatures confirms the non-Debye relaxation. The obtained results reveal the importance of the
ZnO:Mg NCs for device applications. This encourages their application in energy storage.

Keywords: ZnO nanocrystals; Mg doping; polaron hopping; high-dielectric constant; modulus

1. Introduction

Zinc oxide (ZnO) has been the subject of rapid development in the past decades in
order to meet different research requirements. Essentially, its low-cost eco-friendly nature
is behind its success. This explains the significant demand of ZnO material in several
technological fields such as: solar cells [1], gas sensing [2], and light-emitting devices [3].
Indeed, ZnO material owns a wide band gap energy (≈3.37 eV) as well as a broad extinction
binding energy (≈60 meV) at room temperature [4,5]. It is also distinguished with its
notable dielectric characteristics, particularly, an elevated dielectric constant and a minor
dielectric loss [6].

In this regard, the dielectric properties of ZnO are extremely attractive to researchers.
Previous studies reveal the importance of developing materials with a high dielectric
constant that ensures better energy storage in devices. Such materials have been widely
applied to modern wireless communication technology [7] and electronic components
such as capacitors. Similarly, fabricating material with low dielectric loss guarantees
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proper energy storage. In fact, low dielectric loss is required for non-linear optics domains,
particularly at elevated frequencies [8].

ZnO materials have been enormously improved when associated with the appropriate
oxides [9–11], 2D materials [12], and/or simple doping [13]. Herein, the properties of ZnO
become highly sensitive to the nature of the dopant element and its concentration [14,15].
Its electrical properties depend on the excess of zinc at the interstitial position [16] and are
affected essentially by the dopant element, such as, Fe [17], Al [18], and Sn [19]. However, its
dielectric features drastically change with an element incorporated into its lattice [20–22].
Particularly, Mg was used to improve both the dielectric properties and the electrical
conduction of ZnO. Indeed, the Zn substitution with the Mg element does not affect the
lattice constants [23]. This is due to the high similarity between both elements, where their
ionic radius is close to each other (i.e., Mg2+ = 0.057 and Zn2+ = 0.060). This results in a
decrease in the defect’s density in the ZnO lattice through a specific amount of Mg doping
which ameliorates the electrical and dielectric properties of ZnO.

Deep investigations are still needed into the structural, transport, dielectric, and
modulus properties of ZnO NCs-doped Mg via a low-cost technique. Earlier studies
confirm the encouraging performances of the electrical and dielectric properties of ZnO:Mg
in numerous applications. O. Hafef et al. [24] demonstrated the decrease in AC conductivity
with increasing MgO concentration in ZnO/MgO composites. This has been assigned to
the sintering technique where ions scattering form deep donor levels in the band gap.
However, other studies exhibited the diminution of the AC conductivity of the material
for low Mg-doping amounts [25], while high-doping levels elevate the AC conductivity
of the ZnO matrix [26]. Justin Raj et al. [27] succeeded in synthesizing ZnMgO ceramics
with a colossal dielectric constant that emerged from grain defects and their boundary.
This reduces the conductivity relaxation due to the adsorbed water molecules. Indeed,
the adsorbed moisture in the porous structure of ZnO ceramics codoped with Li and Mg
contribute to the anomalous dielectric constant [28]. A similar tendency of the dielectric
constant was reported for porous ZnO ceramics treated at high pressure. Here, the changes
between grains and their boundary resistance was owed to a relaxation mechanism of the
Maxwell–Wagner type that causes such behavior [29].

In our previous investigations, we inspected the opto-structural properties of ZnO:Mg
nanocrystals (NCs) [23]. Herein, by varying the Mg content in the ZnO lattice, we expect a
colossal enhancement of the dielectric constant, which is beneficial for energy storage appli-
cations. The study covers a deep investigation of the transport properties, dielectric losses,
dielectric dispersion, and modulus. The impedance spectroscopy, as a nondestructive and
powerful method for electrical characterization, is used to study the transport changes in
both grains and grain boundaries.

2. Experimental Procedure
2.1. Synthesis of ZnO:Mg NCs

The ZnO:Mg NCs preparation technique was provided in our earlier study [23].
Briefly, zinc acetate dehydrate “Zn(CH3COO)2. 2H2O; 0.02M” and magnesium acetate
tetrahydrate “Mg (CH3COO)2. 4H2O”, with a purity of 99.99%, were used as starting
materials. Citric acid (C6H8O7) was used as a stabilizer and deionized water was used as
a solvent. The synthesis process could be resumed as follows: 400 mL of the solvent was
used to dissolve the precursors. The mixture was stirred for 2 h at 50 ◦C and pre-heated
at 80 ◦C until the solvent was completely removed. Then, we proceeded to the second
thermal treatment at 350 ◦C for 3 h. The obtained powders were crushed and annealed
at 500 ◦C for another 3 h to achieve the crystallized phase. The thermal process was
performed in two steps in order to ensure well-organized crystalline phases and reduce the
amount of impurity in each sample. The prepared powders are denominated as ZnO:Mg
x% where x = 0, 1, 2, 3 and 5, representing the percentage of [Mg]/[Zn].The uniaxial press
of 10 tons/cm2 was used to press the crystallized powders in order to obtain disk pellets of
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1 cm diameter and a thickness “e” of 2 mm. The fabricated pellets were investigated during
impedance measurements.

2.2. Experimental Study

XRD measurements were accomplished with a Philips X’Pert system (Malvern, UK),
using a copper X-ray tube (λ = 1.54056 A◦) at room temperature, at 40 kV and 100 mA.
The obtained diffractometer in the angle domain was between 30◦ to 70◦ with a step size
of 0.02◦. The transmission electron microscopy (TEM) images were performed with a
Philips CM30 microscope (Malvern, UK). The pellets were calcined and put among two
platinum electrodes in a furnace. We proceeded to take the measurements by varying
the temperature for each sample with a step of 10 ◦C from 200 to 260 ◦C. The study of
the dielectric properties at different temperatures was conducted by gathering complex
impedance data in the frequency domain between 40 Hz to 5 MHz with an impedance
analyzer (Agilent 4294A, USA).

3. Results and Discussion
3.1. Structural and Morphological Studies

Figure 1 represents the XRD patterns of pure and Mg-doped ZnO NCs. The obtained
diffraction peaks highlighted the hexagonal wurtzite structure of ZnO of the different
samples. The patterns demonstrate high crystalline quality along the (101) plane as a
preferred orientation.
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Figure 1. X-ray diffraction patterns of the prepared ZnO:Mg NCs.

The ZnO structure remains unchanged after the Mg incorporation with low content.
This affects the intensity and the wideness of the peaks. Indeed, the full width at half
maximum of the peaks along the (101) plane decreased with Mg doping. The FWHM
of the doped sample is reduced compared with that of a pure ZnO, highlighting the
improvement of the crystalline structure. On other hand, the crystallite size increases with
the incorporation of Mg, which was found to be greater than that of the undoped sample.
Such an enhancement of the crystallite size is assigned to the Zn2+ substitution with Mg2+.
The obtained values are gathered in Table 1.
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Table 1. Structural parameters of pure ZnO and ZnO:Mg NCs [23].

FWHM of (101) Peak (Rad) D (nm)

ZnO:Mg 0% 0.0060 26.82
ZnO:Mg 1% 0.0054 30.47
ZnO:Mg 2% 0.0038 42.96
ZnO:Mg 3% 0.0044 36.75
ZnO:Mg 5% 0.0048 33.69

The TEM images of non-doped ZnO and ZnO:Mg (3%) NCs are given in Figure 2. A
homogenous structure with a spherical shape could be observed on the fabricated NCs.
The mean particle size is about 30 nm, which is in good agreement with the XRD analysis.
Moreover, it is clear that the nanocrystal shape remains the same after doping. However, it
is difficult to judge if the size decreases with Mg doping.
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Figure 2. TEM images of undoped (a) and Mg3%-doped (b) ZnO NCs.

3.2. Impedance Spectroscopy
3.2.1. Electrical Study

a. Impedance Spectra
The complex impedance plots of undoped ZnO at various temperatures is given

in Figure 3. We also studied the complex impedance changes at 200 ◦C for the various
Mg percentages (see, Figure 4). Both figures illustrate the well-defined semicircles in the
complex plane. This confirms the homogeneity and the single phase of the prepared doped
samples. The centers of the semicircles are localized below the Z′ axis, which may be
related to a non-Debye relaxation nature [30,31]. Compared with pure ZnO, the semicircles
of Mg-doped ZnO NCs appeared at higher temperatures. Here, the increase in the Mg
concentration enlarges the semicircle radius. However, the sample doped with 3% of Mg
displays an opposite tendency. The diminution in the radius of the semicircle illustrates the
enhanced of conductivity in the sample [32].
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The investigation of the impedance plot requires modeling of the electric impedance
with a corresponding circuit including one block consisting of a parallel association of the
bulk resistance R and a capacitor.

In this case, the capacitor could be substituted by a constant phase element (CPE) ZCPE
because of the semicircles depression [33]. ZCPE is given by:

ZCPE =
1

A0(jω)n (1)

Here, j denotes the imaginary unit, ω corresponds to the angular frequency, A0 is the
capacitance value of ZCPE, and n is non-dimensional parameter (0 ≤ n ≤ 1) reflecting the
trend to an exact semicircle [34].

The total impedance Z* is described as follows:

Z = Z′ − jZ” (2)
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where

Z′ =
R×

(
1 + R× A0 × (2πx)n × cos

(
π
2 n

))
1 + 2× R× A0 × (2πx)n × cos

(
π
2 n

)
+

(
R× A0 × (2πx)n)2 (3)

− Z′′ =
R2 × A0 × (2πx)n × sin

(
π
2 n

)
1 + 2× R× A0 × (2πx)n × cos

(
π
2 n

)
+

(
R× A0 × (2πx)n)2 (4)

The suggested model is used to fit the Nyquist plots, proving the viability between
the equivalent circuit and the existing system (see Figures 3 and 4). Table 1 lists the extract
parameters. The capacitances, Ag, is sized up at 10−10 F cm−2 Sn−1, demonstrating that
the grain boundary contribution is formed as a general response of the system [35,36]. The
slight difference in ionic radius between Zn and Mg can generate a small displacement in
the ZnO structure, since the Mg substitutes the interstitial Zn sites [23]. The ng exponent
values remain unaffected with increasing the Mg content oppositely to the resistance Rg
that raises in this case (see, Table 2). This may be explained by the structural defects
related to the doping. A similar behavior was observed for ZnO-doped Sb [37], where the
enhancement of the resistance is coming from the substitution of the Zn2+ ions with Sb3+.
Previous work by M. Ben Ali et al. [38] examining the Ni-doping influence on the electrical
properties of ZTO assigned the increase in resistivity rate to the placement of the excess
of the Ni-doping element on the grain boundaries. This demonstrates that Ni atoms are
non-localized in the ZTO matrix, where the Ni excess leads to the formation of a Schottky
barrier blocking the carrier’s transport. Based on these results, we can conclude that for
high-doping concentrations, Mg atoms prefer to sit in the grain boundaries and form a
barrier to hinder the carrier’s transport.

Table 2. Fitting parameters relative to the equivalent circuit elements for all the ZnO:Mg samples.

Rb (105 Ω) Ag (10−10 F cm−2 Sn−1) ng

Mg 0% 1.82848 1.9535 0.8023
Mg 1% 8.17662 1.7426 0.8325
Mg 2% 35.72726 2.3201 0.7633
Mg 3% 30.83072 2.4610 0.7645
Mg 5% 49.20645 1.6784 0.8153

b. DC Conductivity
In order to inspect the electrical properties (DC conductivity, σDC) of the Mg-doped

ZnO NCs, we use the following expression:

σDC =
e

SZ0
(5)

where e is the sample thickness, S represents the surface region, and Z0 characterizes the
resistance found based on the interception of the semicircles with the real axis.

The reciprocal temperature dependence to the DC conductivity is drawn in straight
lines in Figure 5. Here, the Arrhenius law could be used:

σDCT = σ0 . exp
(
− Ea

KB.T

)
(6)

where, KB designed the Boltzmann constant and Ea is the activation energy corresponding
to the energy difference between the conduction levels and the donor. The Ea values are
deduced from the linear fit slope of the logarithmic DC conductivity (σdc.T) versus 1000

T .
We found low activation energy values of doped samples in comparison with unmodified
ZnO (see Table 3). The activation energy is estimated at 0.25 eV for the 1% Mg-doping
concentration, which is ascribed to Zn2+ [39]. Besides, such an activation energy is found
in the range (0.32 to 0.38 eV) for higher Mg percentages. These values originate from the
oxygen vacancies VO [40]. Chaari et al. [19] reported comparable results for ZnO ceramics
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doped with high concentrations of Sn2O3. The lower activation energy values reveal the
source of the conduction phenomenon process in ZnO:Mg NCs, which is associated with
the polaron hopping.
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Table 3. σdc and Ea changes with Mg content at T = 250 ◦C.

% Mg 0 1 2 3 5

Rb (kΩ) 840.56 1481.82 6589.22 8321.14 8424.57
σDC(10−6 S.m−1) 15.15 8.56 1.93 1.53 1.51

Ea (eV) 0.62 0.25 0.36 0.38 0.32

The DC conductivity decreases significantly with increasing the Mg doping amount
due to the diminishing of the free electrons density. In fact, the imperfections act as
trapping/scattering centers to reduce the number of free electrons. Further, the Mg atoms
located at the grain boundaries behave as an electrical barrier that raise the carrier scattering,
therefore, decreasing the conductivity [19,41].

c. AC conductivity
Figure 6a represents the frequency–temperature dependency of the AC conductivity.

This is demonstrated by the Jonsher’s relationship [38,42]:

σAC (ω) = σdc + Aωs (7)

where, σdc is the DC conductivity associated to the flat region, Aωs is the frequency reliant
expression that characterizes the dispersion phenomenon, A a constant associated with the
strength of polarizability [42], and s is a factor verifying 0 ≤ s ≤ 1 [43] which describes
the interaction level between the mobile ions and the matrix. All these parameters depend
on temperature [44].
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As we can see from Figure 6a, all the curves depend on temperature. The power law is
obeyed for the different ZnO:Mg samples since the fit matches well with the experimental
data in Figure 6a–c. At low-frequency range, the plots show an unaffected flat region
corresponding to DC conductivity, whereas the dispersion at high-frequency range is
related to AC conductivity. Ionic conductors are characterized with such a behavior [45].
For the lower frequencies, the conductivity is reduced with further Mg addition due to the
placement of the doping element on the interstitial position in the ZnO lattice that enhances
structural defects concentration (Figure 6b). At the high-frequency region, the conductivity
continues to decrease from 1 to 3% of Mg content while it shows an increase for 5% of Mg
doping. These latest samples display a high conductivity due to the increase in oxygen
vacancies that lead to augmentation of the hopping charge carrier’s concentration [46].

The theoretical fits give σdc and s values which can explain the mechanism related
to the conduction process. The s parameter is dependent on the ZnO and ZnO:Mg (1%)
temperature, shown in Figure 7. It slightly increases from 0.42 to 0.56 with temperature.
This increase could be attributed to the quantum mechanical tunneling (QMT) conduction
model [47]. Here, s is expressed as [48]:

s = 1− 4

ln
(

1
ωτ0

)
− WH

KBT

(8)

where, KB is the Boltzmann constant, WH is the energy of the polaron hopping, and τ0 is a
typical relaxation time. When WH >> KBT, the expression can be simplified as follows:

s = 1 +
4kBT
WH

(9)
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For the samples ZnM2 and ZnMg3, the exponent s was found to vary from 0.50 to
0.42 with increasing temperature from 200 to 260 ◦C. However, its value is more important
for the ZnO:Mg (5%) sample, around 0.7, and decreases slightly with temperature. The
diminution of the s parameter leads to the principal transfer route which is correlated with
the barrier hopping (CBH) model [49–51], where charge carriers skip among sites over the
potential barrier parting them instead of tunneling via the barrier [52]. The parameter s
obeys the following equation [53]:

s = 1− 6KBT
WM

(10)

WM is the upper barrier height at an infinite separation. This is also identified as the energy
relative to polaron binding in its localized sites.

Figure 8 displays the (1-s) plots versus the temperature that gives the WM values . WM
and s raised with Mg concentration (see Figure 8). Such a change in conduction model
is assigned to the enhancement of the charge carrier induced by more Mg2+ ions in the
ZnO lattice.
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3.2.2. Dielectric Study

a. Permittivity and loss studies
The complex dielectric constants describe the dielectric properties of materials. They

are determined from Z′ and Z” (Equations (3) and (4), respectively) and given by the
following formula [38]:

ε(ω) = ε′(ω)− jε′′ (ω) =
1

jωC0(Z′ + jZ′′ )
(11)

where the real ε′ and the imaginary ε” parts illustrate the quantities of energy accumulated
and dispersed in the dielectric owing to the applied electric field, correspondingly. Their
expressions are:

ε′(ω) = − Z′′

ωC0

(
Z′2 + Z′′ 2

) (12)

ε′′ (ω) =
Z′

ωC0

(
Z′2 + Z′′ 2

) (13)
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Here, C0 is geometrical capacitance of samples (C0 = ε0S
e , ε0 is the permittivity of the

vacuum, S is the cross-sectional area of the flat surface of the pellet, and e is the thickness).
Z′ and Z” are the real and the imaginary parts of impedance. The dielectric loss (tan δ) is
calculated from the values of the dielectric constants and could be written as follows [54]:

tan δ =
ε′′

ε′
(14)

Figure 9a depicts the frequency dispersion ε′ for all the ZnO:Mg samples. It shows
an increase of ε′ with the Mg content. For each sample, the dielectric constant gradually
reduces as the frequency augments, and reaches an almost constant value (relatively high)
in the high frequencies range.
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Figure 9b depicts the frequency dispersion ε′ versus the temperature of the ZnO:Mg
(3%) sample. As shown, ε′ is gradually reduced through the increasing of the frequency to
reach almost a constant value in the high frequencies range. This way points to a Debye-
type dielectric dispersion [55,56]. According to the Maxwell–Wagner model [57], the large
values of ε′ is related to the large polarization effect produced at the grain boundaries due
to the charge carrier’s migration between grain boundaries under the effect of the applied
external field [58]. At high frequencies range, the decrease in ε′ values could be explained
by polarizability loss, since the dipoles are enabled to rotate quickly which leads to a delay
among frequencies of the oscillating dipole and applied fields [59]. It can be pointed out
that the reached ε′ value (at medium and high frequencies) is considered relatively high,
making the ZnO:Mg samples very promising for energy storage applications.

The imaginary part ε′′ also decreases with the frequency but it varies slightly versus
the temperature. This demonstrates the loss of polarization with the frequency by the
disappearance of dipoles or to their inability to rotate properly at high frequencies [60].

We located a considerable reduction of the imaginary part ε′′ with the rate of the
Mg doping which confirms the rule of the space charge [61] (see Figure 10a). The same
performance was also monitored by Hafef et al. [24] with high MgO-doping rates (10%
and 20% of MgO). This also was explained by the separation of the MgO phase in the ZnO
host matrix. In this work, the Mg is well incorporated into the ZnO lattice and hence, it
induces less crystallinity, as was previously shown in the XRD analysis. Thus, this behavior
could be related to the increased defects density induced by further Mg incorporation,
which leads to less dielectric polarization. Moreover, ε′′ increases with the temperature
(see Figure 10b) where no peaks in the loss tangent curves are observed (Figure 11). This
demonstrates the slightly high conduction losses [62]. Finally, the present material could
be an encouraging candidate for device applications acting in the high-frequency range.



Materials 2022, 15, 2265 12 of 16Materials 2022, 15, x FOR PEER REVIEW 12 of 17 
 

 

 
Figure 10. Frequency dependence curves of the imaginary part 𝜀″ (a) for the ZnO:Mg (3%) sample 
at different temperatures and (b) for different Mg content. 

 
Figure 11. Dependance of the dielectric loss tan δ on the frequency for the sample ZnO:Mg 3% at 
different temperatures. 

b. Modulus analysis 
The electric modulus is generally used to examine the electrical characteristics of bulk 

materials. At low frequencies, the conductivity phenomenon usually hides the interfacial 
polarization generally present in such materials [63]. To surmount this difficulty, modulus 
is mostly appropriate to obtain phenomena such as the conductivity relaxation times and 
the electrode polarization. The complex electric modulus is written as [64]: 𝑀∗ = 1𝜀∗(𝜔) = 𝑀 (𝜔) + 𝑗𝑀 (𝜔) =  𝑗𝜔𝐶 𝑍∗ (15)

where, 𝑀 = 𝜔𝐶 𝑍′′ and 𝑀 = 𝜔𝐶 𝑍′ are the real and imaginary parts of the complex elec-
tric modulus, respectively. 

Figure 12a represents the variations of M′ within the frequency at different tempera-
tures. It raises with increasing frequency to reach a flat zone to the highest frequency val-
ues corresponding to the limiting value of M′. This behavior illustrates the weak contri-
bution of the electrode polarization that could be neglected for Mg-doped ZnO NCs [65]. 
Such behavior was also detected for Na-doped ZnO NCs [22]. 

102 103 104 105 106 107
-1
0
1
2
3
4
5
6
7
8
9

10
11
12

T=200 °C
T=210 °C
T=220 °C
T=230 °C
T=240 °C
T=250 °C
T=260 °C

Ta
n 

(δ
)

Log(f (Hz))

ZnO:Mg (3%)

Figure 10. Frequency dependence curves of the imaginary part ε′′ (a) for the ZnO:Mg (3%) sample at
different temperatures and (b) for different Mg content.
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b. Modulus analysis
The electric modulus is generally used to examine the electrical characteristics of bulk

materials. At low frequencies, the conductivity phenomenon usually hides the interfacial
polarization generally present in such materials [63]. To surmount this difficulty, modulus
is mostly appropriate to obtain phenomena such as the conductivity relaxation times and
the electrode polarization. The complex electric modulus is written as [64]:

M∗ =
1

ε∗(ω)
= M′(ω) + jM′′ (ω) = jωC0Z∗ (15)

where, M′ = ωC0Z′′ and M′′ = ωC0Z′ are the real and imaginary parts of the complex
electric modulus, respectively.

Figure 12a represents the variations of M′ within the frequency at different tempera-
tures. It raises with increasing frequency to reach a flat zone to the highest frequency values
corresponding to the limiting value of M′. This behavior illustrates the weak contribution
of the electrode polarization that could be neglected for Mg-doped ZnO NCs [65]. Such
behavior was also detected for Na-doped ZnO NCs [22].
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Figure 12. Plots of (a) M′ and (b) M′′ within frequency for various temperatures for the ZnO:Mg
(3%) sample.

The frequency reliance of M′′ with the temperature for ZnO:Mg (3%) is represented in
Figure 12b. The M′′max position shifts near the high-frequency region when the temperature
increases, and the shift of the M′′max position is usually related to the conductivity relax-
ation. An asymmetric peak could be observed for each investigated temperature, which
exhibited the non-Debye kind of behavior in the relaxation of the Mg-doped ZnO NCs [66].

The detected peak aids in determining the relaxation time τ using the following
relationship [58]:

τ =
1

ωmax
=

1
2π fmax

(16)

where fmax designates the relaxation frequency.
The change of M′′max with temperature images the enhancement of the dielectric

relaxation time τ with temperature [37]. Such a change affirms the thermal stimulation of
the dielectric relaxation [67]. As shown in Figure 13, Lnτ varies linearly with the inverse of
the absolute temperature T, following the equation:

τ = τ0 exp
(
− Ea

KBT

)
(17)

where, τ0 is the pre-exponential factor. From a linear fit of the plot, the value of the
activation energy Ea is estimated to 0.73 eV, which is quite different to that determined while
considering the plot of Ln(σ dcT). Hence, it provides information about the non-statistic
distribution of the Mg2+ ions in the ZnO matrix and suggests an arbitrary conductivity.
Therefore, the relaxation of dipoles manifests itself arbitrarily [37,68].
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4. Conclusions

Mg-doped ZnO NCs were synthesized via sol-gel method. The electrical and di-
electric characteristics were investigated as function of temperature and frequency, using
impedance spectroscopy. The conductivity and the activation energy are influenced by
Mg concentration. From temperature reliance, we reveal that the conduction mechanism
is managed from the model of the hopping correlated barrier (CBH). Dielectric features
are largely affected by Mg doping due to less dielectric polarization. The low dielectric
losses at high frequencies and the shift toward high frequencies of M′′ with temperature,
make the Mg-doped ZnO NCs a suitable material for application in non-linear optics. The
analysis of the electrical modulus illustrates an extension in the relaxation time with further
Mg incorporation. All the dielectric properties relative to the prepared ZnO:Mg NCs are
of interest to bring a considerable influence to several technological applications, such as
microwave devices.
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