Computational and Structural Biotechnology Journal 20 (2022) 4390-4401

010 wot0t01000 - COMPUTATIONAL

1010101011

soollie. ANDSTRUCTURAL

01010

10101 ill) BIOTECHNOLOGY

10101 11
01010101001! 101 10
oo, J O URNA L

journal homepage: www.elsevier.com/locate/csbj oo

COMPUTATIONAL
ANDSTRUCTURAL
BIOTECHNOLOGY
Z: JOURNAL

Integrated analysis and validation reveal ACAP1 as a novel prognostic R
biomarker associated with tumor immunity in lung adenocarcinoma e

Ning Wang®', Lingye Zhu®', Xiaomei Xu®', Chang Yu"*, Xiaoying Huang **

2 Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung, Wenzhou, Zhejiang 325000, PR China
b Intervention Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, PR China

ARTICLE INFO ABSTRACT

Article history:

Received 9 May 2022

Received in revised form 10 August 2022
Accepted 10 August 2022

Available online 13 August 2022

ADP-ribosylation factor (Arf)-GTPase-activating protein (GAP) with coiled-coil, ankyrin repeat and PH
domains 1 (ACAP1) has been reported to serve as an adaptor for clathrin coat complex playing a role
in endocytic recycling and cellular migration. The potential role of ACAP1 in lung adenocarcinoma
(LUAD) has not been yet completely defined. We performed the comprehensive analyses, including gene
expression, survival analysis, genetic alteration, function enrichment, and immune characteristics. ACAP1
was remarkably downregulated in tumor tissues, and linked with the clinicopathologic features in LUAD

ﬁ?:;/f]’rds'. patients. Prognostic analysis demonstrated that low ACAP1 expression was correlated with unsatisfac-
Lung adenocarcinoma tory overall survival (OS) and disease specific survival (DSS) in LUAD patients. Moreover, ACAP1 could
Prognosis be determined as a prognostic biomarker according to Cox proportional hazard model and nomogram
Immune infiltrates model. We also confirmed that ACAP1 was downregulated in two LUAD cell lines, comparing to normal
Immunotherapy lung cell. Overexpression of ACAP1 caused a profound attenuation in cell proliferation, migration, inva-

sion, and promoted cell apoptosis. Additionally, functional enrichment analyses confirmed that ACAP1
was highly correlated with T cell activation and immune response. Then, we further conducted immune
landscape analyses, including single cell RNA sequencing, immune cells infiltration, and immune check-
points. ACAP1 expression was positively associated with the infiltrating level of immune cells in TME and
the expression of immune checkpoint molecules. This study first comprehensively analyzed molecular
expression, clinical implication, and immune landscape features of ACAP1 in LUAD, suggesting that
ACAP1 was predictive of prognosis and could serve as a potential biomarker predicting immunotherapy

response for LUAD patients.
© 2022 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-
commons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Lung cancer, the most common cancer type in humans,

Abbreviations: ACAP1, ADP-ribosylation factor (Arf)-GTPase-activating protein accounts for the majority of cancer-related deaths around the

(GAP) with coiled-coil, ankyrin repeat and PH domains 1; Arf6, ADP-ribosylation
factor 6; CAMs, cell adhesion molecules; CI, confidence interval; DEGs, differentially
expressed genes; GEFs, guanine nucleotide exchange factors; GEPIA, gene expres-
sion profiling interactive analysis; GO, gene ontology; GSEA, Gene Set Enrichment
Analysis; GTEX, genotype-tissue expression; HR, hazard ratio; ICB, immune
checkpoint blockade; KEGG, Kyoto encyclopedia of genes and genomes; LUAD,
lung adenocarcinoma; OS, overall survival; DSS, disease specific survival; PD-1,
programmed death receptor 1; PD-L1, programmed death receptor ligand 1; PPI,
protein-protein interaction; qRT-PCR, quantitative reverse-transcription poly-
merase chain reaction; TCGA, the cancer genome atlas; TIME, tumor immune
microenvironment; TIMER, tumor immune estimation resource; TME, tumor
microenvironment.
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world, with lung adenocarcinoma (LUAD) being the primary sub-
type [1,2]. Despite advancements in multimodality therapy,
including surgery, chemotherapy, and radiotherapy, lung cancer
is still a key point in the malignancy landscape with limited sur-
vival (5-year survival rate approximately 20 %) [3]. The develop-
ment of driver genes mutations identification and targeted
therapies have reformed the treatment paradigm for the patients
with lung cancer [4,5]. However, only 15 to 20 % of patients with
drug-sensitive mutations present clinical benefit to targeted ther-
apies [6]. During the past of few years, immunotherapy repre-
sented by antibodies targeting immune checkpoint molecules
involving programmed death receptor 1 (PD-1) and programmed
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death receptor ligand 1 (PD-L1) has been considered as a recent
major breakthrough in novel therapeutic option improving lung
cancer patients’ survival [7,8]. T cell-mediated antitumor immu-
nity effects can be strengthened owing to the blockage of inhibi-
tory signals by the antibodies targeting PD-1 or PD-L1. Evidence
appears that immunotherapy response is largely associated with
the tumor immune microenvironment (TIME) [9,10]. Nevertheless,
the sticking point that needs to be resolved in cancer immunother-
apy is low response rate in patient. Consequently, there is urgent
need to further investigate the intrinsic mechanism between
tumor microenvironment (TME) and immunotherapy response.

ADP-ribosylation factors (Arfs), belonging to Ras-like GTP-
binding proteins, perform a significant role in regulating the cellu-
lar procedure such as intracellular vesicle trafficking, cytoskeletal
reorganization and Golgi structure in eukaryotic organisms [11].
ADP-ribosylation factor (Arf)-GTPase-activating protein (GAP) with
coiled-coil, ankyrin repeat and PH domains 1 (ACAP1) has been
reported to serve as an adaptor for clathrin coat complex exerting
a role in endocytic recycling and regulate the cellular migration
procedure [12,13]. According to recent research findings, the small
GTPase ADP-ribosylation factor 6 (Arf6) participates in the regula-
tion of recruiting ACAP1 to the recycling endosome [14]. A recent
study has demonstrated that the protein kinase Akt serves as a
co-adaptor with ACAP1 for joint participation of clathrin coat com-
plex in endocytic recycling [15]. The potential regulation of Arf6/
ACAP1 in cell migration and cytokinesis contributes to cell division,
invasion and migration of cancer cells [16]. Besides, previous stud-
ies have identified that ACAP1 is connected with immune infiltra-
tion in bladder cancer [17] and ovarian cancer [18]. Yet so far, the
potential biological function of ACAP1 in LUAD has not been fully
elaborated.

In this study, on the basis of database analysis and experimental
validation, we first elucidated the expression characteristics of
ACAP1 in LUAD, and the relevance between ACAP1 expression
and the clinicopathologic features in LUAD patients. In addition,
the prognostic value of ACAP1 in LUAD was investigated. Gene-
gene and protein-protein network and subsequent functional
enrichment analyses were performed to determine the potential
biological function. Finally, our research focused on the identifica-
tion of the immune characteristics of ACAP1 in LUAD. Taken
together, our study comprehensively identified the biological func-
tion of ACAP1 and disclosed that ACAP1 might function as a mean-
ingful prognostic biomarker and exert a predictive effect on
response to immunotherapy in LUAD.

2. Materials and methods
2.1. Data acquisition and process

RNA-sequencing and matched clinical data involving LUAD and
normal tissues were acquired from The Cancer Genome Atlas
(TCGA) (https://portal.gdc.cancer.gov/) and Genotype-Tissue
Expression (GTEx) databases (https://www.gtexportal.org/home/
index.html). After log2 transformation, the data was conducted
statistical analysis using R software, and visualization via the “gg-
plot2” package.

2.2. Gene expression analysis based on database

We initially investigated ACAP1 expression between tumor and
normal tissues across multiple cancer types via TCGA and GTEx
databases. Furthermore, ACAP1 expression was assessed in LUAD
tissues using Gene Expression Profiling Interactive Analysis
(GEPIA) (http://gepia.cancer-pku.cn/) [19]. Meanwhile, ACAP1
expression in distinct pathological stages could be observed. In
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addition, the correlation analyses of ACAP1 expression with differ-
ent TNM stages of LUAD patients were performed. The association
between ACAP1 expression and related clinicopathologic charac-
teristics were described via Sankey diagram accomplished by the
“ggalluvial” package.

2.3. Cell culture and transfection

Human embryonic lung fibroblast lines (HELF, normal human
lung cells) and human LUAD cell lines (A549 and PC-9) were pur-
chased from Institute of Biochemistry and Cell Biology, Chinese
Academy of Science (Shanghai, China). HELF and PC-9 cells were
grown in high glucose Dulbecco’s Modified Eagle’s media (DMEM),
and A549 cells were grown in F-12k culture medium. All cells were
routinely cultivated in the medium mixed by 10 % fetal bovine
serum (FBS), and 1 % Penicillin/Streptomycin at 37 °C in the incu-
bator (Thermo, USA) with 5 % CO,. To obtain ACAP1 overexpressed
cell lines, the transfection was performed with plasmids using
PolyFast Transfection Reagent (MCE, USA) according to manufac-
turer’s instructions. ACAP1-pcDNA3.1 overexpression (OE) and
negative control (NC) plasmids were purchased from Ruipute Bio-
tech (Hangzhou, China). RNA and protein were harvested at 48 h
after the transfection for assessing the gene expression level. In
addition, related function experiments were conducted after
transfection.

2.4. Quantitative reverse-transcription polymerase chain reaction

Total RNA was extracted by means of the RNA fast 200 Extrac-
tion kit (Fastagen Biotech, China), and then RNA concentration was
detected using NanoDrop 2000 spectrophotometer (Thermo, USA).
After reverse transcription via PrimeScript RT Master Mix (Takara,
Japan), qRT-PCR was conducted using Taq Pro Universal SYBR qPCR
Master Mix (Vazyme, China) via the CFX96 Real-Time System (Bio-
Rad, USA). GAPDH was used for normalization. Primers were syn-
thesized in Sangon Biotech (Shanghai, China) and the sequences
were shown in Supplementary Table 1.

2.5. Western blot analysis

The total proteins were extracted according to the protocol.
After quantification by BCA Protein Assay (Beyotime, China), the
same amounts of denatured protein were added into per lane
and separated by sodium dodecyl sulfate polyacrylamide gels
(SDS-PAGE). Then, the protein was transferred onto PVDF mem-
branes (Millipore, USA), with performed subsequent steps such
as blocking, primary antibodies culture against ACAP1 (1:5000,
Proteintech) and GAPDH (1:3000, Proteintech), and the secondary
antibody culture according to species of primary antibodies.
Finally, the expression levels of proteins were determined using
enhanced chemiluminescent (NCM Biotech, China) via gel imaging
system (Bio-Rad, USA).

2.6. Cell viability assay and colony formation assay

A total of 3 x 10> cells/well were plated into 96-well plates and
cultured for 24, 48, 72, and 96 h, respectively. At different time
points, the cells were incubated with fresh serum-free medium
mixed with 10 % CCK-8 (APEXBIO, USA) solution for cell viability
assay. The changes in cell proliferation were assessed by measur-
ing the absorbance at 450 nm via multifunctional microplate
reader (Thermo, USA). For colony formation assay, a total of 500
cells per well were spread onto six-well plates and cultured for
two weeks. The colonies were then fixed with 4 % paraformalde-
hyde for 30 min and stained with crystal violet (Beyotime, China)
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for 20 min. Finally, the colony number was counted for statistical
analysis.

2.7. Apoptosis assay

Annexin V FITC/PI apoptosis Kit (Multisciences, China) was uti-
lized to detect cell apoptosis. The transfected cells were washed
twice using cold PBS and harvested for apoptosis assay. The cells
were incubated using 1 x binding buffer with FITC-Annexin V
and PI for 5 min at room temperature. After incubation, the apop-
tosis assay was conducted via flow cytometry (Beckman, USA), and
the results were processed by Flow]o V10 software.

2.8. Wound-healing assay

The wound healing assay was utilized to assess cell motility.
The cells were cultured in 6-well plate, and scratched with a sterile
plastic tip upon cell confluence. Following this, the cells were con-
tinued to be cultured with serum-free medium, and cell migration
was evaluated at different time point. The cell migration ability
was assessed by comparing the width of cell scratch.

2.9. Transwell assay

Transwell assay was conducted to evaluate the ability of the
cells to migrate and invade. Briefly, cells (5 x 10* cells/well) resus-
pended with 200 pl serum-free medium were added into the upper
chamber of the insert (Millipore) equipped with and without
matrigel (BD Bioscience) for assessing the ability of cell invasion
and migration, respectively. Then, 500 pl medium mixed with
10 % FBS was supplied in the lower well. After incubation for
24 h at 37 °C, the cells on the upper surface were eliminated and
the cells located on the lower side of the membrane were stained
by crystal violet for 20 min through fixation with 4 %
paraformaldehyde for 30 min. The number of cells were counted
in randomly selected three fields under the microscope (x200)
for further statistical analysis.

2.10. Prognosis analysis

Overall survival (OS) and disease specific survival (DSS) analy-
ses were conducted to determine the correlation between ACAP1
expression and LUAD patients’ survival using the “survival” pack-
age. Then, we conducted the univariate and multivariate Cox
regression analyses to recognize the appropriate variables for
establishing a nomogram model via the “forestplot” package. Addi-
tionally, the prognostic nomogram model was constructed using
the “rms” package.

2.11. Genetic alteration analysis

The genetic alteration features of ACAP1 in multiple types of
cancer were observed utilizing cBioPortal platform containing
multidimensional cancer genomics data (https://www.cbioportal.
org/) [20,21]. In the module “Mutations”, ACAP1 mutation sites
could be discovered. Furthermore, somatic mutation landscape
based on ACAP1 expression in LUAD was constructed using the
“maftools” package.

2.12. Construction of ACAP1-interacting genes and proteins network

The ACAP1-associated gene-gene interaction network was cre-
ated via the Genemania database (https://www.genemania.org).
The ACAP1-associated protein-protein interaction (PPI) network
was established via the STRING database (https://string-db.org/).
The main parameters were as follows: “experiments” option was
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selected in “active interaction sources” module; “Low confidence
(0.150)” option was selected in “minimum required interaction
score” module; and “no more than 50 interactors” option was
selected in “max number of interactors to show” module. The visu-
alization was performed using Cytoscape (Version: 3.8.0).

2.13. Function enrichment analysis

The differentially expressed genes (DEGs) were obtained by
comparing between ACAP1"" and ACAP1'°% groups of the expres-
sion data with setting the screening criteria of adjusted P < 0.05
and Fold Change > 2, using the “Limma” package. Subsequently,
Kyoto encyclopedia of genes and genomes (KEGG) and Gene Ontol-
ogy (GO) analyses were conducted via the “ClusterProfiler” pack-
age. In addition, Gene Set Enrichment Analysis (GSEA) was
applied to further investigate the significant pathways, including
HALLMARK and KEGG, between ACAP1"#" and ACAP1'" expres-
sion samples, and the most obvious signaling pathways in HALL-
MARK and KEGG were visualized in plots.

2.14. Immune characteristics analysis

TISCH, a comprehensive resource database, can provide a stan-
dardized data of single-cell transcriptome for exploring the hetero-
geneity of TME and promoting the development of tumor
immunotherapy [22]. Then, we investigated the expression status
of ACAP1 across multiple cell types in TME based on the two data-
sets (GSE131907 and GSE139555) via TISCH platform (http://
tisch.comp-genomics.org/home/). TISIDB (http://cis.hku.hk/
TISIDB/) [23] can be utilized to explore 28 immune cells infiltration
in TME across various cancer types. The TIMER database
(https://cistrome.shinyapps.io/timer/) is utilized to evaluate six
immune cells infiltration in TME [24,25]. xCell [26], a novel gene
signature-based algorithm, can be employed to analyze the
immune cells infiltration using the “immunedeconv” package.
Therefore, TISIDB, TIMER databases and xCell algorithm were uti-
lized to estimate ACAP1-related immune cells infiltration in LUAD.
Next, we evaluated the association of ACAP1 expression with the
Immune Score, Stromal Score and ESTIMATE Score by Spearman
correlation analysis in LUAD. Based on the level of expression, sam-
ples were divided into high and low groups, and then ssGSEA algo-
rithm was performed to predict the score of the corresponding
immune gene set of each sample, which was visualized utilizing
the “ggplot2” package. Finally, we assessed the relevance between
ACAP1 expression and the eight major immune checkpoint genes
such as CD274, CTLA4, HAVCR2, LAG3, PDCD1, PDCD1LG2,
SIGLEC15, and TIGIT.

2.15. Statistical analysis

The difference between two groups was analyzed using Stu-
dent’s t test or Wilcoxon rank sum test. Spearman rank correlation
was conducted for determining the correlation between two genes
expression. R software version 4.0.3 was used for all of the pack-
ages mentioned above, and P < 0.05 was considered statistically
significant.

3. Results
3.1. Gene expression profile of ACAP1 in LUAD

We first confirmed that ACAP1 was significantly downregulated
in tumor tissues comparing with the normal tissues via TCGA and
GTEx database (Fig. 1A, B). Furthermore, the relevance between
ACAP1 expression and clinicopathological characteristics of LUAD
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Fig. 1. The analyses of ACAP1-related expression and clinicopathologic features in LUAD. (A) The expression level of ACAP1 in normal and tumor tissues across multiple
cancer types was assessed via TCGA and GTEx database. (B) The expression level of ACAP1 in LUAD was assessed via GEPIA database. (C-E) The expression level of ACAP1 was
assessed in different (C) T-stage, (D) N-stage, and (E) M-stage in LUAD patients. (F) The expression level of ACAP1 was assessed in distinct pathological stages via GEPIA
database. (G) The description of ACAP1 expression and the different clinicopathological features by Sankey diagram. (H, I) Validation of ACAP1 expression in normal lung cell
(HELF) and LUAD cells (A549 and PC-9) by (H) qRT-PCR and (I) western blot analysis. GAPDH was used for normalization. Experimental data are acquired from three
independent experiments. Statistical analysis: *P < 0.05, **P < 0.01, ***P < 0.001 and ****P < 0.0001.

patients were conducted according to TCGA data. The ACAP1
expression was dramatically linked with different T-stage
(Fig. 1C) and N-stage (Fig. 1D) and showed no significant correla-
tion with M-stage (Fig. 1E) for patients. Subsequently, we uncov-
ered that ACAP1 expression was linked with the different
pathological stages of LUAD patients (Fig. 1F, P < 0.01). The Sankey
diagram displayed the distribution trend of ACAP1 expression in
LUAD patients with different clinicopathological features such as
age, stage, and survival status (Fig. 1G). Finally, we uncovered that
the mRNA and protein level of ACAP1 were remarkably downregu-
lated in LUAD cell lines (A549 and PC-9) with the normal cell line
(HELF) as control (Fig. 1H, I).

3.2. ACAP1 was identified as an independent prognostic factor for
LUAD patients

For survival analysis, LUAD patients were divided into two
groups such as ACAP1M&" and ACAP1" based on the level of
ACAP1 expression. Low ACAP1 expression was identified to be
related with poor clinical outcomes in LUAD patients by means
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of Kaplan-Meier survival analyses (OS, P 0.00063; DSS,
P =0.013) (Fig. 2A, B). In addition, ACAP1 and TNM-stage had been
confirmed as independent prognostic factors closely related with
patients’ OS according to the univariate and multivariate Cox
regression analyses (Fig. 2C, D). Subsequently, we constructed
overall survival nomogram model to estimate 1-, 3-, and 5-year
survival status and calibration curve with favorable goodness of
fit (P < 0.001) (Fig. 2E, F).

3.3. Genetic alteration features of ACAP1 in LUAD

The alteration frequency of ACAP1 in multiple types of cancers
was observed through cBioPortal, of which “Mutation” and “Deep
Deletion” were mainly presented in LUAD (Fig. STA). We then
explored the types, sites and corresponding domain of the ACAP1
mutations in LUAD with “Missense” occupying the major part
(Fig. S1B). The 3D structure of ACAP1 protein was exhibited in
Fig. S1C (PDB ID (https://doi.org/10.2210/pdb4CKG/pdb)). Mean-
while, the somatic mutations landscape and top 10 somatic muta-
tion genes in LUAD cohort was determined. Notably, there were
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Fig. 2. Comprehensive prognosis analysis of ACAP1 expression in LUAD. (A, B) Kaplan-Meier survival curve for (A) OS and (B) DSS. (C) The univariate and (D) multivariate Cox
regression analyses of ACAP1 expression and corresponding clinical features. (E) Construction of the nomogram model for LUAD. The “total points” can be obtained by
summing the respective “points” values of the four variables (ACAP1 expression and pTNM_stage) and then the 1-, 3-, 5-year survival status of patients can be predicted. (F)

Calibration curve for the overall survival nomogram model.

more somatic mutations in LUAD patients with low ACAP1 expres-
sion (Fig. S1D).

3.4. Inhibitory effects of ACAP1 upregulation on cell proliferation,
migration and invasion in LUAD

Since ACAP1 was considerably down-regulated in A549 and PC-
9 cell lines, we explored whether ACAP1 overexpression exerted an
influence on tumor cells. We carried out a series of experiments to
further determine the potential biological function of ACAP1 in
LUAD cells. Firstly, A549 and PC-9 cell lines were transfected with
ACAP1 overexpression plasmid or a control vector, and ACAP1 was
successfully upregulated in cells validated at mRNA and protein
level respectively (Fig. 3A, B). Then, overexpression of ACAP1 in
A549 and PC-9 cell lines resulted in significantly inhibitory effects

4394

on cell proliferation (Fig. 3C) and the cell clone formation (Fig. 3D).
Additionally, the results of flow cytometry assay revealed that the
percentage of cell apoptosis was increased in A549 and PC-9 cells
with ACAP1 upregulation (Fig. 3E). Finally, wound healing assay
indicated that the migration ability of LUAD cells was suppressed
after ACAP1 overexpression (Fig. 4A). Meanwhile, ACAP1 upregula-
tion resulted in the restraining effect on cell migration and inva-
sion (Fig. 4B).

3.5. Construction of ACAP1-interacted genes and proteins network,
and enrichment analysis

The ACAP1-related gene-gene interaction network was con-
structed via Genemania database. This network exhibited that
top 20 most frequently altered genes were significantly linked with
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ACAP1 (Fig. 5A). The PPI network of ACAP1-interacting proteins
was formed utilizing STRING and visualized by Cytoscape
(Fig. 5B). Subsequently, we conducted DEGs, function enrichment
such as KEGG and GO analyses for further exploring and elucidat-
ing the potential biological role of ACAP1 in LUAD. First, differential
gene expression analysis was performed between ACAP1M2" and
ACAP1'®" expression samples. The volcano plot displayed that
there were 228 differentially expressed genes including 226 upreg-
ulated genes and 2 downregulated genes (Fig. 5C). The detailed
genes information can be observed in the Supplementary Material.
Then, the heatmap of the differential gene expression was con-
structed based on hierarchical clustering analysis (Fig. 5D). Fur-
thermore, KEGG enrichment analysis confirmed that upregulated
DEGs mainly connected with cell adhesion molecules (CAMs),
cytokine — cytokine receptor interaction, Th1, Th2 and Th17 cell
differentiation, and hematopoietic cell lineage (Fig. 5E). Simultane-
ously, the results of GO enrichment analysis determined that
upregulated DEGs highly correlated with T cell activation, immune
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response, leukocyte proliferation and regulation of cell-cell adhe-
sion (Fig. 5F).

Furthermore, GSEA analysis was conducted to investigate the
potential signaling pathways in HALLMARK and KEGG from high
and low ACAP1 expression samples (Fig. S2A-D). Results of the
function enrichment of HALLMARK terms revealed that high
ACAP1 expression was linked with allograft rejection, apoptosis,
complement, IL2-STAT5, IL6-JAK-STAT3, KRAS, TNFo signaling,
inflammatory response, and interferon response. KEGG terms
demonstrated that high ACAP1 expression was mainly involving
in allograft rejection, asthma, and so on.

3.6. Immune characteristics analysis of ACAP1 in LUAD

Firstly, we performed the single cell RNA sequencing data anal-
ysis to explore the expression and distribution of ACAP1 in TME
according to LUAD database. The results indicated that the expres-
sion of ACAP1 was mainly distributed in immune cell types in TME
based on GSE131907 and GSE139555 (Fig. 6A-C). TIME was largely
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affected by the infiltrating tumor components, which was one of
the key determinants for the outcome of tumor immunotherapy
[27]. We then focused on the ACAP1-related immune characteris-
tics in LUAD. We uncovered ACAP1-related immune infiltration
landscape of 28 immune cells in multiple cancers including LUAD
via TISIDB database (Fig. S3A). Notably, there was a significant cor-
relation of ACAP1 expression with a majority of the immune cells
in LUAD (Fig. S3B-M) (cor > 0.5 displayed). Moreover, we assessed
the immune cells infiltration level utilizing the TIMER platform and
xCell algorithms in LUAD. There was a relevance between high
ACAP1 expression and a low tumor purity and high immune cells
infiltration in TME based on TIMER database (Fig. 7A). Meanwhile,
the consistent result was obtained via xCell analysis (Fig. 7B).
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Next, we discovered that there were positive correlation of
ACAP1 expression with Immune Score, Stromal Score and ESTI-
MATE Score in LUAD (Fig. 7C). Notably, most of the 28 immune cell
types exhibited significantly higher immune score in ACAP1 high
expression group, which revealed that ACAP1 was closely related
with immune infiltration in LUAD (Fig. 7D). Additionally, we
assessed the potential relevance between ACAP1 expression and
immune checkpoint genes. Significantly, the major eight immune
checkpoint genes were all upregulated in LUAD patients with high
ACAP1 expression (Fig. 8A). Specifically, there was a consistently
positive relevance between ACAP1 expression and the major eight
immune checkpoint genes (Fig. 8B-I).
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Expression heatmap of screened ACAP1-associated DEGs. (E) KEGG and (F) GO enrichment analysis of upregulated DEGs in LUAD.

4. Discussion

The incidence and cancer-related death rates of lung cancer
have already exceeded those of all other cancers in the world. Early
diagnosis of lung cancer is challenging and late diagnosis is the pri-
mary cause of formidable death rates in the patients with lung can-
cer. It is vital to investigate the underlying molecular mechanisms
of tumor development and progression contributing to accurately
predicting and improving patients’ prognosis. In the present study,
we first explored the potential biological function of ACAP1 identi-
fied as a novel biomarker in LUAD. ACAP1 was remarkably down-
regulated in tumor tissues comparing with normal tissues, and
we also conducted qRT-PCR and Western blot to validate the result.

ACAP1 expression was associated with clinicopathological char-
acteristics of LUAD patients. Furthermore, Kaplan-Meier survival
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analyses (OS and DSS) revealed that LUAD patients with low ACAP1
expression presented a relatively high mortality risk than those
with high expression, suggesting ACAP1 could be considered as a
potential prognostic biomarker in LUAD. The univariate and multi-
variate Cox regression analyses and nomogram model further con-
firmed that ACAP1 was independently predictive of the clinical
outcomes of LUAD patients. High ACAP1 expression was associated
with better survival of the patients with LUAD. Taken together
these data suggest that ACAP1 may have an anti-tumor effect. Con-
sequently, we performed a series of experiments to further deter-
mine the influence of ACAP1 overexpression on tumor cells. We
found that overexpression of ACAP1 in A549 and PC-9 cell lines
resulted in significant restraining effect on cell proliferation,
migration, invasion, and promoted cell apoptosis. These results
provided evidence to validate the tumor suppressive role of ACAP1,
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which was consistent with good prognosis of the patients with
high ACAP1 expression.

To explore the potential function of ACAP1 in LUAD, we per-
formed function enrichment analyses, including GO, KEGG, and
GSEA. The results suggested that ACAP1 was significantly corre-
lated with T cell activation and immune response. Hence, we fur-
ther investigated the potential association of ACAP1 expression
with tumor immune microenvironment in LUAD.

Due to the continuous and in-depth research on the mechanism
of TME, immunotherapy has been considered as one of the greatest
progresses and breakthroughs in cancer treatment and opened up
a new avenue of cancer treatment. In particular, immune check-
point blockade (ICB) therapy targeting tumor immune suppression
pathway has been viewed as a novel paradigm shift. The applica-
tion of antibodies targeting immune checkpoint molecules have
confirmed to be an effective strategy for cancer therapy [28].
Besides, immune cells infiltration in TME also exerts a vital role
in anti-tumor immunotherapy. Numerous studies have revealed

that patients with T-cell-infiltration present better response to
ICB therapy than those with non-T-cell-infiltration [29,30]. Conse-
quently, current research concludes that the presence of tumor-
infiltrating lymphocytes in TME and the expression of PD-L1 on
tumor cells can be deemed as predictors of positive response to
immune therapy [31].

We further detected the underlying evidence disclosing the rel-
evance between ACAP1 expression and immune cell infiltration
and immune checkpoint molecules in the patients with LUAD. High
ACAP1 expression was consistent with high immune infiltration in
TME base on TISIDB, TIMER, and xCell. Considering the high levels
of immune cells infiltration in TME in LUAD patients with high
ACAP1 expression, tumor cells might adaptively upregulate the
expression of multiple immune checkpoints to cope with the
changes of microenvironment. Subsequently, we conducted the
correlation analysis of ACAP1 expression with eight major immune
checkpoints. Interestingly, there exerted a significantly positive
association between ACAP1 and immune checkpoint genes expres-
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Fig. 7. The relevance between ACAP1 expression and immune cells infiltration. (A) The relevance between ACAP1 expression and immune cells infiltration in LUAD via
TIMER. (B) Heatmap of the relevance between ACAP1 expression and immune cells infiltration in LUAD via xCell. (C) Correlation of ACAP1 expression with Immune Score,
Stromal Score, and ESTIMATE Score in LUAD. (D) ACAP1-related immune score of 28 immune cell types in LUAD. Statistical analysis: *P < 0.05, **P < 0.01 and ***P < 0.001.

sion in LUAD. This result also supported our previous view. In this
case, immunotherapy that blocking immune checkpoints might
achieve potent antitumor effects. These results further illustrated
the close relevance between ACAP1 and tumor immune, which
implied that ACAP1 could be regarded as a novel potential biomar-
ker predicting the response to immunotherapy in LUAD patients.
In conclusion, this study contributed to raising the awareness of
the relationship between ACAP1 and lung adenocarcinoma from
clinical and molecular immune aspects. By analyzing the results
of molecular expression, clinical implication, and immune land-

scape features of ACAP1 in LUAD, we uncovered that ACAP1 was
not only downregulated in LUAD, but also positively correlated
with the prognosis of patients. Additionally, ACAP1 expression
was closely associated with immune infiltrates and immune check-
points, which made a case for the establishment of ACAP1 as a pre-
dictor of immunotherapeutic response for patients with lung
adenocarcinoma.
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