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Abstract: In this review, we comprehensively present the function of epigenetic regulations in normal
placental development as well as in a prominent disease of placental origin, preeclampsia (PE).
We describe current progress concerning the impact of DNA methylation, non-coding RNA (with a
special emphasis on long non-coding RNA (lncRNA) and microRNA (miRNA)) and more marginally
histone post-translational modifications, in the processes leading to normal and abnormal placental
function. We also explore the potential use of epigenetic marks circulating in the maternal blood flow
as putative biomarkers able to prognosticate the onset of PE, as well as classifying it according to its
severity. The correlation between epigenetic marks and impacts on gene expression is systematically
evaluated for the different epigenetic marks analyzed.

Keywords: preeclampsia; epigenetics; DNA methylation; non coding RNAs; miRNAs; histone post
translational modifications; HOX genes; H19; miR-210

1. Introduction

PE affects ~2–5% of the pregnancies. This disease, characterized in the classical definition by
hypertension and proteinuria, surging from the mid-gestation at the earliest, is often seen as a two-stage
disease, where a placental dysfunction occurs, first without observable symptoms and is followed
later by a symptomatic phase from the 20th week of gestation at the earliest. The placenta is central to
the disease development [1]. During pregnancy, the cytotrophoblasts (CTs) invade and remodel the
structure of the spiral arteries of the myometrium [2]. These changes cause a significant increase in
blood flow to the placenta. In a classical vision of the disease etiology, it is said that deep invasion
is deficient in preeclampsia [3]. It is generally acknowledged that in preeclamptic pregnancies,
placentation is disrupted because the CTs fail to properly invade the myometrium and transform the
spiral arteries [4]. This decreases the blood flow and alters the oxygenation of the placenta (causing
hypoxia and hyperoxia events), triggering oxidative stress, necrosis and inflammation [5]. In a very
stimulating paper, B. Huppertz challenges this classical understanding of PE etiology, by dissociating
the defect of deep trophoblast invasion from preeclampsia but rather associating this defect with the
Fetal Growth Restriction (FGR) phenotype [6]. In this vision, preeclampsia would rather be caused by
a combination of villous trophoblast defects (which are not involved in invasion, contrary to extravillous
trophoblast) and maternal susceptibility. He based his reasoning on the fact that invasion defects are
actually not histologically visible in many cases of preeclampsia. This may be connected to mouse
models of preeclampsia where no obvious fetal growth restriction occurs, consistently with the fact
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that invasion is not important in rodent [7]. More accepted than this vision, the same paper strengthens
the idea that hyperoxia rather than hypoxia is a major actor of the disease [6,8].

The preeclamptic placenta releases vasoactive molecules, pro-inflammatory cytokines, microparticles
and syncytial fragments into the maternal circulation which ultimately cause a systemic endothelial
dysfunction [9]. Epigenetics plays an important role in the regulation of the development and physiology
of the placenta [10]. Besides, substantial epigenetic alterations, in the preeclamptic placenta and other
affected tissues have been described and are likely playing a substantial role in the evolution of the
disease [11–14].

2. Epigenetics and Normal Placental Development

2.1. Description of the Placenta and Placental Cells

The placenta is a temporary organ connecting the developing fetus to the uterine wall through the
umbilical cord, to allow for nutrient absorption, thermal regulation, waste disposal and gas exchange
via the mother’s blood supply. In addition, the placenta produces hormones that support pregnancy
and it acts as a barrier to fight against internal infection [15].

The human placenta at term has a discoid shape, an average diameter of 15–20 cm, a thickness of
2.5 cm in the center and a weight of about 500 g. Its surfaces are the chorionic plate on the fetus side and
to which the umbilical cord is attached and the basal plate facing the maternal endometrium. Between
the endometrium and the basal plate there is a cavity filled with maternal blood, the intervillous space,
into which branched chorionic villi project. The chorionic villi are the structural and functional unit of
the placenta. Their core is made of fibroblasts, mesenchymal cells, endothelial cells, immune cells such
as Hofbauer cells (supposed to be macrophage-like) and fetal-placental vessels. The villi are covered by
two layers of trophoblasts. The inner layer is composed of villous cytotrophoblasts (vCTs), which are
highly proliferative and can differentiate into either outer layer villous syncytiotrophoblasts (SCT),
which are in direct contact with the maternal blood or extravillous trophoblasts (EVTs), as shown in
Figure 1.

2.2. Human Placental Development

The development of the human placenta has been described in detail elsewhere [16–18]. Briefly,
the blastocyst implants into the uterine endometrium (decidua) via the trophectoderm cells adjacent
to the inner cell mass (ICM). From the trophectoderm, the syncytium (SCT) emerges and spreads.
Subsequently, CTs proliferate rapidly to form large finger-like projections (villi) that penetrate the
entire depth of the SCT. Ultimately, the villi become filled with mesenchyme originated from the
extraembryonic mesoderm. This mesenchyme will form fetal blood vessels which connect to the fetal
circulation via the umbilical cord. The intervillous space subsequently becomes filled with maternal
blood. The vCTs situated at the tips of the anchoring villi proliferate and stratify, forming highly
compact cell columns breached only by channels carrying maternal blood toward and away from the
placenta (Figure 1). The trophoblast cells within this structure are referred to as EVTs, according to their
external location relative to the chorionic villi. EVTs situated close to the decidua, stop proliferating
and develop invasive properties. These invasive EVTs migrate deeply into the decidua, where they
transform the uterine vasculature in order to supply the placenta maternal blood, a critical step in
establishing uteroplacental circulation. As pregnancy progresses, the number of vCTs decreases and
few is observable at term underneath the SCT.
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Figure 1. (A) Blastocyst implantation and Placenta Development: After recognizing the uterine lining, 
the blastocyst is formed by the embryoblast (EB) and the cytotrophoblast (CT). The cytotrophoblast 
starts to differentiate into Synctiotrophoblast (SCT). SCT invades the endometrium towards the 
maternal spiral arteries located in the myometrium. deregulation of numerous genes is observed [19]. 
Lacunae develop in the syncytiotrophoblast, which will eventually constitute the intervillous space. 
Genes upregulated during villi formation are presented on the right figure [20]. Other 
cytotrophoblasts will invade the maternal spiral arteries by differentiating into Extravillous 
trophoblast. (B) Gene Ontology of genes differentially methylated in PE compared to control samples: 
(Left) in normal pregnancies, extravillous trophoblast (EVT) invades the maternal spiral arteries 
allowing for an increased blood stream towards the extravillous space. Nutrients cross the placenta, 
are directed towards the embryonic vessels and collected in the umbilical cord. In PE, decreased 
invasion of the EVTs induces poor spiral artery remodeling, leading to poor blood flow towards the 
placenta. Increased amount of microparticles from the syncytiotrophoblast and increased amount of 

Figure 1. (A) Blastocyst implantation and Placenta Development: After recognizing the uterine lining,
the blastocyst is formed by the embryoblast (EB) and the cytotrophoblast (CT). The cytotrophoblast
starts to differentiate into Synctiotrophoblast (SCT). SCT invades the endometrium towards the maternal
spiral arteries located in the myometrium. deregulation of numerous genes is observed [19]. Lacunae
develop in the syncytiotrophoblast, which will eventually constitute the intervillous space. Genes
upregulated during villi formation are presented on the right figure [20]. Other cytotrophoblasts will
invade the maternal spiral arteries by differentiating into Extravillous trophoblast. (B) Gene Ontology
of genes differentially methylated in PE compared to control samples: (Left) in normal pregnancies,
extravillous trophoblast (EVT) invades the maternal spiral arteries allowing for an increased blood stream
towards the extravillous space. Nutrients cross the placenta, are directed towards the embryonic vessels
and collected in the umbilical cord. In PE, decreased invasion of the EVTs induces poor spiral artery
remodeling, leading to poor blood flow towards the placenta. Increased amount of microparticles from the
syncytiotrophoblast and increased amount of free fetal DNA is observed in the maternal blood. (Right)
Gene ontology of differentially methylated genes found in PE samples in different tissues affected during
pregnancy: Umbilical cord, placenta, EVT, Endothelial Maternal cells (see text for detail).
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2.3. Epigenetics Mechanisms in Placental Development

Epigenetic mechanisms are involved in the regulation of gene expression both during development
and in differentiated tissues [21,22]. These mechanisms include DNA methylation, histone modifications
and biogenesis and action of noncoding RNAs (ncRNAs). They regulate gene expression by modulating
the accessibility to DNA of transcription factors and other regulatory proteins. In addition, ncRNAs
also regulate gene expression at a post-transcriptional level. Epigenetic mechanisms are essential for
cellular differentiation and therefore development, as summarized in Table 1

Table 1. Epigenetic mechanisms in placental development.

Epigenetic Mechanism Target Cell Type Biological Relevance Reference

H3K9/27me3 MMP-2, MMP-9 Human placenta Related to trophoblasts motility and invasion [23]
H3K4 acetylation + H3K9

methylation Maspin Human placenta Negatively correlated with human trophoblasts
motility and invasion [24,25]

Acetylated H3 Pregnancy-Specific
Glycoproteins JEG-3 Inhibition of HDACs in JEG-3 cells up-regulated

PSG protein and mRNA expression levels [26]

HDAC3 GCMa Cell Line
HDAC3 associates with the proximal

GCMa-binding site (pGBS) in the syncytin
promoter and inhibits its expression

[27]

Acetylation of H2A and H2B Murine TSCs
Decreases the EMT and invasiveness of murine

TSCs while maintaining their stemness
phenotype

[28]

H3K4Me2; H4K20me3 Genome Wide SCTs H3K4Me2 co-localizes with active RNAP II in the
majority of STB nuclei [29]

H3K27me3 Genome Wide vCT H3K27me3 highly represented in vCT [30]

lncRNA TUG1 RND3 HTR-8/SVneo, JEG-3

TUG1 epigenetically silences RND3 transcription
by interacting with EZH2 involved in cellular

proliferation, migration and invasion in
trophoblasts

[31]

lncRNA RPAIN C1q HTR8/SVneo Inhibition of proliferation and invasion. Inhibits
C1q expression [32]

lncRNA MALAT1 JEG-3 Regulates proliferation, migration, invasion and
apoptosis [33]

lncRNA MEG3 HTR8/SVneo and JEG-3 Regulates migration and apoptosis [34]
lncRNA MIR503HG JEG-3 Regulates migration and invasion [35]
lncRNA LINC00629 JEG-3 Regulates migration and invasion [35]

lncRNA SPRY4-IT1 HuR HTR8/SVneo Regulates migration and apoptosis/interferes
with the β-catenin Wnt signaling [36,37]

lncRNA H19 Binds small RNAs and
proteins vCT, JAR Regulates proliferation and apoptosis [38]

miR-141-3p and miR-200a-3p Transthyretin (TTR) syncytitialized BeWo
Inhibits TTR expression by directly binding to
the 3’UTR of TTR. Regulate thyroxin uptake by

the SCT
[39]

miR-34
Plasminogen activator

inhibitor-1 (PAI-1),
SERPINA3

JAR Regulates invasion [40,41]

miR-155 Cyclin D1 HTR-8/SVneo attenuates trophoblast proliferation [42]
miR-17_92, miR-106a_363,

miR-106b_25 GCM1 attenuate differentiation of trophoblasts [43]

miR-675 NOMO1, Igf1R JEG3 cells restricts trophoblast proliferation [44]
C19MC miR cluster HTR8/SVneo impaired migration [45]

methylation of gene body DAXX Human placenta
Loss of methylation during both vCT

syncytialization to SCT and EVTs differentiation
to invasive EVTs

[46]

methylation of gene promoter APC Human placenta and
choriocarcinoma cells trophoblast invasiveness [47]

hypomethylated promoter MASPIN Human placenta inhibits EVTs migration and invasion [24,25,48]

Hypermethylated promoter RASSF1A Human placenta; JAR; JEG3 Possible role in cytotrophoblast development
through its effects on ID2 [49]

Genome wide methylation PMDs (Partially
Methylated Domains) human placenta: Chorionic Villi

genes involved in immune response,
Epithelial-mesenchymal transition and

inflammation
[50–52]

Genome wide methylation Genome Wide human SCTs compared to vCTs hypomethylated SCTs compared to vCTS [53]

Genome wide methylation Genome Wide BeWo and BeWo + Forskolin
DNA methylation status of numerous genes

regulated at the expression level were altered by
forskolin-induced fusion

[54]

Methylation HOX genes: TLX1,
HOXA10, DLX5 Human placenta

Increased methylation across gestation correlates
with decreased expression. Involved in SCTs

differentiation
[46]

Genome wide methylation Genome Wide Side-population trophoblasts,
vCTs and EVTs Each cell population has a distinctive methylome [55,56]

Methylation Cdx2; Eomes; Plet1;
TcFap2c

Mice trophoblast stem cells
(TSCs)

methylation regulates the expression of genes
involved in the establishment of the TSCs [57–59]

Methylation Genome Wide Blastocyst hypomethylation of the trophectoderm
compared to the inner cell mass [60]
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2.3.1. DNA Methylation

The best studied epigenetic mechanism in the placenta is DNA methylation, the covalent addition
of a methyl group to a cytosine, usually in the context of cytosine-phospho-guanine (CpG) dinucleotides.
Several reviews have been dedicated to the role of this mechanism in placental development [10,12,61].
Also, several high-throughput analyses have been performed to analyze the methylation epigenetics of
the developing placenta (Table 2, Supplementary Table S1 for the details).

Table 2. Summary of DNA methylation studies in developing placenta using genome-wide approaches.

Sample Method GEO ID Findings Reference

First-trimester and term placenta and maternal
blood Illumina HM450 2944 hypermethylated CpG sites in the first

and 5218 in third trimester placenta. [62]

First-trimester placenta and maternal blood MeDIP-Seq and
Illumina HM450

3759 CpG sites in 2188 regions were
differentially methylated [63]

Placenta (first, second and third trimester)
Illumina HM450 and

MethylC-Seq &
RNA-Seq

GSE39777
Identification of partially methylated

domains (PMDs) and differences between
placenta and other tissues

[51]

Placenta (first, second and third trimester) Illumina HM27 Increase in overall genome methylation
observed from first to third trimester. [64]

Term placenta MeDIP + custom
microarray

Tissue-specific differentially methylated
regions in the placenta [65]

Various human trophoblast populations Illumina HiSeq 2000 GSE109682
Human trophoblasts are different from

somatic cells in terms of global CpG
methylation

[56]

Methylation profiles of E18.5 term placenta of
WT and Hltf−/−mouse

Illumina HiSeq 2000
(Mus musculus) GSE114145 Hltf-gene deletion alters the epigenetic

landscape of the placenta. [66]

Fetal placental tissue of both sexes in GR+/+ vs.
GR+/−mice Illumina HiSeq 2000 GSE123188 GR mutation in mice changes the epigenome

of placental tissue in a sex-specific manner [67]

Human placentas Illumina HM450 GSE108567 Adjusting for batch effects in DNA
methylation [68]

Epigenetic mechanism of mouse embryo
development

Illumina HiSeq 2500
(Mus musculus) GSE104243 H3K27me3 and DNA methylation in

extraembryonic and embryonic lineages [69]

Samples from different normal human tissues Illumina HM450 GSE103413 Identifying candidate imprinted genes Database,
unpublished

Bisulphite and oxidative bisulphite converted
placental DNA Illumina HM450 GSE93429 Hydroxymethylcytosine and methylcytosine

profiles in the human placenta [70]

Methylation in first and third trimester
placental samples

Illumina Genome
Analyzer Iix GSE98752 Complex Association between DNA

Methylation and Gene Expression [71]

DNA Methylation in Human Fetal Tissues and
Human IPSC Illumina HM450 GSE76641 DNA methylation and transcriptional

trajectories in human development. [72]

DNA methylation of fetal membranes,
trophoblasts and villi 2nd trimester Illumina HM450 GSE98938 Genome-scale fluctuations in the

cytotrophoblast epigenome
Database,

unpublished

Developing mouse placenta Illumina HiSeq 2000 GSE84350
DNA Methylation Divergence and Tissue
Specialization in the Developing Mouse

Placenta
[73]

Villous cytotrophoblasts samples Illumina HM450 GSE93208 DNA methylation profiling of first trimester
villous cytotrophoblasts [52]

Placental tissue collected at term. Illumina HM450 GSE71719 DNA methylation and hydroxymethylation
assessment. [74]

DNA from chorionic villus from the 1st
trimester and maternal blood cell samples

Illumina HiSeq 2000
(Homo sapiens) GSE58826

DNA Methylation Predictors of Gene
Expression in the 1st Trimester Chorionic

Villus

Database,
unpublished

Methylation patterns of human placenta, blood
neutrophils and somatic tissue

Illumina HiSeq 2000
(Homo sapiens) GSE59988

The human placenta exhibits a dichotomized
DNA methylation pattern compared to

somatic tissues
[75]

mRNA and DNA methylation profiling of
Dnmt3a/3b-null trophoblasts

Illumina HiSeq 2000
(Mus musculus) GSE66049 Maternal DNA methylation in early

trophoblast development [76]

Imprinted differentially methylated regions in
hu-man villous trophoblast and blood samples

Illumina MiSeq (Homo
sapiens) GSE76273 Polymorphic imprinted methylation in the

human placenta [77]

Placental villous explant culture in different
growth conditions Illumina HM450 GSE60885 Genome-wide DNA methylation identifies

trophoblast invasion-related genes. [78]

Trophoblast methylation in NLRP7 knockdown Illumina HM450 GSE45727 NLRP7 alters CpG methylation [79]

Bisulphite converted DNA
Illumina

HumanMethylation27
BeadChip

GSE36829 Epigenome analysis of placenta samples from
newborns

Database,
unpublished

First trimester, second trimester and full-term
placentas

Illumina
HumanMethylation27

BeadChip
GSE31781 Widespread changes in promoter

methylation profile in human placentas. [80]

Chorionic villus and maternal blood cell
samples

Illumina
HumanMethylation27

BeadChip
GSE23311 DNA Methylation Analysis in Human

Chorionic Villus and Maternal Blood Cells [81]

Differentiation of Stem Cells

Contrary to mice, a Trophoblast Stem Cell (TSC) population has not yet been clearly identified
in humans, thus limiting our capacity to study the role of DNA methylation in the early stages
of trophoblast differentiation. A recent study has addressed this question using a side-population
trophoblasts, a candidate human TSC [55], isolated from first trimester placenta. The comparison of
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the methylomes of this side-population trophoblasts and the methylomes of vCTs and EVTs all isolated
from the same first trimester placenta, showed that each population had a distinctive methylome [56].
In comparison to mature vCTs, side-population trophoblasts, showed differential methylation of
genes and miRNAs involved in cell cycle regulation, differentiation and regulation of pluripotency.
In addition, the comparison of the methylomes and transcriptomes of vCTs and EVTs revealed the
methylation of genes involved in epithelial-mesenchymal transition (EMT) and metastatic cancer
pathways, which could be involved in the acquisition of the invasive capacities of the EVTs. However,
this study, as many others, failed to establish a systematic correlation between hypermethylation of the
genes and downregulated expression. Therefore, the authors conclude that although CpG methylation
is involved in the trophoblasts differentiation, it cannot be the only regulatory process.

Regulation of Homeotic Genes

Several studies have identified and established the importance of the transcription factors of the
homeobox gene family (HOX) in the development of human placenta [82–86]. Most HOX genes have
been found stably hypo-methylated throughout gestation, suggesting that DNA methylation is not the
primary mechanism involved in regulating HOX genes expression in the placenta. However, these
genes show variable methylation patterns across gestation, with a general trend towards an increase
in methylation over gestation. Three genes (TLX1, HOXA10 and DLX5) present slightly increased
methylation while their mRNA expression decreases throughout pregnancy, supporting a role for
DNA methylation in their regulation [46]. Down-regulation of these genes using siRNAs specific for
DLX5, HOXA10 and TLX1 in primary trophoblasts leads to loss of proliferation and to an increase in
mRNA expression of differentiation markers, such as ERVW-1. This suggests that loss of these proteins
is required for proper SCT development [46].

Placental Development and Cancer Pathways

The early steps of placentation are reminiscent of the invasive properties of malignant tumors.
Studies on DNA methylation in cancer cells and placental cells have highlighted similarities in
their epigenomes, particularly, a widespread hypomethylation throughout the genome and focal
hypermethylation at CpG islands. Hypomethylation within the placenta is not uniform but occurs in
large domains (>100 kb) called partially methylated domains (PMDs) which are regions of reduced
DNA methylation that cover approximately 40% of the placental genome [51]. PMDs are unique to a
few different tissue types that include the placenta, cultured and cancer cells [50,51,87]. Placental genes
within PMDs tend to be tissue-specific and show higher promoter DNA methylation and reduced
expression as compared with somatic tissues [51]. A genome-wide comparison of DNA methylation
changes in placental tissues during pregnancy and in 13 types of tumor tissues during neoplastic
transformation revealed that megabase-scale patterns of hypomethylation distinguish first from third
trimester chorionic villi in the placenta [52]. These patterns mirror those that distinguish many
tumors from the corresponding normal tissues. The genomic regions affected by this hypomethylation
encompass genes involved in pathways related to EMT, immune response and inflammation, all of
them associated to cancer phenotypes. Moreover, the authors observed that hypomethylated blocks
distinguish vCTs before 8–10 weeks of gestation and after 12–14 weeks of gestation. The analogy
between early placentation and malignant tumors at the epigenetic level is further stressed by studies
analyzing the methylation status of the promoters of several tumor suppressor genes (RASSF1A,
SERPINB5 also known as APC and Maspin, respectively) in the developing placenta and human
choriocarcinoma cell lines (JAR and JEG3) [25,49]. These studies show that promoter DNA-methylation
regulates the expression of these tumor suppressor genes which in turn affects the migration and
invasive capacities of the trophoblastic cells (As summarized in Table 1).
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2.3.2. Non-coding RNAs and Epigenetic Regulation of Placenta Development

Definition

A non-coding RNA (ncRNA) is defined as an RNA molecule that is not translated into a protein.
Classes of non-coding RNAs include transfer RNAs (tRNAs) and ribosomal RNAs (rRNAs), small RNAs
such as microRNAs (miRNAs), siRNAs, piRNAs, snoRNAs, snRNAs, exRNAs, scaRNAs and the long
ncRNAs [88]. The role of these molecules in placental development, physiology and pathology has
been recently reviewed in detail [89]. Here we will discuss solely the role of miRNAs and long ncRNAs
in the epigenetic control of placental development.

MiRNA and Normal Human Placental Development

The miRNAs are single stranded RNA molecules of 19–24 nucleotides, which act primarily by
degrading mRNA transcripts or inhibiting translation of miRNA in to proteins [90]. To date, more than
2000 human miRNAs have been discovered, which appear to regulate 50% of human RNAs [91].
A large number of miRNAs detected in the placenta are expressed from a gene cluster located on
chromosome 19 (C19MC) [92,93]. This cluster includes 46 intronic miRNA genes that express 58
miRNA species. These miRNAs are primate-specific, and they are expressed almost exclusively in
the placenta (and are thus termed trophomiRs). In the human placenta, the expression of C19MC
miRNAs is detected as early as 5 weeks of pregnancy and the expression gradually increases as
pregnancy progresses [94]. An imprinted, paternally expressed, CpG-rich domain has a regulatory role
in C19MC expression [95]. This DMR, is hypermethylated in cell lines that do not express C19MCs [96].
The C19MC region contains genomic transposable elements called “Alu repeats”, which have been
implicated in recombination and gene duplication events. Because of their sequence complementarity it
has been proposed that several C19MC miRNAs could be responsible of the targeting and degradation
of transcribed Alu elements. Also, the C19MC miRNAs are expressed in embryonic and in stem cells
but their expression drops considerably when these cells differentiate, which may indicate a role in
the maintenance of an undifferentiated state [97–101]. Several members of the C19MC cluster are
expressed at much higher levels in vCT compared with EVTs and overexpression of the C19MC cluster
results in reduced migration of the extravillous trophoblast line HTR8/SVneo [45]. The chromosome 14
miRNA cluster (C14MC) is another miRNA cluster that is expressed in the placenta [102]. This cluster
includes the miRNAs: miR-127, miR-345, miR-370, miR-431 and miR-665. These miRNAs have been
involved in the regulation of the immune suppressive, anti-inflammatory response and also in the
regulation of the ischemia/hypoxia response [103]. The expression of the C14MC members generally
declines during pregnancy [104].

The miR-675 is expressed from the first exon of the H19 long non-coding RNA. Up-regulation
of miR-675, which is controlled by the stress-response RNA-binding protein HuR, restricts murine
placental growth. Deficiency of H19, promotes placental growth and miR-675 overexpression decreases
cell proliferation, likely through targeting Igf1R [105]. Consistent with these findings, the expression of
miR-675 rises toward the end of murine pregnancy, when placental growth decelerates. In addition,
miR-675 restricts proliferation in JEG3 cells, likely through binding to the nodal modulator 1 (NOMO1)
protein [44].

Several other miRNAs are likely involved in placental development by inhibiting genes associated
to regulation of trophoblast fate, invasion and proliferation (Let-7a, miR-377, miR-145, members of
the miR-17_92 cluster, members of the miR-106a_363 and miR-106b_25 clusters, miR-155, miR-34,
miR-141-3p and miR- 200a-3p) [106,107]. As additional examples of regulation, mir-431inhibits invasion
of trophoblast cells by targeting the ZEB1 gene [108], miR-106a~303 inhibits trophoblast differentiation
by targeting hCYP19A1 and hGCM1 [43], miR-34 targets SERPINA3, a key gene in a variety of biological
processes and highly deregulated in placental diseases [41].

These miRNAs regulate diverse processes such as trophoblast physiology, proliferation and
invasion (some mentioned in Table 1 and reviewed in Reference [107]).
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lncRNA and Normal Human Placental Development

Long non-coding RNAs (lncRNAs) are RNAs greater than 200 nucleotides in length that do not
encode a protein product. They are expressed with cellular and temporal specificity and have been
involved in many cellular events, including the regulation of gene expression, post-transcriptional
modifications and epigenetic modifications, imprinting and X-chromosome inactivation [109]. They act
as scaffolds (binding other RNAs or proteins), signals and antisense decoys and engage in transcriptional
interference. Usually a single lncRNA has multiple functions. The function of lncRNAs in placental
development is poorly understood, mostly inferred from studies on placental pathologies. Nevertheless,
lncRNAs have been involved in a number of critical trophoblast functions, from proliferation, invasion
and migration, to cell cycle progression [110]. H19 was one of the first lncRNAs to be discovered [111].
H19 is located within a large imprinted domain on chromosome 11, at ~100 kb downstream of IGF2.
H19 and IGF2 are reciprocally imprinted that is, for H19 only the maternal allele is expressed, while for
IGF2, only the paternal allele is expressed [112]. H19 expression could be regulated by PLAGL1, a zinc
finger transcription factor, in the human placenta [113]. Two major functions have been described for
H19, specifically as a modulator for binding small RNAs and proteins [114] and as a source of the
miRNA mir-675 (see above). H19 has variable levels of biallelic expression in the placenta (reports
suggest between 9% and 25% expression occurs from the imprinted allele) until 10 weeks of gestation by
which time H19 expression is mostly restricted to the maternal allele [115]. H19 expression is restricted
to intermediate and vCT and is not found within SCTs in the human placenta. H19 down-regulation
in trophoblast cells leads to inhibition of proliferation and apoptosis [116]. Many other lncRNAs
have been involved in placental development, including lincRNA SPRY4-IT1, MIR503HG, LINC00629,
MEG3, MALAT1, RPAIN and TUG1 [31–37]. The study of the expression of these lncRNAs during
placental development and the manipulation of their expression in vitro in choriocarcinoma cell made
it possible to infer their possible function in the context of placental development (Table 1).

2.3.3. Histone Modifications in the Developing Placenta

Histone modification is the process of modification of histone proteins by enzymes, including
post-translational modifications, such as methylation, acetylation, phosphorylation and ubiquitination.
Histone modifications participate in gene expression regulation by modulating the degree of chromatin
compaction [117].

Our knowledge concerning the role of histones modification in human placentation is scarce and
refers mostly to studies in mice. Methylation frequently occurs on histones H3 and H4 on specific
lysine (K) and arginine (A) residues. Histone lysine methylation can lead to activation or to inhibition,
depending on the position in which it is located. For instance, H3K9, H3K27 and H4K20 are considered
as important ‘inactivation’ markers, that is, repressive marks, because of the relationship between
these methylations and heterochromatin formation. However, the methylation of H3K4 and H3K36
are considered to be ‘activation’ marks [118,119].

The heterochromatin methylation marker H3K27me3 was found to be highly active in vCT.
That was explained by rapid and transient repression of genes at the time of SCT formation. SCTs nuclei
were also found enriched for H4K20me3 [30]. However, this report contrasted with another study
reporting that the CTs were enriched with H3K4me3 and that the SCTs were transcriptionally activated
by the chromatin marker H3K4me2, which co-localized with active RNAP II in the majority of SCT
nuclei [29]. In mouse and other mammals, H3 arginine methylation predisposes blastomeres to
contribute to the pluripotent cells of the ICM, which appears to require higher global levels of H3
arginine methylation than the TE/trophoblast lineage [120]. Nevertheless, these lower modification
levels in the trophoblast lineage are indispensable for normal placental development.

Acetylation, which in most cases occurs in the N-terminal conserved lysine residues, is also
an important way to modify the histone proteins, for example, acetylations of lysine residues 9
and 14 of histone H3 and of lysines 5, 8, 12 and 16 of histone H4 by Histone Acetylases (HATs).
Acetylation is generally associated with the activation or opening of the chromatin. On the contrary,
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de-acetylation of the lysine residues by histone deacetylases (HDACs) leads to chromatin condensation
and inactivation of gene transcription. Oxygen (O2) concentrations strongly influence placental
development partially through modifications of the histone methylation codes. Initially, the gestation
environment is hypoxic and O2 concentration increases during development. Hypoxia-inducible
factor-1 (HIF-1), consisting of HIF-1α and ARNT subunits, activates many genes involved in the
cellular response to O2 deprivation [121]. HIF-1 is also known to recruit and regulate HDACs [122,123].
Moreover, HIF-1 has been found to bind specific sites on the promoter of the H3K9 demethylases
thereby inducing their expression. In particular, it induces JMJD1A and JMJD2A that remove dimethyl
marks on H3K9me2, JMJD2B [124,125] which removes trimethyl marks (H3K9me3) and more weakly
JMJD2C which converts H3K9me3 to me2 [126]. Studies in rodents have shown that HIFs have
important roles in the regulation of TSCs differentiation by integrating physiological, transcriptional
and epigenetic inputs. Thus, the crosstalk between HIF and the HDACs is required for normal
trophoblast differentiation [123,127].

Another example of histone modification during placentation, is the acetylation of histones H2A
and H2B by the CREB-binding protein (CBP). CBP acts as an acetyltransferase that decreases the EMT
and invasiveness of murine TSCs while maintaining the properties of stem cells [28].

Trophoblastic fusion depends on the regulation of GCMa activity by HATs and HDACs. Human
GCMa transcription factor regulates expression of syncytin, which in turn mediates trophoblastic fusion.
It has been demonstrated that CBP-mediated GCMa acetylation underlies the activated cAMP/PKA
signaling pathway that stimulates trophoblastic fusion [27]. Human pregnancy-specific glycoproteins
(PSG) are the major secreted placental proteins expressed by the SCTs and represent early markers of
cytotrophoblast differentiation. Pharmacological inhibition of HDACs in JEG-3 cells up-regulated PSG
protein and mRNA expression levels. This correlated with an increase in the amount of acetylated
histone H3 associated with PSG promoter [26]. Combined acetylation at H3K9 and H3K4 methylation
also activates Maspin, a tumor suppressor gene which is negatively correlated with human trophoblasts
motility and invasion [24,25]. The invasive capacity exhibited by EVTs is attributed in part to the
extracellular matrix degradation mediated by matrix metalloproteinases (MMPs) such as MMP-2 and
MMP-9. Differential expression of these MMPs and their tissue inhibitors (TIMPs) has been associated
to histone H3K9/27me3 [23].

2.3.4. Imprinting and Placental Development

Placentation and the Materno-Fetal Conflict

Pregnancy in Eutherian mammals is an immunological challenge as reviewed recently [128].
To note, an ancestral inflammatory response in pregnancy and parturition also exist in marsupials
(metatherians), as recently observed [129,130]. Other mechanisms are equally conserved in the formation
of the placenta, in particular the fusion mechanisms of cytotrophoblasts into syncytiotrophoblasts that
are mediated by retroviruses, in eutherians as well as in metatherians [131].

Once the placenta is formed, it will allow nutrients to transit from the mother circulation to the fetal
circulation. In the context of the maternal-fetal conflict hypothesis, tightly regulating the placentation
process and limiting placental growth is crucial for the mother survival. The genes controlling this
regulation are expected to be found different between viviparous and non-viviparous species. For this,
mammals appear as an excellent model as a group of ~4500 species divided into egg-laying animals
(prototherians, Platypus and Echidnaes, 5 species), animals with a short-lived placenta (metatherians,
Marsupials ~250 species) and viviparous species with a long-lived placenta (eutherians, i.e., all the
other mammals, where gestation length can be up to 22 months in the African elephant). One major
difference found between the genome of placental species and non-placental species of mammals is the
presence of imprinted genes only in the first group.
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Definition of Imprinted Genes and Links with Viviparity

Imprinted genes are genes that are expressed from either the maternal or the paternal allele,
mainly through differentially methylation mechanisms. Their existence leads to dramatic phenotypic
differences in animal hybrids according to the sense of the cross. For instance, interbreeding of lions
and tigers results in two morphologically different animals, if the male is the lion or the male is the
tiger, leading to a liger or a tigon, respectively [132]. While the tigon has a size like that of its parents,
the liger is the largest existing felid (up to >400 kg) and several hypotheses have been raised to explain
this fact, mostly connected to the existence of imprinted genes. Experimentally, in the 80s, Solter
and Surani carried out nuclear transfer experiments that demonstrated in mice the necessity of a
paternal and maternal genome to foster healthy development [133]. Androgenetic embryos lead to the
production of a hypertrophic placenta while gynogenetic embryos had a very small placenta and a
stunted embryo. Similarly, in humans, development from two paternal genomes leads to hydatiform
moles, where the placenta is composed of grapelike vesicles, whereas parthenogenic development
leads to the apparition of teratomas [134].

As far as we know today, imprinting is closely associated to viviparity. The sequencing of the
platypus genome in 2008 [135] revealed syntenic regions that are relatively well conserved with the
eutherian and marsupials, albeit no evidence of imprinted gene can be found in Monotremes. This may
be since acquisition of imprinting in a species seems to be associated to the progressive acquisition
of CpG islands (besides other mechanisms, such as chromosome translocations or retrotransposons
insertions), that appear absent from the platypus genome [136,137]. In marsupials (metatherians),
where the placenta is short-lived, the number of imprinted genes is more limited than in eutherian
mammals. Two imprinted regions are well conserved between metatherians and eutherians such as the
PEG10 and the H19-IGF2 regions [135]. Similarly, an exhaustive analysis of the transcriptome of chicken
failed to identify imprinted genes, while allele specific expression does exist [138,139]. The evidence
collected therefore strongly links these genes with the placenta presence. Besides, imprinted genes
may have a strictly paternal or strictly maternal expression. Series of invalidation experiments in mice
indicated that paternal genes tend to increase placental growth while maternal genes tend to limit this
growth [140].

Example of the H19-IGF2 Cluster; Cross Species Conservation of Imprinted Genes

A well-known example of this is the H19-IGF2 cluster localized distally at 11p15.5 in humans and
7qF5 in mice. In both species, the structure of the locus is conserved (about 100 kilobases separating the
two genes, with differentially methylated regions inside IGF2 and nearby H19). An IMC (Imprinting
Control Region), located 3 kb from the starting point of H19 has also been identified, with seven
binding sites for the ZNF transcription factor CTCF. H19 is expressed exclusively form the maternal
allele, while IGF2 is expressed from the paternal allele. In mice, a placental specific promoter of Igf2
was discovered. The selective invalidation of this promoter [141] leads to a strong decrease of placental
development and placental growth. By contrast, the invalidation of H19, leads to placental and fetal
overgrowth [142]. Amongst other imprinted genes that affect placental and fetal growth besides H19
and IGF2 are paternally expressed genes, generally identified in mice (Peg1, Peg3, Rasgrf1, Dlk1) and
maternally expressed genes (Igf2r, Gnas, Cdkn1c, Grb10).

Interestingly, in mice, the decoy receptor of Igf2, Igf2r is imprinted and with a maternal profile of
expression. In humans, surprisingly, the imprinting status of IGF2R seem to be erratic, polymorphically
imprinted according to the human individual analyzed. This was first published in 1993 [143] that
showed that 2 out of 14 fetuses had an exclusive expression from the maternal allele. Recently it was
shown that IGF2R is duly imprinted in macaques [144], showing that even in primates, the imprinting
status can vary between relatively close species. Overall, it appears that many placental imprinted
mouse genes are biallelic in their expression in humans [145]. Reciprocally, in a study aiming at
identifying novel imprinted genes in the human placentas, we compared variants of the placental
DNA versus those of cDNAs from the same placentas using SNP microarrays [146,147]. In addition to
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four known imprinted genes (IPW, GRB10, INPP5F and ZNF597), we could identify 8 novel imprinted
genes in the human placentas (ZFAT, ZFAT-AS, GLIS3, NTM, MAGI2, ZC3H12C, LIN28b and DSCAM).
Using a mouse cross allowing the following of the allelic origin, we found an astonishing variegation
of the imprinting status: only Magi2 was imprinted in the mouse species.

Imprinted genes may have a general impact on the global methylation status of the placenta.
For instance, recently a polymorphism located at the IGF2/H19 locus was shown associated to placental
DNA methylation and birth weight in association with Assisted Reproductive Technologies usage [148].

Imprinted genes deregulation in the placenta is linked to placental diseases, as reviewed in
References [149,150]. In a recent study, Christians and coworkers, analyzed a list of 120 imprinted
genes in relation with global expression of 117 placental samples, including PE and Intra Uterine
Growth Restriction (IUGR) cases [151]. The authors identified a significant correlation between
birth weight and the expression level of imprinted genes but without significant differences between
paternally versus maternally expressed genes. Imprinted genes were also more heavily deregulated
in preeclampsia than other genes and in this case paternally expressed genes were down-regulated,
while maternally expressed genes were up-regulated. The trend was similar for IUGR. Interestingly,
the two human-specific microRNA clusters (C19MC and C14MC), both appear to be imprinted
(paternally and maternally expressed) for C19MC and C14MC, respectively, clusters that have been
duly studied by the team of Yoel Sadovsky [45,89,152]. Recently, we identified duplication in the
19q13.42 imprinted region encompassing the C19MC cluster [153], from a male 26 weeks fetus with
severe IUGR, suggesting that a double dose of the miRNA could contribute to the disease. This suggests
links between miRNA regulation, imprinting status and the putative consequences for fetal health
and growth.

3. Epigenetic Alterations in Preeclampsia

3.1. DNA Methylation Alterations in Preeclampsia

Anomalies of DNA methylation in preeclampsia have been analyzed from different cellular
sources. Besides the analysis of placental cells, investigators have analyzed circulating maternal
blood cells or cell-free DNA, as well as maternal endothelial cells (much less accessible, though) and
cord-blood white blood cells (of fetal origin). A list of genes of which methylation was found altered is
presented as Table 3.

A summary of epigenetic mechanisms at work in PE is shown in Figure 2.

3.1.1. Methylation Alterations in the Preeclamptic Placenta

Common Alterations of Gene Expression in PE are Associated to Methylation Alterations

Numerous studies revealed altered expression of various genes in the pathological placentas
(as synthesized previously [154]). These alterations of gene expression are partly explained by the
existence of epigenetic deregulations. In PE, numerous methylation deregulations have been found
in the pathological compared to control placentas, some studies (but not all) taking into account the
gestational age, a recurrent issue when normal and pathological placentas are compared, for which
there is often a more than 6 weeks difference [155–160]. The different techniques used to analyze
methylation globally are presented in a previous review [161]. These epigenetic changes probably
originate from the abnormal placental environment in PE (or IUGR), characterized by alternations
of low oxygen tension and hyperoxia. As mentioned above, hypoxia per se induces the expression
of the Hypoxia-Inducible factor (HIF1α), which binds to Hypoxia Responsive Element activating
the transcription of various genes related with angiogenesis and metastasis-associated genes [162].
Overall, abnormal oxygen signaling in the placental context leads to increased concentrations of
Oxygen Reactive Species (ROS) [163]. Oxidative stress may drive an accelerated ageing of trophoblast
cells, which could be key to understand the origin of placental disorders. Indeed, several studies
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emphasized alterations of telomere length (a mark of ageing) in preeclamptic pregnancies, with a drastic
augmentation of short telomeres in PE, especially in Early Onset PE (EOPE) [164–166]. This senescence
may be induced by alterations of the management of oxidative stress [167–169]. The accelerated
transformation of vCTs into SCTs will lead to a decrease life expectancy of the placenta and an alteration
of its capacity to bring the gestation harmoniously to its normal term.Int. J. Mol. Sci. 2019, 20, x FOR PEER REVIEW 14 of 47 
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VEGF = Vascular Endothelial Growth Factor.

It is well known that persisting environmental variations induce changes in the epigenetic marks,
including DNA methylation. These marks can either be mere biomarkers or participate actively
in regulating genes to overcome the changing environmental conditions (although gene expression
changes are often disconnected from methylation alterations).

Overall, several of the genome-wide studies showed that the methylation profiles differ between
early and late onset of preeclampsia (EOPE and LOPE), suggesting a different etiology between these
two types of PE [170–173]. EOPE shows more pronounced genome-wide hypermethylation changes
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than LOPE, probably since it is caused by earlier alterations allowing the epigenetic reprogramming to
install earlier, in reason of the earlier cellular stress [171,174].

Using the Illumina Methylation 450 BeadChip Array, Yeung and coworkers, identified 303
differentially methylated regions in PE, 214 hyper and 89 hypomethylated, after adjusting for
gestational age. The genes located nearby or encompassing hypermethylated regions were enriched in
gene-ontology (GO) terms such as “ATP transport”, in KEGG pathways, such as “steroid hormone
biosynthesis”, “cellular senescence” and Reactome pathways, such as “Vpr-mediated induction of
apoptosis by mitochondrial outer membrane (SLC25A6 and SLC25A4)”. The annotation of clusters also
revealed an alteration of clusters of homeobox genes, (especially HOXD genes), Wnt2 cell signaling;
fertilization and implantation genes; reactive oxygen species signaling (NOX5) and cell adhesion
(ALCAM) genes [158]. Amongst the most recent studies, Leavey and coworkers used a novel approach
based upon bioinformatics to sort 48 human PE samples through their transcriptome profile before
subjecting them to methylation analysis, using the Illumina Human methylation450K array. This made
it possible to divide the preeclamptic cases into two groups associated to abnormal methylation
marks nearby ‘immunological’ genes or more ‘canonical’ EOPE cluster, with for instance abnormally
methylated CpG in FLNB, COL17A1, INHBA, SH3PXD2A, as well as in the gene body of FLT1 [160].

In 2015, the study of Zhu and coworkers [175] was the first to analyze simultaneously methylation
and hydroxymethylation in the PE placentas. Hydroxymethylation results from the hydroxylation
of methyl-Cytosine is a first step towards the active demethylation of DNA through the action of
Ten+Eleven Translocation enzyme (TET) proteins, and could play an important role in gene expression
regulation [176]. The authors showed that the methylation level is higher in gene promoters and gene
bodies in PE versus control placenta. Surprisingly most of the clustering of the genes that were altered,
either by methylation or by hydroxymethylation were associated with nervous system development,
neurotransmitters, neurogenesis, which are presumably not relevant in a non-neural tissue as the
placenta. Nevertheless, positive regulation of vasoconstriction was also enriched as a GO term, as well
as regulation of nitrogen compounds, two pathways that have a clear biological sense in terms of
placental diseases pathophysiology (association with vascularization and with the modulation of
oxidative/nitrosative stresses).

Table 3. Differentially methylated genes in preeclampsia.

Cell Type Gene Methylation
State in PE Possible Target Reference

Placenta and maternal plasma SERPINB5 Hypomethylated Trophoblast Invasion [177]
First-trimester maternal white

blood cell and placenta samples ABCA1 Hypomethylated Cholesterol transporter in macrophages [178,179]

First-trimester maternal white
blood cell, placenta samples,

umbilical cord blood
GNAS Hypomethylated Diabetes, hypertension and metabolic diseases [178,179]

First-trimester maternal white
blood cell and placenta samples TAPBP Hypomethylated Peptide loading in the Histocompatibility complex [178]

First-trimester maternal white
blood cell and placenta samples DYNLL1 Hypomethylated Phosphate metabolic processing [178]

First-trimester maternal white
blood cell and placenta samples ORPD1 Hypomethylated Opioid Receptor [178]

Placenta TIMP3 Hypomethylated Metalloprotease Inhibitor [180]
Placenta P2RX4 Hypomethylated Apoptosis and Inflammation [170]
Placenta PAPPA2 Hypomethylated Insuline-like growth factor regulator [170]
Placenta DLX5 Hypomethylated Trophoblast proliferation and differentiation [181]
Placenta KRT15 Hypomethylated Cytoskeleton [182]

Placenta SERPINA3 Hypomethylated Inhibition of inflammation, pathogen degradation
and tissue remodeling [183]

Placenta FN1 Hypomethylated Cell adhesion, trophoblast proliferation,
differentiation and apoptosis [182]

Placenta TEAD3 Hypomethylated Cell homeostasis, Inflammation, Coagulation,
complement activation [184]

Placenta JUNB Hypomethylated TNF signaling pathway [182]
Placenta PKM2 Hypomethylated Cellular metabolism [182]
Placenta NDRG1 Hypomethylated Trophoblast invasion [182]
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Table 3. Cont.

Cell Type Gene Methylation
State in PE Possible Target Reference

Placenta BHLHE40 Hypomethylated Inhibition of trophoblast differentiation [171]
Placenta INHBA Hypomethylated Inhibition of trophoblast differentiation [171]
Placenta CYP11A1 Hypomethylated Trophoblast autophagy and steroidogenic pathway [184]
Placenta HSD3B1 Hypomethylated Steroidogenic pathway [184]
Placenta TEAD3 Hypomethylated Steroidogenic pathway [184]
Placenta CYP19 Hypomethylated Steroidogenic pathway [184]
Placenta CRH Hypomethylated Cortisol bioavailability in the placenta [184]
Placenta TFPI-2 Hypomethylated Block in endothelial dysfunction [185]
Placenta VEGF Hypomethylated Angiogenesis [186]

Umbilical cord blood, placenta
samples IGF2 Hypomethylated Embryonic development and fetal growth [179,187]

Placenta and Peripheral Blood GNA12 Hypomethylated Blood pressure [188]
Placenta CAPG Hypomethylated Macrophage function [189]
Placenta GLI2 Hypomethylated Embryo development [189]
Placenta KRT13 Hypomethylated Cytoskeleton [189]
Placenta LEP Hypomethylated Cell homeostasis and metabolism [190]
Placenta LP1 Hypomethylated Lipid metabolism [191]
Placenta CEBPα Hypomethylated Transcription stimulation of LEP promoter [191]
Placenta SH3PXD2A Hypomethylated Trophoblast invasion and podosome formation [191]
Placenta NCAM1 Hypomethylated Trophoblast-trophoblast interactions and adhesion [174]

Cord blood samples HSD11B2 Hypomethylated Cortisol transmission from the mother to the fetus [192]
Placenta WNT2 Hypermethylated Placentation and cell signaling [158,193]
Placenta SPESP1 Hypermethylated Fertilization [158]
Placenta NOX5 Hypermethylated Reactive Oxygen Species signaling [158]
Placenta ALCAM Hypermethylated Cell Adhesion [158]
Placenta IGF-1 Hypermethylated Placentation, trophoblast function, fetal growth. [194]
Placenta SOX7 Hypermethylated Embryonic development and cell fate [155]
Placenta CDX1 Hypermethylated Trophoblast invasion restriction [155]
Placenta CXCL1 Hypermethylated Chemokine inducer of angiogenesis [155]
Placenta ADORA2B Hypermethylated Placenta impairment and fetal growth restriction [155]
Placenta FAM3B Hypermethylated Cytokine activity [182]
Placenta SYNE1 Hypermethylated Nuclear organization and structural integrity [182]
Placenta AGAP1 Hypermethylated Cellular development, assembly and function [182]
Placenta CRHBP Hypermethylated Cortisol bioavailability in the placenta [190]

Placenta and maternal blood STAT5A Hypermethylated Transcription activation [195]
Placenta and maternal plasma RASSF1A Hypermethylated Tumor suppressor gene [177]

Placenta PTPRN2 Hypermethylated Phosphate metabolic processing [173]
Placenta GATA4 Hypermethylated Placenta Growth [173]

YWHAQ Hypermethylated Cellular response to reduce oxygen levels [196]

Placenta TNF Hypermethylated MMP-9 stimulation, Immune system activation,
cell survival, migration and differentiation [174]

Placenta COL5A1 Hypermethylated Extracellular matrix [174]

Placenta CDH11 Hypermethylated Trophoblast anchoring to the decidua,
syncytiotrophoblast differentiation [174]

Placenta HLA-G Hypermethylated Maternal Immune tolerance and immune rejection [197]

The major modifications of methylation occurring in preeclampsia are presented as Figure 3.

Limits of the Genome-Wide, Multicellular Approach for Preeclampsia Methylation Profiling

As mentioned earlier, a recurrent criticism of genome-wide comparisons between normal and PE
placenta is linked to the fact that in general placental samples of PE patients are collected at earlier
terms than controls. However, the existence of methylation profiles for control placentas throughout
gestation [51] now allows to make the part between the effect of the placental ageing and the effects
of the pathology per se. Other limits of these approaches are the complexity of the cell material, the
variation between the degree of severity of the disease or the various statistical tests that are used in
the different studies. Also, several studies have brought attention to the lack of reproducibility in
high-throughput genomic, transcriptomic and epigenomic studies. This has been recently discussed by
Komwar and coworkers in a recent study were they analyze the sources of variation in preeclampsia
high-throughput studies an propose a methodology to ensure reproducibility and thus facilitate the
integration of data across studies [198].
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Figure 3. Overview of major methylation alterations in preeclampsia. The main pathways are shown
in green boxes. The significant alterations in methylation may be associated either to increased or
decreased gene expression (hypermethylated in red and hypomethylated in blue).

Single-Cell Analysis, the Next Frontier to Methylation Epigenomic Approaches

Gene-scale expression studies were recently carried out at the single cell scale [199] and have
provided evidence of gene expression shifts during the CT, SCT and EVT differentiation steps,
as well as, allowed the reconstructions of differentiation trajectories. This has also been analyzed
by genome-scale DNA methylation analysis. Gamage and coworkers have analyzed by RRBS side
population trophoblasts, CTs and EVTs from human first trimester placentas [56]. Forty-one genes
involved in EMT and metastatic cancer pathways were found methylated between CT and EVTs,
possibly contributing to the invasive phenotype of these cells. In the BeWo cell model where fusion can
be induced by forskolin, RRBS analysis performed before and after fusion, showed altered methylation
of genes involved in cell differentiation and commitment, together with a gain in transcriptionally
active histone marks such as H3K4me3 [54]. Such approaches are for the moment difficult to transpose
to placenta pathophysiology. Instead, several systems where methylation influences normal placental
function have been studied. As an example, we present below the epigenetic regulation of genes
involved in placental invasion and PE.

An Example of Specific Gene Alterations of Methylation: Regulation of Invasion

MMPs are well-characterized proteins involved in trophoblast invasion and angiogenesis during
pregnancy. They constitute a family of 23 Zn2+ and Ca2+-dependent proteases that degrade the
extracellular matrix. This family of proteins presents abnormal concentration and behavior in placental
diseases such as PE [200], placenta accreta and placenta percreta [201,202]. This has been recently
reviewed for preeclampsia [203]. A decreased level of MMP-2 and MMP-9 reduces the remodeling of
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spiral arteries in early gestation. Besides, other MMPs, such as MMP-1 and MMP-14, may also have a
role in this disease. Epigenetic mechanisms are at work for controlling MMP gene expression.

Li and coworkers observed that TET2 is involved in the demethylation of the MMP-9 promoter,
this being associated to the downregulation of the protein and contributing to trophoblast shallow
invasion [204].

TIMP3, a MMP inhibitor, shows the highest methylation reduction (over 15%) in EOPE compared
to control placentas with an inverse correlation between methylation level and gene expression
suggesting an increased transcription of TIMP3 in PE placentas [180,189]. Low levels of TIMP3 lead to
poor invasion of the trophoblast and placenta hypoperfusion. Moreover, TIMP3 may be able to inhibit
angiogenesis by blocking vascular endothelial growth factor binding to its receptor contributing to
impaired placenta blood vessels development. Also, genetic variations of the gene have been associated
with cardiovascular disorders and hypertension.

3.1.2. Maternal Blood Epigenetic Marks in Preeclampsia

Alterations in the levels of many plasma and serum proteins have been associated with PE.
In 2013, White and coworkers showed that PE was favoring hypermethylation in white blood maternal
cells using the methylation-27k arrays from Illumina [205]. GRIN2b. GABRA1. PCDHB7 and BEX1
were found differentially methylated, with an enrichment of the neuropeptide signaling pathway.
The re-analysis of methylation of genes known to be involved in PE revealed that in maternal circulating
leukocytes, CpG sited from 4 genes associated with PE, POMC, AGT, CALCA and DDAH1, showed
differential methylation in PE compared to control, with moderate methylation differences (<6%) [206].
These 4 genes are known to alter immunomodulation and inflammatory response, suggesting that
at least alterations of the placental physiology in preeclampsia have epigenomic consequences on
maternal circulating cells.

During pregnancy, 3 to 6% of cell-free DNA in the maternal blood plasma is derived from the
placenta. Oxidative stress in PE leads to increased trophoblast apoptosis and the release of SCT
microparticles and a five to ten-fold increase in circulating fetal DNA in the maternal bloodstream
compared with control counterparts [207,208]. These free fetal molecules and their methylation status
have been proposed as a non-invasive biomarker of fetal and placental pathologies before the onset
of symptoms. This has been shown for Maspin, for which the unmethylated version have a median
methylation more than 5.7 fold higher in PE than control pregnancies [209,210]. Another epigenetic
marker of preeclampsia is the methylation of RASSF1A (Ras Association domain-containing protein 1)
promoter [177,211,212].

3.1.3. Maternal Endothelial Cells

There is limited access to maternal vessels in pregnancy, nevertheless DNA methylation was
assessed from this material in 2012 using the 27K methylation array of Illumina [213]. From 14.495
genes interrogated by the array, 65 genes were identified as hypomethylated in PE. Clustering
leads to identify biological processes such as smooth muscle contraction, thrombosis, inflammation,
redox homeostasis, sugar metabolism and amino acid metabolism. These alterations of the maternal
endothelium suggest potential effects on cardiovascular life of the mother after preeclampsia. Focusing
on collagen metabolism, the authors revealed an increased expression of MMP1 and MMP8 in
vascular smooth muscle cells and infiltrating neutrophils of omental arteries of preeclamptic women,
which was associated with reduced methylation in the promoters of both genes in pathological
patients compared to control patients [213]. In the same study, several other MMPs, showed reduced
hypomethylation in PE patients albeit with lower significance [214,215]. Moreover, pregnant women
under dietary supplementation may restore the reduced methylation in the promoters of these genes
and be protected against the development of PE. Interestingly, all these MMPs genes are located in
chromosome 11, which may be indicative of a specific sensitivity of this chromosome to epigenetic
changes caused by oxidative stress during the development of the pathology. The same team reported
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the reduced methylation in the promoter region of TBXAS1 gene in correlation with increased gene and
protein expression of thromboxane synthase in vascular smooth muscle, endothelium and infiltrating
neutrophils [215]. Increased levels of thromboxane synthase induce the overproduction of thromboxane
A2, a potent vasoconstrictor and platelet activator, contributing to hypertension and coagulation
abnormalities classically related to PE.

3.1.4. Cord Blood Cells

In 2014, Nomura and coworkers analyzed the global methylation profile of cord blood cells using
the LUMA technique [161] and failed to observe an actual difference but with a limited number of
controls samples (5) [216]. Genome-Wide Methylation analysis using the 450K microarray tool on
neonatal cord blood DNA showed a significant genome-scale hypomethylation in neonatal cord blood
DNA associated with EOPE, with 51,486 hypomethylated and 12,563 hypermethylated CpGs [187].
In this study the most differential methylated genes were associated with inflammatory pathways,
cholesterol and lipid metabolism, including IL12B, FAS, PIK31 and IGF1. Deregulation of both metabolic
pathways may increase the risk of cardiovascular diseases in the fetus [187]. The same microarray
approach allowed to identify 5001 mostly hypermethylated regions in umbilical cord white blood cells
and 869 mostly hypomethylated regions in the placenta [217]. In the cord blood cells, the gene networks
enriched were involved in cardiovascular system development, cell cycle, cancer, cell morphology,
infectious diseases, suggesting specific alterations that could have long-term consequences on the
fetal health.

Some studies focused on mitochondrial DNA, showing hypomethylation in PE cord blood cells.
The most affected loci are keys in mitochondria functionality: D-loop (control of mitochondrial DNA
replication), Cytochrome C oxidase subunit 1 gene (respiratory chain) and TF/RNR1 locus (necessary for
protein synthesis) [218]. Increased copy of mitochondria is observed in the placenta and maternal blood
during PE suggesting an adaptive response to stress [219,220]. This is also observed in mouse models
of PE [221]. Hypomethylation in the D-loop may lead to increased mitochondrial replication explaining
the pathological increase of mitochondrial DNA. Methylation assay in endothelial colony-forming
cells present in cord blood from PE presents differential methylation level in genes related to RNA
metabolic processes, cellular protein modification processes and in positive regulation transcription,
as assessed with the EPIC Illumina array, interrogating over 850,000 CpG [222]. However, at later
passages, an increased number of genes are abnormally methylated. This suggests that preeclampsia
may drive an altered epigenetic program in endothelial cell precursors that will be the building bricks
of the newborn vascular system and program later complications.

3.2. Non Coding RNAs

Non-coding RNAs have been found to be differentially expressed in preeclampsia by a number
of sources. Some studies have focused on investigating differential expression patterns between PE
placental samples of different severities versus control groups looking for miRNAs or lncRNA [223–226],
without generally identifying consensual signatures. With the aim of identifying potential biomarkers
that could be used diagnostically to predict preeclampsia onset, many groups have set out instead
to identify molecules differentially expressed in the plasma of patients, which could potentially be
detected by mean of a simple blood test [227]. lncRNA and miRNA are the two classes of non-coding
RNAs that have dominated the scene of non-coding molecules in preeclampsia. Other classes of
non-coding RNAs have been identified, such as circular RNAs, that appeared recently in the context of
PE development and future research will help understand the role of these molecules in the regulation
of gene expression and disease [228].

3.2.1. LncRNAs in Preeclampsia

Long non-coding RNAs are RNA molecules longer than 200 nucleotides which are involved in
regulation of cell function through a wide range of mechanisms. lncRNAs are expressed in the nucleus
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as single stranded RNA molecules, which can either function in their native form or undergo maturation
through the addition of a 5′cap and polyA tail; however, they are never translated into a protein
product [229]. They regulate cell function by a wide range of mechanisms: alteration of the stability of
target mRNAs, direct recruitment of chromatin modification enzymes, segregation of transcription
factors through specific binding sites contained within the lncRNA sequence, warehousing miRNA as
‘miRNA sponges’, a function shared with circular RNAs [230]. For a complete overview please see
Reference [231].

Transcriptomic analyses of placenta and decidua total RNAs allowed identifying differentially
expressed lncRNAs between PE and control patients, often with a difference between EOPE and
LOPE [228,232,233]. Most of these lncRNAs had been previously identified in the field of cancer
research, often associated with cell proliferation, migration and invasion [234]. As mentioned above,
given the parallels between the features of cancer cells and the trophoblasts during placentation
such as fast proliferation of the trophoblast, migration and invasion of the maternal tissues,
immunotolerance [235–238], this did not come as a surprise and has prompted extensive in vitro
research to elucidate the roles of these lncRNAs in trophoblast physiology.

In the present review, we will focus on a few lncRNAs that have been well characterized: MALAT-1,
MEG3, RNA-ATB. Finally, we will give a brief overview on how in PE some lncRNAs regulate gene
expression by altering chromatin methylation state of their target genes, through direct recruitment of
histone methyltransferases, bringing as examples PVT1, TUG1 and DIAPH2-AS1. H19 was discussed
above for its important role in placental development and miRNA encoding lncRNA.

MALAT-1

Metastasis associated lung adenocarcinoma transcript-1 (MALAT-1) was firstly identified in
lung cancer; it is a lncRNA of over 8 kb [239]. MALAT-1 normally localizes in the nucleus
where it forms nuclear aggregates called speckles involved in the regulation of splicing factors
availability [240]. MALAT-1 is overexpressed in placental pathologies associated with uncontrolled
trophoblast invasion [241], which prompted Chen and coworkers [33] to investigate its expression
in PE. Comparing RNA levels in 18 PE placentas with matched controls, MALAT-1 was found
significantly downregulated in PE placentas. Overexpression and downregulation of MALAT-1 in
JEG-3 regulates cell proliferation and invasion, while inhibiting apoptosis [33]. These findings suggest
that MALAT-1 deregulation could lead to poor invasion of the maternal endometrium, affecting
the spiral arteries’ remodeling and placenta development. Li and coworkers [242] have shown that
the role of MALAT-1 is not restricted solely to the trophoblast but has a key role in regulating the
angiogenesis and vascularization of the maternal decidua and fetal umbilical vasculature. MALAT-1
is expressed by mesenchymal stem cells (MSCs) in the maternal decidua and in the umbilical cord.
These cells are pluripotent progenitors which are able of self-renewal and proliferation, differentiate to
promote tissue regeneration, form de novo vasculature, angiogenesis and regulate immune system
responses [243]. Li and coworkers (2017) observed a decreased MALAT-1 expression in MSCs from
decidua and umbilical cord of preeclamptic pregnancies and set out to investigate its function in
these cells. Similarly, MALAT-1 promotes proliferation and protects from apoptosis in isolated MSCs.
Interestingly, coculture of MSCs with trophoblast cell line HTR-8/SVneo clearly showed how MALAT-1
overexpression could promote migration and invasion of the trophoblasts towards the MSCs layer.
Coculture of the endothelial cell line HUVECs (Human Umbilical Vein Endothelial Cells) in supernatant
obtained from MSCs which either expressed or had downregulated MALAT-1 showed how MALAT-1
promotes tube formation this process being dependent on Vascular Endothelial Growth Factor secretion.
Finally, MALAT-1 over-expression increased the levels of the IDO protein, which activated macrophage
maturation, proving its role in immune system regulation. These findings combined with the work of
Chen and coworkers (2015) beautifully illustrates how MALAT-1 has a symmetric regulatory function
in placentation: on the one hand, it promotes trophoblast proliferation, invasive and migratory
potential and on the other hand, its expression in MSCs cells helps to attract and promote trophoblast
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invasion, stimulates tube formation, promotes angiogenesis and vascularization. Increase in Reactive
Oxygen Species caused MALAT-1 and VEGF downregulation in MSCc exposed to oxidative stress in
a dose-dependent manner [242]. MALAT-1 downregulation in preeclampsia could therefore have a
huge impact on placentation and further development of the placenta over the course of gestation. It is
possible that a first triggering event maybe of immunological nature, causes an increase of oxidative
stress during implantation which will then alter the expression level of many targets, including
MALAT-1; based on the data, this consequent deregulation would have an impact on both trophoblast
and MSCs physiology, culminating in preeclampsia.

MEG3

Maternally Expressed 3 (MEG3) is an imprinted lncRNA which is expressed in many different
cell types and tissues and acts as a tumor suppressor and is downregulated in many types of cancer.
Physiologically, MEG3 acts by stabilising p53 and activating apoptotic responses [244]. Zhang and
coworkers [34] analysed MEG3 RNA levels in 30 placentas from preeclamptic women, compared
to 30 control samples and found a statistically significant 80% downregulation. These results were
consistent with those of Yu and coworkers [245] studying a cohort of 20 preeclamptic and 20 control
placentas, finding that MEG3 RNA was only 28% of the RNA levels of the control group. To elucidate
in more detail the function of MEG3 in placenta, Zhang and coworkers (2015) overexpressed MEG3
in two trophoblast cell lines (JEG3 and HTR-8/SVneo), showing enhanced antiapoptotic effects,
while downregulation of MEG3 increased the apoptotic cells. Analysis of protein markers showed
how MEG3 downregulation increased the levels of pro-apoptotic proteins such as Caspase-3 and Bax.
These results contrast with what is observed in cancer, where MEG3 expression is rather associated
with the activation of proapototic pathways, possibly suggesting a different mode of action of MEG3
in these cell types. Yu and coworkers [245] focused on the link between MEG3 expression and
endothelial-mesenchymal transition (EMT). During implantation and placentation, the trophoblasts
undergo EMT in order to be able to migrate and invade the maternal tissues. MEG3 downregulation
correlated with increased E-cadherin levels and downregulation of mesenchymal markers such as
N-cadherin, vimentin, slug (encoded by the gene SNAI2), in placental RNA and protein extracts,
placental sections and in vitro tests (HTR-8/SVneo trophoblast cell line). Changes in MEG3 expression
did not influence proliferation but MEG3 overexpression promoted migration and trophoblasts
invasion through matrigel matrixes [34,224]. Altogether, MEG3 protects from apoptosis, promotes
migration and invasion by regulating endothelial-mesenchymal transition in trophoblast cells and
therefore its downregulation possibly affects trophoblast invasion and placentation, playing a key role
in preeclampsia. Consistently, the imprinting control region (IG-DMR) of the DLK1-MEG3 cluster
was very recently found hypermethylated in human umbilical veins from preeclamptic pregnancies,
with an altered expression of both imprinted genes, a lower secretion of nitrite, VEGF and a higher
secretion of endothelin 1 (ET1) all factors able to mediate pathological mechanisms in the offspring
from preeclampsias [246].

RNA-ATB

As with many other lncRNAs, lncRNA-activated by TGFβ (RNA-ATB) was first discovered
in cancer, upregulated in hepatocellular carcinoma, it promotes cell proliferation, migration and
invasion [247]. It has been reported that in hepatocells RNA-ATB is expressed in response to TGFβ
and in fibroblasts; it can create positive feedback regulation by promoting TGFβ paracrine release.
Lnc RNA-ATB was found to be significantly downregulated in placental samples from women with
preeclampsia. Moreover patients with EOPE showed an even stronger deregulation [248]. Given the
proliferative, invasive and migratory features of trophoblasts and in particular extravillous trophoblast,
Liu and coworkers (2017) investigated lncRNA-ATB function in trophoblast cell line HTR-8/SVneo,
which is a standard in vitro model of extravillous trophoblast. While overexpression of lncRNA-ATB
increased the proliferative, migratory and invasive potential of HTR-8/SVneo cells, the downregulation
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caused a steep decrease in proliferation, migration and invasion, proving that this gene has an important
role on the physiology of the extravillous trophoblast and that its deregulation could explain an aberrant
implantation and endometrium invasion in preeclampsia, potentially being linked to incomplete spiral
artery remodeling. Whether RNA-ATB regulates trophoblast function through the interaction with
members of the miR200 family is yet to be determined. However, increased miR200 has been found to
affect the development of endometrium receptivity, negatively impacting implantation [249]. In labor,
miR200 is upregulated in the human uterus and has been associated with pre-term labor in murine
studies [250]. It seems likely that an interaction between RNA-ATB and miR200 is required for correct
placental development, gestation and delivery.

PVT1, TUG1 and DIAPH2-AS1: Regulating Gene Expression through Recruitment of Chromatin
Remodeling Complexes

lncRNAs work through different mechanisms, depending on the specific lncRNA, the cell type,
the downstream targets [231]. In the past few years a few lncRNAs have been identified in preeclampsia
as potential modulators, among which PVT1, TUG1 and DIAPH2-AS1 adopt the same mechanism
of action. lncRNA TUG1 is downregulated in preeclamptic placentas. Interference of TUG1 in
trophoblast cell lines (JEG3 and HTR-8/SVneo) negatively affected cell proliferation and growth,
migration and invasion, network formation, while it increased apoptosis [31]. Transcriptome analysis
by RNA-sequencing of HTR-/SVneo cells in which TUG1 was downregulated showed a prevalence of
affected genes involved in cell growth, migration and apoptosis. Xu and coworkers (2017) identified
RND3 as main downstream factor involved in the phenotypic effects of TUG1 downregulation. RND3
mRNA and protein levels were strongly upregulated in response to TUG1 interference in vitro and
RND3 mRNA was upregulated in preeclamptic placenta. RND3 is also known as RhoE, a GTPase that
acts as a tumor suppressor, negatively regulating proliferation, migration and invasion [251]. In vitro
experiments beautifully elucidated the mechanism by which TUG1 modulates RND3 expression—TUG1
directly interacts with the histone modification factor Enhancer of Zeste Homolog 2 (EZH2) and
recruits it to the RND3 promoter, where EZH2 drives the silencing of RND3 by tri-methylating H3K27,
resulting in strong RND3 downregulation [31]. A year later, Xu and coworkers [252] identified
another lncRNA PVT1, strongly downregulated in preeclamptic placenta, whose downregulation
negatively affects proliferation and increases apoptosis of trophoblast cell lines. PVT1 was found
to recruit EZH2 to the promoter of the transcription factor ANGPTL4, driving its repression by
increase in repressive chromatin markers: this could partially explain the phenotypic effects of PVT1
deregulation. Feng and coworkers [253] uncovered a complicated regulatory network behind PAX3
deregulation in preeclampsia which is linked with decreased proliferation, invasion and migration of
trophoblast cells [254]. PAX3 is a transcription factor downregulated in preeclamptic placentas and
this correlates with DNA hypermethylation of the promoter region [171,254]. In this study, Feng and
coworkers (2019) found that in preeclamptic placentas lncRNA DIAPH2-AS1 is upregulated along with
the transcription factor HOXD8. In vitro experiments in HTR-8/SVneo cells clarified the regulatory
network: under hypoxia the transcription factor HOXD8 is upregulated and induces expression of the
lncRNA DIAPH2-AS1. DIAPH2-AS1 recruits lysine-specific demethylase 1 (LSD1) to the promoter of
PAX3 where it alters the chromatin modification state, decreasing methylation of Histone H3. LSD1 can
also modify DNA methyl-transferase 1 (DNMT1), stabilizing it. ChIP experiments showed enrichment
of LSD1 and DNMT1 at the PAX3 promoter, which correlated with increased DNA methylation and
mRNA repression. Interference of DIAPH2-AS1 was enough to reverse the phenotype and increase
PAX3 levels [253]. These studies underscore that different epigenetic mechanisms regulate gene
expression. It is possible that certain mechanisms are favored in different cell types and future studies
will help identify the conserved regulatory networks that plays a role in the etiology of preeclampsia.



Int. J. Mol. Sci. 2019, 20, 2837 21 of 45

3.2.2. micro RNA and Preeclampsia

microRNAs in Preeclampsia

The first study on microRNAs (miRs) in preeclampsia was published in 2007. In this study,
the expression levels of a subset of 157 miRNAs expressed in the placenta were tested by qRT-PCR in
human placental samples from pregnancies without any complications, with PE, and with PE and
small for gestational age (SGA) outcomes. 153 miRNA were detected in the placenta RNA samples and
three of them were found to be upregulated in PE: miR-210, miR-155, miR-200b [255]. The first global
transcriptomic analysis of microRNAs was performed with 20 PE placental samples and 20 controls,
with microarray technology by Zhu and collaborators in 2009. Comparing gene expression profiles of
the severe PE group with controls, 11 microRNAs were upregulated and 23 downregulated. Among
them, many microRNAs are organized in chromosomal clusters: downregulated clusters are found
in 13q31.3, 14q32.31, Xq26.2, Xq26.3, while upregulated clusters are found in 19q13.42 suggesting
co-regulation profiles [256]. An integrative analysis was conducted comparing distinct datasets with
the aim of identifying microRNAs–transcripts regulatory networks in preeclampsia. resulting in
the construction of a map of putative microRNA-gene target interactions in developmental process,
response to nutrient levels, cell differentiation, cell junction, membrane components [257].

Although many studies followed, most of them aimed at identifying differentially expressed miRs
in placenta and in plasma samples from PE women. Fewer studies have focused in other cell types
present in the placenta. For example, in fetal endothelial cells downregulation of miR-29a-3p and
miR-29c-3p and upregulation of miR-146a is observed in PE patients [258]. Both miR-29a and miR-29c
show proangiogenic functions by stimulating HUVECs proliferation and tube formation through
VEGFA-induced and FGF2-induced cell migration pathways [259]. However, other studies suggest an
antiangiogenic role of miR-29c through downregulation of the IGF-1 proteins at the post-transcriptional
level [260,261]. On the other hand, miR-146a inhibits the de-novo formation of blood vessels in-vitro
and reduces tube formation ability in HUVECs [260,261]. The study of the role that miRs may have in
the different cell types present in the placenta is indispensable to understand the role of this molecules
in the development of the disease. In the long term, it has also been shown that miRNA profiles in
the neonate is altered following an hypertensive pregnancy; for instance the level of mir-146a at birth
predict microvascular development three months later [262].

Many studies followed, aimed at identifying differentially expressed miRs in placenta and in
plasma samples from PE women.

In this review, we will discuss the most well characterized microRNAs miR-210, miR-155 and give
an overview of some of the research that has been carried out on circulating microRNAs, given their
potential as clinically relevant biomarkers.

miR-210

miR-210 is a microRNA involved in the regulation of mitochondrial function and hypoxia
response. It has been well characterized, in placentas as well as in different cancer and tissue types [263].
Most of the knowledge on the regulatory pathways that involve miR-210 comes from oncology
research. miR-210 has been soon identified as one of the early hypoxia-response miRs, being directly
regulated by the Hypoxia inducible factor 1α (HIF-1α) [264]. Under hypoxic conditions, miR-210
alters mitochondrial function promoting a metabolic switch to glycolysis. This is achieved by negative
targeting of genes involved in the electron-transport chain, namely iron- sulfur cluster scaffold homolog
(ISCU) and cytochrome C oxidase assembly protein (COX10). As a result, miR-210 also increases
the levels of Reactive Oxygen Species (ROS) [265]. Under hypoxia, miR-210 and HIF-1α establish a
positive feedback regulation that maintains expression of both factors. This is achieved by miR-210
downregulation of the mRNA of Glycerol-3-Phosphate Dehydrogenase 1-Like, which would otherwise
contribute to targeting HIF1α to the proteasome for degradation. Conversely, stabilized HIF1α directly
activates miR-210 expression [266].
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In endothelial cells, miR-210 is involved in regulating angiogenesis and vascularization which
are fundamental processes in placenta development. Hypoxia causes miR-210 activation which
protects endothelial cells from apoptosis and stimulates chemotaxis driven by VEGF, migration
and tube formation [267]. In preeclampsia, miR-210 was first identified as upregulated in placenta
samples by Pineles and collaborators (2007) using qPCR. In the first comprehensive study carried
out with microarray technologies, miR-210 was consistently found upregulated in placenta of severe
preeclamptic women, however in mild preeclampsia it was found to be downregulated, which might
suggest different mechanisms at play or rather different metabolic states of the placenta, with a
more pronounced ischemia in severe preeclamptic placentas [256]. Moreover, subsequent analyses
identified significantly upregulated miR-210 in plasma samples from patients with preeclampsia [181].
In the context of PE miR-210 is involved in the mitochondrial dysfunction observed, which causes
metabolic imbalance, excessive ROS production and cell damage. Similarly to what happens in cancer,
miR-210 negatively regulates ISCU which is downregulated in preeclampsia samples, directly affecting
mitochondrial architecture and functionality [268–270]. The deregulation of miR-210 was also found in
the placentas of mice from a preeclamptic model [134].

miR-210 is also an important modulator of trophoblast phisiology. In vitro studies using isolated
primary trophoblasts and trophoblast cell line JAR, proved how hypoxia induces an increase in
miR-210 levels. Artificial overexpression of miR-210 in JAR cells caused a significant downregulation
of migration and invasion. In trophoblast cells, hypoxia and ROS can activate HIF1α but more
importantly NFκ-B p50—which si found upregulated in preeclamptic placenta tissues. NFκ-B p50
binds a consensus sequence in the miR-210 promoter, activating its expression. In trophoblasts, miR-210
interacts with a perfect match with the 3′-UTR of the transcription factor homeobox-A9 (HOXA9),
causing both degradation of the mRNA and downregulation of translation. Another direct target is
Ephrin-A3 (EFNA3), a ligand of the Ephrin binding receptors, in this case miR-210 binds the 3′UTR of
the gene with an imperfect match, causing only translational downregulation. These two transcription
factors activate expression profiles involved in migration, invasion and vascularisation [181]. Therefore,
in trophoblast, miR-210 expression correlates with a negative regulation of migration and invasion,
mediated by downregulation of EFNA3 and HOXA9, in response to hypoxia, ROS and activated
NFκ-B signaling.

Further studies have identified additional downstream targets of miR-210 in preeclampsia,
which are downregulated in preeclamptic samples and whose expression is altered upon miR-210
activation in cell models. A few examples are inflammation related molecules STAT6 and IL-4 [271],
potassium channel modulatory factor 1 (KCMF1) [272], thrombospondin type I domain containing 7A
(THSD7A) [273].

This mounting body of evidence highlights a key role of miR-210 in the development and
maintainance of a preeclamptic phenotype. However it is still not clear which is the triggering
event. It is possible that complications during implantation trigger an immune response which would
create a pro-inflammatory environment, activating NFκ-B signaling, causing aberrant expression of
miR-210 and all consequent downstream cascades. Recently, Chen and collaborator (2019) analysed
the inflammatory profile of preeclamptic women, compared to patients which experienced healthy
pregnancie [274]. The concentrations of proinflammatory cytokines (IL-6, IL-17) were higher in plasma
samples from peripheral blood in the preeclampsia group. Moreover, Transforming Growth Factor β1
(TGF β1) levels were higher as well. TGF β1 has the function of promoting the prevalence of a subset
of regulatory T cells (Tregs) that maintain immunotolerance, allowing a successful implantation and
avoiding an immune response against the foetal tissues. These Tregs are characterised by expression of
the fork-head box p3 (Foxp3) transcription factor, which promotes an immunotolerant phenotype [275].
However, proinflammatory signals such as IL-6 cause the activation of T cells at the expense of
Foxp3-positive Tregs, causing an activation of inflammatory responses. Zhao and coworkers showed
that miR210 was upregulated in preeclamptic placentas and Foxp3 mRNA and protein levels were
found downregulated, previous studies had shown evidence of direct regulation of Fox3p by miR210,
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suggesting a pivotal role of this microRNA in regulating the threshold of immunotolerance by altering
the balance of Foxp3+ Tregs/activated Tcells [276].

miR-155

miR-155 is upregulated in preeclamptic placentas [255]. This upregulation correlates inversely
with the level of cysteine-rich protein 61(CYR61) [277], which is a factor secreted by different
cell types, including trophoblast, involved in promoting migration, invasion, angiogenesis and
vascularisation [278,279]. miR-155 directly targets the 3′-UTR of CYR61 mRNA with a perfect
match, causing transcriptional and translational repression. In vitro experiments (HTR-8/SVneo
trophoblast cell line) showed how miR-155 inhibits CYR61-mediated expression of VEGF, inhibiting
trophoblast migration [277]. Decreased trophoblast-mediated secretion of VEGF would negatively
affect angiogenesis and vascularisation in the site of placenta development.

miR-155 regulates trophoblast proliferation and migration also by directly targeting the cell
cycle gene Cyclin D1 [172]. Cyclin D1 is involved in cell cycle progression, migration and invasion
of trophoblast lineages, downregulated in preeclamptic placentas at both mRNA and protein
levels [280–282]. In vitro studies have shown how miR-155 through direct targeting of the 3′UTR of
CyclinD mRNA downregulates mRNA and protein levels, negatively affecting migration, causing
cell cycle arrest and decrease in proliferation in HTR-8/SVneo cells [42]. Exiting cell cycle is a step
of terminal differentiation, which suggests how miR-155 overexpression, as found in preeclampsia,
could lead to a premature differentiation of cytotrophoblasts, possibly inducing syncytialization.
This phenomenon would cause depletion of the cytotrophoblast pool, accelerating placental aging.

In sum, miR-155 modulates proliferation, migration and invasion of trophoblasts and its
expression can affect the phenotype of endothelial cells by negatively regulating VEGF release. miR-155
deregulation could have catastrophic consequences in placentation, deeply affecting trophoblast
infiltration, vascularization and angiogenesis of the developing placenta.

Circulating miR-155

Maternal plasma from preeclamptic women presented significantly statistically higher levels of
miR-155 [283]. In blood, microRNAs are quite stable and can travel through circulation, to be uptaken by
different cell types, such as endothelial and immune cells, regulating gene expression [284]. Yang, Zhang
and Ding (2017) showed how plasma levels of miR-155 positively correlate with proinflammatory
cytokine interleukin-17 (IL-17) and with proteinuria and urine podocytes counts in women with
preeclampsia. Similarly to miR-210, miR-155 promoter presents a binding site for NFκ-B and can be
activated by this inflammation master regulator, which could suggest a similar pattern of regulation
for miR-155 and pro-inflammatory factors, other than a direct interaction between these genes [285].

miR-155 in Endothelial Cells

Endothelial cells play a fundamental role in placentation given the copious vascularisation and
angiogenesis that takes place in the maternal endometrium during placentation. In preeclampsia,
pro-inflammatory factors and secreted molecules from the preeclamptic placenta produce an excessive
activation of the maternal endothelium, resulting in endothelyal dysfunction, culminating in
inflammation, blood pressure changes, downstream systemic effects [286]. miR-155 has been found to
be downregulated in human umbelical vein endothelial cells (HUVECs) from preeclamptic women,
compared to HUVECs from healthy pregnant women [287]. This downregulation correlated with
an increase in Angiotensin II Receptor 1 (AT1R) and increased phosphorylation of Extracellular
Signal-regulated Kinases1/2 (ERKs), identifying AT1R as direct target of miR-155 [287]. Activation of
the Angiotensin II- AT1R through ERK1/2 in endothelial cells causes cell cycle arrest and initiation of
senescence pathways; miR-155 depletion-dependent increase in AT1R will render endothelial cells
more sensitive to blood level of Angiotensin II, promoting endothelial damage [288].
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miR-155 has been implicated in regulating Nitric Oxide (NO) production in endothelial cells.
NO is a potent vasodilator and reduced levels of NO have been associated with preeclampsia
etiology [289,290]. In vitro studies using HUVECs proved how endothelial Nitric Oxide synthase
(eNOS) mRNA is a direct target of miR-155; proinflammatory stimuli upregulate miR-155 expression in
these cells in vitro, downregulating eNOS and NO production [290]. As mentioned above, microRNAs
can be found in plasma and miR-155 is upregulated in plasma of women with preeclampsia [69].
microRNAs can be free in circulation or travel inside vescicles and exosomes, which can be uptaken by
target cells, activating signaling pathways, affecting expression profiles [291]. Shen and collaborators
(2018) elegantly showed how exosomes from plasma samples of preeclamptic patients can affect
eNOS mRNA and protein levels in HUVECs [292]. In particular, treatment of HUVECs in vitro with
isolated exosomes from plasma of preeclamptic patients (compared to exosomes from control group)
caused a statistically significant decrease in eNOS mRNA and protein levels, which correlated with
decreased NO production. When analysing the composition of the exosomes, miR-155 was found to be
upregulated in the preeclamptic group. Follow up in vitro tests proved how miR-155 located in the
exosomes affects eNOS regulation in endothelial cells.

miR-155 in Vascular Smooth Muscle Cells

In arteries and arterioles, endothelial cells are interspaced by vascular smooth muscle cells
(VSMCs) which thanks to their contractile properties allow vasoconstriction and vasodilation to
occur, accomodating for changes in blood pressure. VSMCs generally present a contractile phenotype
characterised by elongated spindle-like morphology, high concentration of contractile filaments.
In response to external stimuli, they can switch to a synthetic phenotype characterised by loss of
contractility markers, rhomboid morphology, increased proliferative and migratory potential; in this
state VSMCs cells lose the ability to modulate vascular resistance [293]. Phenotypic regulation of
VSMCs is driven by soluble guanylate cyclase (sGC) which increases intracellular levels of guanosine
monophosphate (cGMP), key messenger molecule. cGMP is the substrate of cyclic GMP-dependent
protein kinase (PKG) which activates downstream signaling pathways promoting VSMCs contractile
phenotype. Nitric Oxide produced by endothelial cells positively modulates sGC activity, favouring
vasodilation through enhancement of the VSMCs contractile phenotype [294,295].

In the presence of proinflammatory cytokine Transforming Necrosis Factor α (TNFα), miR-155
was found to be directly activated by NFκ-B in in vitro model of VSMCs. The upregulated miR-155
directly interacts with the 3′-UTR of the mRNA of PKG1 [296] and of the β1 subunit of guanylate
cyclase (sGCβ1), resulting in translational repression and mRNA degradation [297]. As a consequence
of sGCβ1 downregulation, intracellular cGMP levels are strongly decreased and the downregulation
of PKG1 inhibits downstream pathways [296,297]. Park and collaborators (2019) co-cultured HUVECs
and VSMCs, observing higher cGMP accumulation in VSMCs, which is mediated by Ntric Oxide
stimulation, produced by the endothelial cells [297]. This could be countered by ectopic miR-155
expression in VSMCs. miR-155 overexpressing in response to TNFα, mediating inhibition of the
sGC/PKG pathway, causes downregulation of contractile protein markers. This results in a shift
of VSMCs to a synthetic phenotype, assuming a rhomboid morphology, increasing proliferation
and migration rates. Interestingly the pro-contractile effects of Nitric Oxide could be cancelled by
miR-155 expression [296,297]. In placental vessels of preeclamptic placenta sGCβ1 mRNA levels
are downregulated [297], given the evidence provided on miR-155 repression of the sGC/PKG
pathway, we can imagine that PKG1 might be downregulated as well. In response to inflammation,
both endothelial and smooth muscle cells are affected and in preeclampsia they overexpress miR-155
which alters their ability to produce and respond to vasodilation stimuli. Taken together, this evidence
highlights the pivotal role of inflammation and miR-155 in the etiology of the preeclamptic phenotype.
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Potential Biomarkers: microRNAs Circulating in Maternal Plasma

Since the identification of circulating small RNAs in plasma samples, the prospect of their potential
use as diagnostic and predictive biomarkers has fueled extensive research [298]. In the context of
preeclampsia, the finding that small microRNAs with placental origin can travel in the blood circulation
and affect systemically different cell types opens new avenues for the understanding of the mechanisms
of this complex disease [299,300].

In Table 4 are listed some of the microRNAs that have been found deregulated in plasma samples
of preeclamptic patients. In several studies, groups of microRNAs differentially expressed have
been analyzed for their potential as predictive biomarkers of the preeclamptic phenotype [301–305].
These studies show how blood levels elevation of PE-associated microRNAs can be predictive for the
preeclamptic phenotype starting from the second trimester. Li and collaborators (2015) evaluated
the predictive values of the upregulated micro-RNAs miR-152, miR-183 and miR-210 by plotting the
corresponding receiver operating characteristic curves. In the second trimester samples, the Area
Under the Curve (AUC) indicated strong predictive values and were respectively 0.93 for miR-210,
0.97 for miR-183 and 0.94 for miR-152. Interestingly, different studies investigated the predictive
power of miR-210 and, even though all results highlighted its key role in preeclampsia and potential
as diagnostic marker, the AUCs varied in a range between 0.7 and 0.94 [301–303,305]. This variation
might be due to differences in patient cohorts, samples collections and handling; however, the fact that
miR-210 still emerged as predictive biomarker is encouraging.

Winger and collaborators (2018) collected peripheral blood cells in preeclamptic and control
patient group, analysing the expression levels of a subset of 30 microRNAs previously identified
altered in preeclampsia. 48 samples were divided in a training and a validation group. Analysis of
differentially expressed microRNAs in the training cohort identified a panel of 8 microRNAs with good
prediction values (AUC > 0.75) and p value ≤ 0.05: miR-1267, miR-148a, miR-196a, miR-33a, miR-575,
miR-582, miR-210, miR-16. The panel was successfully validated and the use of the 8 microRNAs
combined increased the prediction power of the tests [305].

From Table 4, it is possible to appreciate the heterogeneity of findings across different studies.
These discrepancies in the repertoires of circulating miRNAs complicate the identification of useful
biomarkers. This heterogeneity could partly be explained by the fact that preeclampsia is a complex
systemic disease that develops over months of gestation; therefore, the panel of circulating molecules
in blood samples might vary considerably depending of the time point at which samples are collected.
Another possible explanation might reside in the wide range of different methodologies used for the
extraction of circulating RNAs which introduce technical variability [306,307]. Moreover, there is
mounting evidence on how the current techniques are able to detect only a small fraction of the total
bulk of circulating RNAs (WO2009093254A2). Therefore, further research is still required to improve
our technical knowledge so to design better, more consistent methodologies for the identification of
circulating biomarkers, that might one day allow the design of diagnostic panels for effective early
detection and prevention of preeclampsia.

3.2.3. Additional Considerations on the Analysis of lncRNA Functions

Possible Caveats of the Current Trophoblast In Vitro Models

Many of the lncRNAs found to be deregulated in preeclamptic placenta have previously been
identified in cancers, where they have a role in regulating proliferation, migration, invasion and
apoptosis. Most of these PE-associated lncRNAs have pro-survival and pro-migration properties,
therefore downregulation is associated with activation of apoptosis, decreased migratory potential and
proliferative rate.

Once they have been found to be downregulated in preeclamptic placenta, the main objective
has been to investigate the molecular function of these lncRNAs in the context of placenta physiology
and preeclampsia. In vitro studies have seen the use of classical cellular models of trophoblast, either
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choriocarcinoma cell lines (JEG3 and BeWo) or artificially immortalized cell lines (HTR-8/SVneo).
Through these in vitro studies it has been established that most of these lncRNAs regulate proliferation,
invasion and migration of the trophoblast.

Table 4. Deregulated miRNA in preeclampsia.

microRNA PE
Placenta

PE
Plasma Function Gene targets AUC References

miR-214 DOWN [308]
miR-152 DOWN [300]
miR-218 DOWN [308]
miR-590 DOWN [308]
miR-18a DOWN DOWN Promoting trophoblast migration SMAD2 [225,308]
miR-19a DOWN [308]

miR-19b1 DOWN TGFβ-signaling SMAD factors [225]
miR-379 DOWN [308]
miR-411 DOWN [308]
miR-195 DOWN [308]
miR-223 DOWN [308]
miR-363 DOWN [308]

miR-542-3p DOWN [308]
miR-144 DOWN Ischemia, hypoxia [225]
miR-15b DOWN Angiotensin-renin system [225]
miR-181a UP UP [225,308]
miR-584 UP [308]

miR-30a-3p UP [308]
miR-151 UP [308]
miR-31 UP [308]

miR-210 UP UP PTPN2 0.7 < AUC < 0.9 [225,255,300,302,
303,305,308,309]

miR-17-3p UP [308]
miR-193b UP [308]
miR-638 UP [308]
miR-525 UP [308]

miR-515-3p UP [308]
miR-519e UP [308]

miR-517-5p UP UP AUC = 0.7 [304]
miR-518b UP UP [225,304,308]
miR-524 UP [308]

miR-296 UP [308]
miR-362 UP [308]

miR-574-5p UP AUC > 0.7 [302]
miR-1233-3p UP AUC > 0.6 [302]

miR-155 UP AUC > 0.7 [225,303]
miR-1267 UP AUC > 0.8 [305]
miR-148a UP Immune response HLA-G AUC > 0.9 [305,310]
miR-196a UP AUC = 1 [305]
miR-33a UP AUC = 1 [305]
miR-575 UP AUC > 0.9 [305]
miR-582 UP Trophoblast invasion, migration VEGF 1 [305,311]
miR-152 UP UP Immune response HLA-G AUC > 0.9 [256,301,312]
miR-183 UP UP Cell differentiation, apoptosis, invasion AUC > 0.9 [255,301,313]
miR-215 UP [225]
miR-650 UP [225]
miR-21 UP UP Apoptosis [225,314]

miR-29a UP [225]
miR-300 UP Trophoblast differentiation ETS-1 [315]

Annotations: AUC = Area Under the Curve; SMAD2 = Mothers Against Decapentaplegic Homolog 2; PTPN2 =
Tyrosine-protein phosphatase non-receptor type 2; HLA-G = Histocompatibility antigen, alpha chain G; VEGF =
Vascular endothelial growth factor; ETS-1 = E26 oncogene homolog 1; TGFβ = Tumor growth factor β.

Have we completely unfolded the role of PE-associated lncRNA in the human placenta? Since
lncRNAs have been previously identified in cancers, it is possible that the functions we have attributed
them in the placenta are actually a result of the fact that we are analyzing them in cell lines that
are cancer-like. Therefore, there is still the possibility that these lncRNAs have additional distinct
functions in placenta that could be highlighted using more physiological placenta models. The recent
development of placenta organoids from stem cells rises the hope for exciting new avenues, to explore
these questions [316].
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What about the Syncytiotrophoblast?

Migration, apoptosis, invasiveness and proliferation are functions shared between cancer cells and
by cytotrophoblast (CTB) especially by the extravillous trophoblast (EVT) in the placenta, the in vitro
investigations into PE associated lncRNAs have so far focused on EVT cell line models (e.g., JEG3,
HTR-8/SVneo). However, it is important to highlight how transcriptomic data from placenta samples
are a result of overall placenta gene expression levels. The extracted placental RNA comes from all
the different cell types present in the tissue and the most abundant cell populations are represented
by cytotrophoblasts and syncytiotrophoblasts (SCT). Even though it is true that CTB and EVT cells
are fundamental for implantation and correct placental development, the syncytiotrophoblast is the
functional core of the placenta itself, constituting the barrier for nutrient exchanges between fetal
and maternal vasculatures and acting as secretory organ that hormonally regulates progression of
gestation. Liu and coworkers (2017), in their work on RNA-ATB, showed a strong in situ hybridization
staining of lncRNA-ATB in the syncytiotrophoblast layer of the placenta, reinforcing the idea that
the syncytiotrophoblast might be equally affected by deregulation in the lncRNAs species [248].
Yu and coworkers (2018) work on MEG3 showed how MEG3 downregulation observed in preeclampsia
correlates with an increase in adhesion molecule E-cadherin [224]. While it is true that this molecule is
important for endothelial-mesenchymal transition, and its alteration would affect trophoblast invasion
and EVT migration, E-cadherin downregulation after cytotrophoblast cell-cell interaction has been
implicated in CTB syncytialization [317]. Suggesting that MEG3 might affect STB physiology as well.

Therefore, there are still potentially interesting questions to be raised: what are the effects of
downregulated lncRNAs on the physiology of the CTB and SCT? Do we see an alteration of the
proliferative state of the CTB, does this cause premature placental aging? Does this deregulation affect
the differentiation potential of the CTB, affecting the balance between CTB renewal and SCT terminal
differentiation? Do these lncRNAs have other functions, exclusive to placenta, other than the ones
shared with cancer?

3.3. Histone Modifications

Few studies addressed the question of histone code modifications in PE. Chakraborty and
coll. evidenced a HIF-KDM3A-MMP12 signaling cascade that promotes trophoblast invasion and
trophoblast-directed uterine spiral artery remodeling in rat placenta and human placental cells. Hypoxia
drives HIF activation and KDM3A expression, which in return will alter the histone methylation
status of genes promoting development of the invasive trophoblast lineage and tissue remodeling,
illustrated with trophoblast-derived MMP12 activation [318]. Hypoxia was also shown to affect
the histone demethylase JMJD6 (Jumonji domain containing protein 6) and JMJD6 demethylase
activity was shown to be drastically reduced in PE placenta as compared to Control Placenta [319].
Very recently, the expressions of HDACs were investigated in PE placentas and only HDAC9 was
found downregulated both at the mRNA and protein levels in syncytiotrophoblast cells. Knock-down
of HDAC9 in HTR-8/SVneo cells inhibits trophoblast cell migration and invasion. TIMP3, an inhibitory
of MMP involved in invasion and tissue remodeling, is a direct target of HDAC9, identified by ChIP
and is upregulated in the absence of HDAC9 [320].

3.4. Imprinting

Overall, preeclampsia cannot be considered an imprinting disease, despite the fact that a
recent study showed that imprinted genes are more differentially expressed in PE than other genes,
with paternally expressed genes (inducing placental growth) rather down-regulated and maternally
expressed genes upregulated [151]. A systematic analysis of preeclampsia placental gene expression
and imprinted genes was carried out in 2017 [321], which revealed altered expression of DLX5 in
human PE placentas but with a rather mild deregulation (~2 fold). To be mentioned as well, the first
gene identified by positional cloning in preeclampsia, STOX1, is imprinted in specific placental cell
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subtypes [322,323]. The mutation originally found in STOX1 has rather a gain-of-function effect [323]
and in fact, overexpression of STOX1 induces a preeclamptic expression profile and a preeclamptic
phenotype in cells or in mice, respectively [7,324]. To note, however, we have no evidence that Stox1 is
imprinted in mice, therefore it is suspected that the mere ectopic and untimely overexpression of this
factor is the cause of the disease. The idea that an imprinted gene is implicated in preeclampsia has been
cleverly substantiated by Jennifer Graves as early as 1998 [325] and she gave theoretical reasons why
this should be the case. The future will tell us if more examples of imprinted preeclampsia-associated
genes exist in the human genome.

4. Perspectives and Conclusions

The recent years have seen the emergence of an increasing number of studies focused on the
role of epigenetics in the regulation of placental development and on its potential implication in
placental pathologies. However, we still lack a precise picture on how these epigenetic modifications
correlate with gene expression. In particular, we have a limited knowledge on how DNA-methylation
or Histone modifications impact gene expression in normal and pathological placenta development.
In addition, our knowledge on the mechanisms regulating the dynamics of the instauration of the
different epigenetic marks across development is very scarce. Nevertheless, recent studies have started
to reveal how epigenetics is involved in the regulation of important processes in placental development
such as cell fate determination, syncytialization or EVT migration and invasion. The emergence of
new technologies allowing the study of the epigenetic and transcriptomic profiles of the different cells
types of the placenta will certainly greatly contribute to improve our understanding of epigenetics
in placenta. Moreover, in the context of PE, to date, the studies analyzing epigenetic modifications
have focused on the placenta, however the antiangiogenic and cytotoxic factors released by the PE
placenta have the potential to induce epigenetics modifications in maternal target tissues (blood cells,
endothelial cells). This could impact the future maternal and fetal health and deserves to be studied
in detail. Overall, the comprehension of epigenetic regulation in preeclampsia both at the level of
the placenta and other involved organs could provide new biomarkers and therapeutic targets to
improve the management of this disease. For the moment, this has not been successfully applied
as diagnostic or prognostic of preeclampsia. One explanation of this observation could be that the
extraction of circulating RNAs from the plasma is still immature technologically, leading to discrepant
results between various laboratories and absence of consensus in defining a panel of diagnostic miRNA.
This may evolve in the future, leading to substantial exploitation of these markers in complex diseases,
including preeclampsia.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/20/11/
2837/s1. Table S1. High-throughput studies analyzing methylation profiles of different relevant tissues in the
context of preeclampsia [42,43,47,54–73].
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