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Abstract: Neuroglobin (NGB) is a myoglobin-like monomeric globin that is involved in several
processes, displaying a pivotal redox-dependent protective role in neuronal and extra-neuronal cells.
NGB remarkably exerts its function upon upregulation by NGB inducers, such as 17β-estradiol
(E2) and H2O2. However, the molecular bases of NGB’s functions remain undefined, mainly in non-
neuronal cancer cells. Human MCF-7 breast cancer cells with a knocked-out (KO) NGB gene obtained
using CRISPR/Cas9 technology were analyzed using shotgun label-free quantitative proteomics in
comparison with control cells. The differential proteomics experiments were also performed after
treatment with E2, H2O2, and E2 + H2O2. All the runs acquired using liquid chromatography–tandem
mass spectrometry were elaborated within the same MaxQuant analysis, leading to the quantification
of 1872 proteins in the global proteomic dataset. Then, a differentially regulated protein dataset was
obtained for each specific treatment. After the proteomic study, multiple bioinformatics analyses
were performed to highlight unbalanced pathways and processes. Here, we report the proteomic
and bioinformatic investigations concerning the effects on cellular processes of NGB deficiency and
cell treatments. Globally, the main processes that were affected were related to the response to stress,
cytoskeleton dynamics, apoptosis, and mitochondria-driven pathways.

Keywords: neuroglobin; 17β-estradiol; label-free proteomics; bioinformatics; pathway analysis;
oxidative stress; apoptosis; mitochondria; breast cancer cells

1. Introduction

Neuroglobin (NGB), discovered in 2000, is a vertebrate oxygen-binding protein belong-
ing to the superfamily of globins [1]. Despite its name referring to the locus where it was
originally discovered, namely, the neurons of the central and peripheral nervous system,
NGB was detected in other tissues and organs as well [2]. Evidence showed that NGB
accumulation significantly protects the brain from hypoxic/ischemic and oxidative stress
injury, while NGB reduction exacerbates tissue damage. Human NGB overexpression has
been suggested to shield neurons from mitochondrial dysfunctions and neurodegenerative
disorders and to play a protective role in cancer cells [2]. The increasing interest in the
functional roles played by NGB fits with the evidence that NGB is a stress-induced globin
whose accumulation has been related to a positive modulation of cell viability during hy-
poxia and oxidative stress events [3,4]. The role of NGB accumulation as a protective shield
of cancer cells to cope with their stressful environment has been demonstrated in 17β-
estradiol (E2)-sensitive cancer cells [5]. In breast cancer cells, E2 induces NGB upregulation
and accumulation into mitochondria via the estrogen receptor α (ERα)-activated protein
kinase B (AKT) pathway; this leads to the inhibition of the proteasome- and lysosomal-
mediated NGB degradation, augmenting the phosphorylation of the nuclear transcription
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factor CREBP that is responsible for the transcription of the NGB gene [6]. Mitochondrial
accumulation of NGB in breast cancer cells counteracts the trigger of apoptosis induced by
oxidative stress [7]. Intriguingly, NGB silencing renders MCF-7 cancer cells more prone
to the apoptosis induced by the chemotherapeutic agent Paclitaxel, even in the presence
of E2 [8]. Of note, in H2O2-treated breast cancer cells, NGB accumulation is detected
mainly in the cytosol and released in the tumor microenvironment, where it acts as an
autocrine/paracrine factor that can communicate cell resilience against oxidative stress and
chemotherapeutic treatment [9]. These data indicate that NGB accumulation could drive
breast cancer cells to different destinies depending on the NGB inducers, thus enlarging
the functional role of this globin. Nowadays, the involvement of NGB in other biological
processes and/or its contribution to other cellular compartments is undetermined.

Here, we report the quantitative changes in the proteome of ERα-positive human
breast cancer cells (namely, the MCF-7 cell line) with the NGB gene knocked out using
CRISPR/Cas9 technology. The MCF-7 cells have been successfully used as a subject in
different essential proteomic investigations [10–12]. Accordingly, the effect of different
treatments (E2, H2O2, and E2 + H2O2) on the proteome of the MCF-7 cell line is reported
here. Taking advantage of comparative proteomic investigations combined with multiple
statistical and bioinformatic analyses, several cellular pathways that are mainly related to
cytoskeleton dynamics, response to stress, apoptosis, and mitochondria-driven processes
were found to be unbalanced in NGB-deficient cells. These processes may take place in
breast cancer cells in the absence of NGB, especially when NGB expression is not inducible
via the administration of NGB-inducible factors.

2. Results
2.1. Comparative Proteomic Analysis of NGB-KO and Neg MCF-7 Cells

Neuroglobin knockout (NGB-KO) was obtained in MCF-7 cells using CRISPR/Cas9
technology, as previously described [13]. In addition, a negative control (Neg) clone was
obtained using the same procedure [13]. To study the altered biological pathways and
processes related to the NGB deficiency in MCF-7 cells, the variation in protein profile
was quantitatively assessed using shotgun LFQ (label-free quantification) proteomics in
NGB-KO vs. Neg cells. Furthermore, the proteomic investigation was carried out in NGB-
KO and Neg MCF-7 cells upon treatment with (i) E2 (10 nM, 24 h), (ii) H2O2 (400 µM,
24 h), and (iii) E2 + H2O2 (E2 10 nM, 4 h pretreatment; 400 µM H2O2, 24 h), as previously
reported [7]. Thus, after liquid chromatography–tandem mass spectrometry (LC–MS/MS)
analysis and comparison of the matching groups, a total of four individual proteomic
datasets were obtained. Protein abundances were calculated in each condition using an
LFQ algorithm in the MaxQuant software. To evaluate the quality of the LC–MS/MS runs,
normal distributions of the data were assessed within the Perseus framework (Supplemen-
tary Figure S1a) and adjusted via mean-centered scaling (Supplementary Figure S1b). The
statistical separation of the normalized datasets was analyzed using partial least squares—
discriminant analysis (PLS-DA), leading to the complete separation of the eight analyzed
groups (Figure 1a). Finally, a global overview of protein abundances distribution along
each biological replicate was visualized using a heatmap (Figure 1b).

The global proteomic dataset obtained consisted of 3072 proteins that were identified
using a number of peptides >1 in at least one sample. Protein quantification was performed
on 1872 proteins that showed valid values in the 70% over all the runs. The protein fold
change for each treatment condition was calculated as a log2 difference of the means of
protein intensity in the NGB-KO and Neg replicates. To select the statistically significant
proteins, the two-sample t-test was applied. The statistically significant proteins with a
fold change ≥0.4 (upregulated) and ≤−0.4 (downregulated) are reported in Table 1, and
graphically as volcano plots (Figure 2). Supplementary Tables S1–S4 contain the lists of the
differentially regulated proteins for each treatment condition.



Molecules 2021, 26, 2397 3 of 16
Molecules 2021, 26, 2397 3 of 17 
 

 

 

 
(a) (b) 

Figure 1. Statistical separation of the analyzed groups and distribution of the quantitative data. (a) PLS-DA was per-
formed, showing good separation between the eight experimental groups. Each experimental group is labeled with a 
numbered class color and each number corresponds to a specific group. (b) The heatmap was generated to visualize the 
distribution of protein abundances throughout the replicates using adjusted data based on Z-score normalization. The 
green and red color ranges refer to the lower and higher abundances, respectively. 
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a fold change ≥0.4 (upregulated) and ≤−0.4 (downregulated) are reported in Table 1, and 
graphically as volcano plots (Figure 2). Supplementary Tables S1–S4 contain the lists of 
the differentially regulated proteins for each treatment condition. 

  

Figure 1. Statistical separation of the analyzed groups and distribution of the quantitative data. (a) PLS-DA was performed,
showing good separation between the eight experimental groups. Each experimental group is labeled with a numbered
class color and each number corresponds to a specific group. (b) The heatmap was generated to visualize the distribution of
protein abundances throughout the replicates using adjusted data based on Z-score normalization. The green and red color
ranges refer to the lower and higher abundances, respectively.

Table 1. Qualitative results of the differentially regulated proteomes after the comparative analysis.

Experimental Condition Total Differential
Proteins

Downregulated
Proteins

Upregulated
Proteins

NGB-KO vs. Neg 156 102 54
NGB-KO + E2 vs. Neg + E2 340 202 138

NGB-KO + H2O2 vs.
Neg + H2O2

395 204 191

NGB-KO + E2 + H2O2 vs. Neg +
E2 + H2O2

433 252 181
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Figure 2. Global proteome distribution of the four experimental conditions. Volcano plots report 
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NGB-KO + E2 + H2O2 vs. Neg + E2 + H2O2. The blue and pink dots represent the up- and downreg-
ulated proteins, respectively. 

2.2. Bioinformatic Analysis for the Functional Enrichment of Proteomics Data 
The differential proteome of the nontreated NGB-KO cells was analyzed using the 

DisGeNET platform to discover potential gene–disease associations (Table 2). Within the 
regulated dataset, 76 proteins were recognized as belonging to the “breast carcinoma” 
class, showing the lowest p-value (1.25 × 10−10). In agreement with the significant associa-
tion of the differential proteins with cancer, other cancer-related classes were enriched 

Figure 2. Global proteome distribution of the four experimental conditions. Volcano plots report the protein fold-change
(indicated as Difference) against the statistical significance (–log p) in (a) NGB-KO vs. Neg, (b) NGB-KO + E2 vs. Neg + E2,
(c) NGB-KO + H2O2 vs. Neg + H2O2, and (d) NGB-KO + E2 + H2O2 vs. Neg + E2 + H2O2. The blue and pink dots represent
the up- and downregulated proteins, respectively.

2.2. Bioinformatic Analysis for the Functional Enrichment of Proteomics Data

The differential proteome of the nontreated NGB-KO cells was analyzed using the
DisGeNET platform to discover potential gene–disease associations (Table 2). Within the
regulated dataset, 76 proteins were recognized as belonging to the “breast carcinoma” class,
showing the lowest p-value (1.25 × 10−10). In agreement with the significant association of
the differential proteins with cancer, other cancer-related classes were enriched from the
analysis as well. Thus, the DisGeNET tool confirmed that most of the differential proteins
were recognized as being related to breast carcinoma.
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Table 2. DisGeNET gene–disease associations in NGB-KO cells.

Term Overlap p-Value

Breast carcinoma 76/4963 1.25 × 10−10

Malignant neoplasm of breast 75/5054 6.05 × 10−10

Carcinogenesis 66/4065 9.53 × 10−10

Neoplasm metastasis 63/3920 1.69 × 10−9

Malignant neoplasm of prostate 53/3239 3.76 × 10−8

Spinal muscular atrophy 12/196 4.59 × 10−8

Malignant neoplasm of the lung 44/2449 6.16 × 10−8

Primary malignant neoplasm of the lung 41/2268 1.72 × 10−7

Carcinoma of the lung 43/2476 2.40 × 10−7

Lymphoma 29/1307 2.75 × 10−7

Furthermore, since a specific treatment (E2, H2O2, or E2 + H2O2) may cause a specific
biological response in NGB-KO cells, the regulated proteomes from the four conditions
were intersected using an Eulero–Venn analysis to select common and exclusive features
(Figure 3). Common elements should be addressed to the knockout gene background,
exclusively. Accordingly, 31 proteins were found to be regulated in all four conditions. The
protein abundances were checked throughout the replicates and 30/31 proteins showed
the same trend of regulation in all the conditions (Table 3 and Figure 4a). The protein
with discordant quantitative behavior (PRKDC) was discarded from the bioinformatic
enrichment analysis of the common protein dataset but included in Table 3 (marked in
red). As shown in Figure 3, the pink and blue dots represent the LFQ intensities of the
down- and upregulated proteins, respectively, in all NGB-KO vs. Neg (without and with
treatments) comparisons. Thus, bioinformatic functional profiling was performed using the
30-protein dataset in the STRING and g:Profiler tools. The analyses enriched the processes
that were common to all four conditions that were possibly imputed by the knockout gene
background, such as the response to stress, cytoskeleton organization, and cell activation
for STRING, and neutrophil and leucocyte activation, exocytosis and export from the
cell, or alterations related to cell junction, focal adhesion, and exosome and lysosome
compartments for g:Profiler (Figure 4b,c).

Table 3. Common protein dataset in all NGB-KO comparisons with fold changes.

Protein Fold Change

UniProt ID Gene Name NGB-KO vs.
Neg

NGB-KO + E2 vs.
Neg + E2

NGB-KO + H2O2
vs. Neg + H2O2

NGB-KO + E2 + H2O2 vs.
Neg + E2 + H2O2

P17301 ITGA2 −2.4 −2.2 −1.7 −1.3
Q13409 DYNC1I2 −2.3 −1.9 −2.2 −1.9
Q01469 FABP5 −2.2 −1.4 −1.7 −2.5
P29762 CRABP1 −1.7 −0.6 −1.2 −0.8

Q8WX93 PALLD −1.4 −1.1 −0.9 −1.8
Q14204 DYNC1H1 −1.4 −1.5 −1.1 −1.2
O00469 PLOD2 −1.1 −1.4 −0.5 −1.1
P53007 SLC25A1 −1.1 −0.9 −1.0 −0.7
O75369 FLNB −1.1 −0.9 −1.1 −1.2
O95433 AHSA1 −1.1 −1.1 −0.5 −0.9
O95164 UBL3 −1.1 −1.0 −1.1 −0.9
P42892 ECE1 −1.0 −0.7 −0.9 −1.0
Q9Y3L5 RAP2C −1.0 −1.1 −0.8 −0.8
Q9UBV2 SEL1L −0.9 −1.0 −1.0 −0.7
P23381 WARS −0.8 −0.9 −0.5 −1.1
P04083 ANXA1 −0.8 −0.9 −1.3 −0.9
P61619 SEC61A1 −0.8 −2.0 −0.7 −0.7
P00441 SOD1 −0.7 −1.6 −1.3 −0.6
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Table 3. Cont.

Protein Fold Change

UniProt ID Gene Name NGB-KO vs.
Neg

NGB-KO + E2 vs.
Neg + E2

NGB-KO + H2O2
vs. Neg + H2O2

NGB-KO + E2 + H2O2 vs.
Neg + E2 + H2O2

Q05655 PRKCD −0.7 −0.7 −0.8 −1.3
P13798 APEH −0.7 −0.7 −0.6 −1.1
P27144 AK4 −0.6 −0.8 −0.8 −0.9
Q9Y263 PLAA −0.6 −0.6 −0.6 −1.0
P04040 CAT −0.6 −0.6 −0.6 −0.6
Q13200 PSMD2 −0.6 −0.5 −0.5 −0.7
P78527 PRKDC −0.6 −0.4 +0.6 +0.8
O14744 PRMT5 −0.5 −0.7 −0.4 −0.6
P10644 PRKAR1A +0.8 +1.1 +0.7 +1.1

Q9UNQ0 ABCG2 +0.9 +0.6 +1.0 +1.7
Q9BS40 LXN +0.9 +0.9 +0.9 +0.8
P13797 PLS3 +1.4 +1.3 +1.7 +0.9
P68032 ACTC1 +2.0 +1.4 +1.1 +0.6

The red-marked protein refers to the single protein of the common dataset with discordant quantitative behavior throughout the experi-
mental conditions.
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Figure 3. Eulero–Venn analysis of the differentially regulated proteins in the four analyzed conditions focusing on common
proteins. (a) The Eulero–Venn analysis returned 31 regulated proteins as being in common for all the conditions. All the
proteins showed the same trend of abundance throughout the replicates, except for one that was discarded. In detail,
(b) 25 out of 30 proteins showed low abundance while being downregulated in all the NGB-KO conditions, and (c) 5 out of
30 proteins showed high abundance while being upregulated in all the NGB-KO conditions.
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The four conditions shared 78 common BPs that, as already mentioned, should be im-
puted to the knockout background. From these 78 BPs, the significant non-redundant BPs 
were selected (Figure 5). The enrichment of the common BPs found from the global pro-
teomes was performed to confirm the analysis of the BPs of the small common dataset. 
Accordingly, the analysis highlighted the dysregulation of proteins involved in response 
to stress, cell activation, actin cytoskeleton organization, and organelle organization in all 
the analyzed conditions. Intriguingly, with the NGB being involved in scavenging reac-
tive nitrogen species (RNS) and reactive oxygen species (ROS) [14], the NGB knockout 
also induced the alteration of BPs related to the response to the metabolism of nitrogen 
compounds (Figure 5). 

Finally, to discover specific terms that were correlated with the specific treatment, 
the above-described common BPs were subtracted from the independent bioinformatic 
analyses of the NGB-KO cells treated with E2, H2O2, and E2 + H2O2. Moreover, the terms 
detected using the common proteins dataset (Figure 4c) were subtracted as well. The re-
sulting non-redundant BPs were specifically enriched for each considered category and 
are reported in Figure 6. 

Figure 4. Heatmap, STRING network, and functional profiling of the common protein dataset. (a) The heatmap shows
the distribution of the protein fold changes in the four experimental conditions. The blue and red color ranges refer to the
lowest and the highest fold changes, respectively. Each experimental group is labeled with a numbered class color and each
number corresponds to a specific group. (b) The STRING network was built using the connecting nodes from the common
protein dataset; the labeled nodes refer to the biological processes represented by the highest counts in the network. (c) The
analysis using g:Profiler enriched the significant non-redundant GO terms (MF—molecular function, BP—biological process,
CC—cellular component), KEGG, and REACTOME pathways. The box shows the details of the enriched categories.
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Then, each regulated proteome underwent independent functional enrichment using
the STRING and the REViGO tools. Eulero–Venn analysis was performed to focus on the
biological processes (BPs) identified in all the conditions with a p-value < 0.01 (Figure 5).
The four conditions shared 78 common BPs that, as already mentioned, should be im-
puted to the knockout background. From these 78 BPs, the significant non-redundant
BPs were selected (Figure 5). The enrichment of the common BPs found from the global
proteomes was performed to confirm the analysis of the BPs of the small common dataset.
Accordingly, the analysis highlighted the dysregulation of proteins involved in response
to stress, cell activation, actin cytoskeleton organization, and organelle organization in
all the analyzed conditions. Intriguingly, with the NGB being involved in scavenging
reactive nitrogen species (RNS) and reactive oxygen species (ROS) [14], the NGB knockout
also induced the alteration of BPs related to the response to the metabolism of nitrogen
compounds (Figure 5).
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Finally, to discover specific terms that were correlated with the specific treatment,
the above-described common BPs were subtracted from the independent bioinformatic
analyses of the NGB-KO cells treated with E2, H2O2, and E2 + H2O2. Moreover, the terms
detected using the common proteins dataset (Figure 4c) were subtracted as well. The
resulting non-redundant BPs were specifically enriched for each considered category and
are reported in Figure 6.
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3. Discussion

NGB is a relatively recently discovered protein [1] that displays neuroprotective
effects that are exerted in neurons after its overexpression as an outcome of several stimuli,
such as hypoxic events, oxidative stress, and oxygen/glucose deprivation [2,9]. Mounting
interest in NGB function has recently been growing in non-neuronal compartments and
tissues, such as breast cancer cells, highlighting the antioxidant and prosurvival functions
of E2-induced NGB expression [3]. By being expressed endogenously at very low levels,
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many NGB-overexpressing and NGB-deficient models have been generated with the
aim to induce insults on the system studied and, subsequently, investigate the NGB
response. In vivo NGB-deficient models showed ambiguous results that do not support the
neuroprotective hypothesis for endogenous NGB, as NGB overexpression models do [15].
NGB deficiency in mice exacerbated the response to hypoxia mediated by Hif1A and c-FOS,
without affecting neuronal survival [16]. In rats, NGB silencing impaired the respiratory
chain complexes I and III activity, and the retina and the visual function [17]. By contrast,
in vitro NGB-deficient cellular models assign a role for endogenous NGB in the defense
against oxygen and glucose deprivation, oxidative stress, and apoptosis, supporting retinal
function and neuronal development [15]. Furthermore, ambiguous results have been
reported in cancer cells, where NGB knockdown promoted cell growth or functioned as a
tumor suppressor [18,19].

To the best of our knowledge, the current study represents the first proteomic survey
that was performed in a cellular model of human breast cancer deficient in NGB [15].
In particular, the goal was to highlight unbalanced pathways when human NGB is not
expressed and/or not inducible (for example by E2 or H2O2).

The present analysis highlighted the regulation of a small dataset of proteins, whose
quantitative variation occurred under all the experimental conditions (also with the ad-
ministration of E2 and/or H2O2), reflecting the NGB gene knockout background. Indeed,
the subsequent bioinformatic analysis enriched several processes that were imputed to the
NGB knockout. The alteration of BPs under all the conditions reinforced their importance
and their consideration for widening the knowledge about NGB function in the cell. From
our results, STRING analysis enriched cell activation, response to stress, and cytoskeleton
organization were found as common BPs throughout the treatment conditions.

Particularly, cell activation refers to “a change in the morphology or behavior of a cell
resulting from exposure to an activating factor such as a cellular or soluble ligand” (http:
//amigo.geneontology.org/amigo/term/GO:0001775, accessed on 7 March 2021) [20]. In
an astrocytic model under rotenone insult, NGB upregulation preserves the mitochondrial
morphology [21]. Instead, the “mitochondrial organization” of the BPs was altered in
MCF-7 cells upon H2O2 treatment when NGB was knocked out. The main effects on
mitochondrial biological processes, such as “ATP synthesis coupled to proton transport”,
“tricarboxylic acid metabolism”, and “oxidative phosphorylation”, were more evident
in H2O2-treated MCF-7 cells. In fact, it has been suggested that NGB may play a role
in mitochondrial ATP production [4,22]. In the SH-SY5Y cell line, the decrease in the
oxidative stress caused by H2O2 and the increase in the levels of ATP were driven by
the upregulation of NGB levels [22,23]. In addition, H2O2 treatment highlighted several
cellular responses, such as “cellular response to chemical stimulus”, ”response to metal ion”,
”post-translational protein targeting to membrane”, and “cellular response to topologically
incorrect protein”. This is coherent with the effects produced by ROS action that may
interfere with proteins regulating their levels, by either modulating gene expression or by
modifying their structure and stability [24].

Endogenous NGB was proved to be a ROS-inducible protein in MCF-7 cells and a key
factor for E2-induced breast cancer progression [7]. E2 increases cell survival by preventing
mitochondrial-dependent apoptosis through the activation of ERα in E2-dependent cancer
cells. Similarly, our bioinformatic analysis of MCF-7 cells treated with E2 showed “positive
regulation of apoptotic process” and the alteration of proteins involved in the “cell cycle
process”, suggesting a lacking inhibition of the apoptotic cascade due to the absence of
NGB. By contrast, in the cells treated with E2 + H2O2, the enrichment of the ”negative
regulation of apoptotic signaling pathway” occurred, suggesting that apoptosis may be
inhibited despite NGB not being expressed in these cells. On the other hand, the presence of
BPs such as “autophagy”, “protein targeting to lysosome”, “proteolysis”, and “cell division”
may suggest a more complex response to the combined treatment for the survival/death
fate of these breast cancer cells. Autophagy may be upregulated as a consequence of stress

http://amigo.geneontology.org/amigo/term/GO:0001775
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or nutrient deprivation [25,26]. Of note, autophagy can protract the survival of cancer cells
defecting in apoptosis [27].

Despite divisive findings and speculations on the role of E2 on autophagy [28–32], the
E2 + H2O2 combination may specifically modulate the autophagic flux. Nevertheless, NGB
overexpression does not affect the modulation of autophagy regulators [33], although the
effects of NGB knockout on autophagy have not been tested yet.

Since the main role of NGB is ascribed to the protection of the cell from stress stimuli,
such as hypoxia and oxidative stress, the “response to stress” BPs were coherent and
of great interest. This class includes the following downregulated proteins: superoxide
dismutase 1 (SOD1), catalase (CAT), PLOD2, ITGA2, FLNB, PRKCD, SEL1L, and SEC61A1.
Redox homeostasis in cancer cells is aberrant and its regulation may be under the control of
the cell antioxidant defense based on SOD1, CAT, and the glutathione system. Furthermore,
the persistent action of an oxidative stimulus in cancer cells induces cell adaptation to
the redox stress, potentiating the expression of these protective systems [3,24]. Similarly,
it was demonstrated that NGB displays a direct role in the adaptation of cancer cells to
the increased oxidative stress by several mechanisms, including ROS scavenging and
the potentiation of the antioxidant response [3,13]. Thus, as a consequence of the NGB
knockout, the quantitative abundance of enzymes like SOD1 and CAT decreased compared
to the control cells. Accordingly, when the (over)expression of NGB did not occur because
of gene deletion, the “response to stress”, “response to nitrogen compounds”, and “nitrogen
compound transport” BPs were commonly enriched in the treated NGB-KO cells as well.
This reinforced the role of NGB as a key modulator of the oxidative response since the levels
of the above-mentioned enzymes remained downregulated, even in the proteome of E2-
and H2O2-treated cells. Of note, most of the proteins included in the class of “response to
stress”, “cell activation”, and related to neutrophil and leucocyte activation are recognized
by REACTOME [34] as part of the immune system pathway (PLAA, FLNB, PRKCD,
FABP5, PRKDC, CAT, DYNC1H1, DYNC1I2, PSMD2, RAP2C, SEC61A1, ANXA1, SOD1,
and APEH) that is downregulated in the absence of NGB. Therefore, NGB may act in
cancer cells as a functional hub that allows for the crosstalk between oxidative stress and
inflammation pathways, which has recently been called “oxinflammation” [35].

In all the analyzed proteomes, cytoskeletal proteins were found to be subjected to
quantitative variation (mostly being downregulated) as a common feature of NGB-deficient
breast cancer cells. Cytoskeleton dynamics is a prerequisite for changing cancer cell mor-
phology and for acquiring an invasive and migratory phenotype, and for the epithelial to
mesenchymal transition (EMT) process [36]. In this context, even though the treatment of
MCF-7 cells with exogenous NGB does not evidence promigratory effects [9], the present
data open the intriguing possibility that the positive modulation of intracellular NGB
levels can take part in the promotion of breast cancer cell motility through the activa-
tion of ERα [37,38]. Furthermore, it has been demonstrated that the overexpression or
the knockdown of cytoskeleton-related proteins augments or decreases, respectively, the
release of exosomes [39], which resulted as a CC enriched in MCF-7 NGB-deficient cells
throughout the treatment conditions. The modulation of cytoskeleton proteins and extra-
cellular exosomes in the NGB knockout background, together with data indicating that
NGB is differently released in response to E2 and H2O2 [9], might suggest that this globin
is linked to the cancer cell ability to modify the extracellular microenvironment. Indeed,
on the one hand, NGB is a dynamic component of the cancer cell secretome that can affect
the “response to stress” on neighbor cancer and non-transformed breast cells from the
outside, eliciting their adaptation to microenvironmental stresses [9]. On the other hand,
the intracellular NGB can take part in the regulation of breast-cancer-dependent shaping of
the extracellular milieu in response to external stimuli.

Furthermore, NGB upregulation improves the actin condensation induced by H2O2,
suggesting preservation of cell membrane integrity and mitochondrial transportation [23].
Because the actin cytoskeleton and actin-binding proteins are required for mitochondrial
morphology, motility, and immobilization of the organelle at the cell cortex [40], mounting
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evidence suggests an indirect function of NGB in mitochondrial transportation [22]. In
addition, NGB appears to be involved in the protection from hypoxia by interfering with
cytoskeletal polarization and lipid-raft-dependent death signaling within the Rho GTPase
pathway [41]. All the above-mentioned processes seem to be lacking in MCF-7 cells in the
absence of NGB.

4. Materials and Methods
4.1. Cell Culture

The MCF-7 biallelic NGB gene knockout (NGB-KO) and its negative control (Neg),
which were genetically modified using the CRISPR/Cas9 technology, were obtained from
GenScript Corporation (Piscataway, NJ, USA) and validated as previously reported [13]
(Supplementary Figure S2). The MCF-7 Neg and MCF-7 NGB-KO cell lines were used
from four to eight passages and were grown in air containing 5% CO2 and DMEM without
phenol red medium. The medium contained 10% (v/v) fetal bovine serum, gentamicin
(0.1 mg/mL), L-glutamine (2 mM), and Pen-strep solution (penicillin 100 U/mL and
streptomycin 100 mg/mL). The cells were simultaneously treated with the vehicle used to
dissolve all drugs (ethanol/PBS 1:10, v/v), and/or E2 (10 nM, 24 h), or H2O2 (400 µM, 24 h)
in the presence or absence of the E2 pretreatment (10 nM, 4 h).

4.2. Proteome Extraction and S-Trap Tryptic Digestion

The cells were collected and processed as described in [42–44]. Briefly, the cell samples
were lysed in RIPA buffer (Sigma-Aldrich, St. Louis, MO, USA). Then, lysates were treated
with 1% Benzonase (E8263-5KU, Sigma-Aldrich, St. Louis, MO, USA) plus 2 mM MgCl2
and incubated at 37 ◦C for 30 min to degrade all the nucleic acids (DNA and RNA), and
centrifuged at 18,000 rpm for 30 min at 4 ◦C. The supernatants were collected and the
protein concentration was determined using the Bradford assay. Protein digestion was
performed on 50 µg of each sample after adding a final concentration of 5% SDS. The
reduction was carried out with 10 mM TCEP (Sigma-Aldrich, St. Louis, MO, USA) and
carbamidomethylation of cysteines with 40 mM iodoacetamide (Sigma-Aldrich, St. Louis,
MO, USA). Protein digestion was performed on an S-Trap™ micro spin column (Protifi,
Huntington, WV, USA) using Sequencing Grade Modified Trypsin (Promega, Madison,
WI, USA) at 47 ◦C for 1 h. The digested peptides were eluted from the S-Trap columns,
vacuum dried, and kept at −80 ◦C until analysis.

4.3. LC–MS/MS Analysis

Dried samples were resuspended in 100 µL of 10% ACN, 0.1% TFA in HPLC-grade
water, and injected (1 µL) into an RSLC Ultimate 3000 chromatograph coupled with a Q
Exactive PLUS mass spectrometer (Thermo Scientific, Waltham, MA, USA). LC–MS/MS
analysis was performed as reported in [43]. Briefly, peptide mixtures were loaded onto
a µ-precolumn (Acclaim PepMap 100 C18, cartridge, 300 µm i.d. × 5 mm, 5 µm), and
then separated on a 50 cm reversed-phase liquid chromatographic column (0.075 mm ID,
Acclaim PepMap 100, C18, 2 µm) (both Thermo Scientific, Waltham, MA, USA). Solvents
for the chromatographic separation were 0.1% formic acid in water (A) and 80% ACN
and 0.08% formic acid (B). The following gradient was set to elute peptides from the
column: from 5 to 40% B (180 min), from 40 to 80% (1 min); 80% (5 min); fixed at 5% for
20 min for column re-equilibration. Blanks were run between samples to prevent sample
carryovers. Eluting peptides underwent fragmentation using higher-energy collisional
dissociation (HCD). MS/MS analysis was performed via data-dependent acquisition (DDA)
using a top 10 method. Q Exactive PLUS had a resolution set at 70,000 for the MS scans
and 17,500 for the DDA MS/MS scans in order to increase the speed. An MS scan range
from 400 to 2000 m/z was set. The MS automatic gain control (AGC) target was set to
3 × 106 counts with a maximum injection time of 60 ms, while the MS/MS AGC target was
set to 1 × 105 with a maximum injection time of 60 ms; the dynamic exclusion was 30 s.
Four independent biological replicates per condition were analyzed.
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4.4. Label-Free Quantification Analysis

The MaxQuant software (version 1.6.3.4) was employed for processing the .raw MS
files [45]. The Andromeda search engine worked using the UniProt Homo sapiens reference
proteome (Proteome ID: UP000005640; Taxonomy: 9606—Homo sapiens). Default features
within MaxQuant were selected. Trypsin was set as the proteolytic enzyme, allowing for
up to two missed cleavage sites, and a length of seven amino acids was set as the minimum
peptide length. The fixed modification was the carbamidomethylation of cysteine, and the
variable modifications were the oxidation of methionine and N-term protein acetylation.
The MaxQuant LFQ algorithm was used for protein quantification. The false discovery
rate (FDR) was set to 1% at both the protein and peptide levels, and a match between runs
was selected. Then, the MaxQuant-generated protein groups file was loaded onto Perseus
software (version 1.6.0.7), which was used for statistics and data elaboration. The dataset
was reduced by removing contaminants, reverse hits, and proteins only identified by site.
After a log2-transformation of the LFQ data, only proteins identified by a number of unique
peptides >1 in 70% over all of the runs were retained. The imputation of missing values
was performed by selecting a downshift of 1.8 and a width of 0.3 standard deviations in
a Gaussian distribution of random numbers. A normal distribution of protein intensity
from each LC–MS/MS run was assessed. Then, the normal distributions of the data were
adjusted using mean-centered scaling and the separation of the experimental groups was
validated using PLS-DA by employing MetaboAnalyst 5.0 software [46,47]. After the data
preprocessing, the protein fold changes were calculated as the log2 protein difference of
the intensity means of the NGB-KO and Neg replicates groups. Differentially regulated
proteins were selected using a two-sample t-test (FDR = 1%, S0 = 0.2). Proteins with a fold
change ≥0.4 (upregulated) and ≤−0.4 (downregulated) were selected. Volcano plots and
profile plots were generated within Perseus [48,49]. The heatmap for the visualization of
the protein abundances of the common protein dataset was generated with MetaboAnalyst
software. To get an overview of the protein intensities from the global proteomic dataset, the
heatmap was built within Perseus using the adjusted data based on Z-score normalization.

4.5. Bioinformatics Analysis

To reveal alterations of the protein expression profiles of MCF-7 NGB-KO cells, multi-
ple bioinformatic analyses were performed. The DisGeNET platform within EnrichR soft-
ware [50,51] was investigated to retrieve gene–disease associations. The functional profiling
of a set of proteins common to the four analyzed conditions was obtained using g:Profiler
software [52,53]. The enrichment of Gene Ontology (GO) Biological Process (BP) terms for
each regulated proteome was performed using STRING [54–56]. The long lists of GO-BPs
obtained from STRING were reduced and summarized using the REViGO software, with
the final selection of the significant non-redundant BP terms [57,58].

5. Conclusions

Here, we report for the first time a proteomic survey in NGB-deficient human breast
cancer cells. The present findings shed light on biological processes that were affected by
NGB expression and on the regulation of intracellular globin levels. Indeed, BPs that were
commonly altered in the absence of NGB throughout the different conditions belonged to
the apoptotic regulation, mitochondrial organization, and the large class of “response to
stress,” reinforcing the idea of critical functions of inducible NGB in such events [5,6,8,13].
Furthermore, the herein reported results open a new scenario over NGB’s role in breast
cancer cells, providing evidence of its possible involvement in further critical cellular
processes, including cytoskeleton dynamics and extracellular microenvironment shaping.
Even though the role of NGB in such events needs to be further validated, these data
lead to the consideration of a wide and complex function of NGB as a hub protein that
regulates biological processes, with a particular focus on those processes that are activated
in response to external hormonal and/or stress stimuli. Remarkably, if a similar imbalance
pertaining to these intracellular processes occurs in the absence of NGB, as well as in other
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cellular contexts (i.e., neurons), it is worth evaluating. Indeed, such evidence would clarify
whether the reported biological processes that were affected by NGB occur as a common
feature or whether they are cell/tissue-specific, opening new possibilities in the definition
of NGB-related targetable pathways.

Supplementary Materials: The following are available online. Supplementary Figure S1: Statistical
distribution of the proteomics data, Supplementary Figure S2: NGB levels in CRISPR/Cas9 knockout
MCF-7 cells, Supplementary Table S1: List of the differentially regulated proteins in the NGB-KO vs.
Neg proteome, Supplementary Table S2: List of the differentially regulated proteins in the NGB-KO +
E2 vs. Neg + E2 proteome, Supplementary Table S3: List of the differentially regulated proteins in
the NGB-KO + H2O2 vs. Neg + H2O2 proteome, Supplementary Table S4: List of the differentially
regulated proteins in the NGB-KO + E2 + H2O2 vs. Neg + E2 + H2O2 proteome.
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