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ABSTRACT
SH7139, the first of a series of selective high affinity ligand (SHAL) oncology 

drug candidates designed to target and bind to the HLA-DR proteins overexpressed by 
B-cell lymphomas, has demonstrated exceptional efficacy in the treatment of Burkitt 
lymphoma xenografts in mice and a safety profile that may prove to be unprecedented 
for an oncology drug. The aim of this study was to determine how frequently the 
HLA-DRs targeted by SH7139 are expressed by different subtypes of non-Hodgkin’s 
lymphoma and by other solid cancers that have been reported to express HLA-DR. 
Binding studies conducted with SH7129, a biotinylated analog of SH7139, reveal that 
more than half of the biopsy sections obtained from patients with different types of 
non-Hodgkin’s lymphoma express the HLA-DRs targeted by SH7139. Similar analyses 
of tumor biopsy tissue obtained from patients diagnosed with eighteen other solid 
cancers show the majority of these tumors also express the HLA-DRs targeted by 
SH7139. Cervical, ovarian, colorectal and prostate cancers expressed the most HLA-
DR. Only a few esophageal and head and neck tumors bound the diagnostic. Within an 
individual’s tumor, cell to cell differences in HLA-DR target expression varied by only 2 
to 3-fold while the expression levels in tumors obtained from different patients varied 
as much as 10 to 100-fold. The high frequency with which SH7129 was observed to 
bind to these cancers suggests that many patients diagnosed with B-cell lymphomas, 
myelomas, and other non-hematological cancers should be considered potential 
candidates for new therapies such as SH7139 that target HLA-DR-expressing tumors.

INTRODUCTION

Many of the first targeted therapeutics for treating 
patients diagnosed with non-Hodgkin’s lymphoma 
(NHL) were chimeric or humanized mouse monoclonal 
antibodies that recognized a member of the CD family 
of cell surface receptors [1–11]. While the clinical use of 
these antibodies has improved the outcomes of therapy for 
many NHL patients over the past two decades, advances 
in our understanding of the molecular basis of this disease 
and the discovery of new targets and treatment strategies 
has markedly expanded the range of options now available 
for lymphoma therapy. Today the pipelines of many 
pharmaceutical companies contain a wide range of both 
small molecule and antibody-based drugs that bind to 
and/or inhibit many cell surface receptors, proteins and 

enzymes required for tumor growth and proliferation. 
These pipelines also include a number of immunotherapies 
that utilize, augment or activate a patient’s own immune 
system to mount an effective anti-tumor response.

One family of cell surface receptors that play 
a central role in immunological surveillance and 
the induction of anti-tumor immunity are the Major 
Histocompatibility Complex (MHC) proteins. An 
interesting therapeutic approach that has potential for 
treating many types of solid cancer has focused on the 
isolation and identification of tumor peptide antigens 
presented by the MHC class I [12–17] and MHC class II 
[18–26] proteins that trigger the activation of lymphocytes 
and the induction of an effective anti-tumor immune 
response. The majority of this work is being driven by 
a growing interest in utilizing these antigens to develop 
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vaccines for melanoma, lung, cervical, and other cancers 
whose cells express proteins that contain sequence 
mutations or structural features not found in normal cells.

Another approach that has shown some success in its 
application to the treatment of B-cell derived malignancies 
involves the development of antibodies and other drugs 
that target the MHC class II proteins directly [27–36]. The 
characterization of one such antibody, Lym-1, led to the 
discovery that its target, HLA-DR10 and other HLA-DRs 
containing a common epitope located on its β-subunit 
[37–39], is expressed by many B-cell derived lymphomas 
and leukemias. While the clinical trials conducted with 
Lym-1 have demonstrated the utility of HLA-DR as a 
target for NHL therapy [29, 30, 32, 33, 40], a number of 
patients in the trials developed serious adverse effects 
commonly encountered in antibody therapies. In an effort 
to create small molecule targeting agents for use in cancer 
therapy that exhibit the same avidity and selectivity of 
antibodies but lack human antibody-mouse antibody 
(HAMA) responses and other antibody induced adverse 
effects [41–50], a series of selective high affinity ligands 
(SHALs) were developed to target the HLA-DR10 epitope 
recognized by Lym-1. This work led to the development 
of the family of tridentate SHALs, which include SH7139 
and SH7129, that are the first of a new class of NHL small 
molecule drug and diagnostic candidates that target tumor 
cells expressing HLA-DR [51, 52].

The preclinical testing of SH7139 has not only 
shown that this drug exhibits remarkable anti-tumor 
activity in an aggressive Burkitt lymphoma mouse 
xenograft model [52], but the pre-IND enabling toxicology 
and safety studies conducted with SH7139 also suggests 
the drug should have few if any adverse effects and a safety 
margin that is uncharacteristically large for an oncology 
drug. During the course of this testing a biotinylated 
analog of SH7139, SH7129, was developed for use as a 
potential companion diagnostic to identify NHL patients 
whose tumors express the HLA-DRs targeted by the drug. 
Previous analyses of SH7129 binding to a small number 
of B-cell derived lymphoma cell lines [51] and human [53] 
and canine [54] tumor biopsy samples have shown the 
diagnostic selectively binds to lymphoma cells expressing 
certain HLA-DRs or their canine DLA-DR orthologs. The 
specific HLA-DRs SH7129 target include HLA-DR7, 
HLA-DR9, HLA-DR10, HLA-DR11, HLA-DR12, HLA-
DR13, HLA-DR15, and HLA-DR16 [53].

While there have been numerous reports of HLA-
DR expression by melanomas [21, 55–58], cervical [59–
62], ovarian [63–68] prostate [19, 69–73], liver [74–77], 
kidney [18, 78], bone [79], breast [80–85], esophageal 
[86–89], head and neck [90–92], bladder [93–96], 
colorectal [97–101], lung [102–105], pancreatic [106], 
larynx [107–109], gastric [110–113], glioma [114–116], 
and thyroid [117–120] cancers, these MHC class II 
proteins have not been adequately evaluated as potential 
targets in the treatment of non-hematological cancers. 

Although it is not entirely clear why tumors derived 
from tissues of non-lymphoid origin express HLA-DR, 
the predominant theory for which there is a great deal 
of experimental support suggests this expression can be 
initiated in response to tumor infiltration by lymphocytes, 
macrophages or dendritic cells [84, 96] and the release 
of cytokines [84, 121] during the inflammation that often 
accompanies tumor growth and the progression of the 
disease. Tumor cell lines treated with IFN-γ, a cytokine 
released by activated T-cells and NK cells [122, 123], have 
been observed to upregulate their expression of HLA-
DR [121, 124–127]. Analyses of tumors obtained from 
cervical cancer patients have also shown the tumor cells 
in biopsy tissues with higher IFN-γ concentrations exhibit 
higher levels of HLA-DR expression, and these patients 
survive longer and have a lower risk of disease recurrence 
[128]. Other studies of hepatocellular carcinoma (HCC) 
patients have demonstrated a positive correlation between 
lower plasma concentrations of IFN-γ, advanced tumor 
stage, and higher rates of HCC recurrence [129].

In the study reported here, the biotinylated analog of 
SH7139 (SH7129) was used as an immunohistochemical-
type stain to examine the frequency with which 
lymphomas and non-hematological solid cancers express 
the HLA-DRs targeted by SH7139 and to obtain an 
estimate of their level of expression by quantifying the 
amount of SH7129 bound to the cells. The results show 
that each of the NHL subtypes tested, as well as 18 other 
types of solid cancer, express the HLA-DRs targeted by 
SH7139. A number of the non-hematological cancers 
express higher levels of HLA-DR and bind more SH7129 
than the B-cell lymphomas and leukemias.

RESULTS

SH7129 binding to normal tissue

SH7129 binding to normal tissue was evaluated 
using microarrays containing twenty-four different tissues 
obtained from three healthy individuals. Following the 
staining of the microarrays with SH7129, the slides were 
not counter-stained with hematoxylin. This enables the 
detection of extremely low levels of SH7129 binding 
that would normally be obscured by the presence of 
the counter-stain. Cells expressing the target HLA-DRs 
that bind SH7129 are stained brown by the horse-radish 
peroxidase’s conversion of the 3,3′-diaminobenzidine 
(DAB) substrate to a brown insoluble product. As shown 
in Figure 1, SH7129 binding was observed to tonsil, 
thymus, spleen, and bone marrow—all tissues that 
produce or contain large numbers of antigen presenting 
cells (APCs). No binding was observed to breast, 
cerebrum, colon, hypophysis (pituitary), small intestine, 
ovary, pancreas, salivary gland, skeletal muscle, thyroid, 
uterine cervix, or peripheral nerve tissue. In each of the 
three skin samples tested the basal keratinocytes appeared 
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Figure 1: SH7129 binding to normal tissue. Microarrays containing sections from twenty-four normal human tissues (three sections 
per tissue, each from a different healthy individual) were stained with SH7129 and the bound SHAL was detected using streptavidin 
conjugated horse-radish peroxidase. Cells binding SH7129 are stained brown. The slides were not counter stained with H&E to enable the 
detection of very low levels of SH7129 binding. Antigen presenting cells in the bone marrow, thymus, spleen and tonsil bind SH7129 as 
evidenced by the light staining of cells in those tissues. No binding was observed to breast, cerebrum, colon, hypophysis (pituitary), small 
intestine, ovary, pancreas, salivary gland, skeletal muscle, thyroid, uterine cervix, peripheral nerve tissue, or skin. The brown coloration 
in the basal keratinocytes (arrows) in skin is melanin. SH7129 did not bind to lung, esophagus, prostate, cardiac muscle, and parathyroid 
tissues obtained from two of the three individuals or stomach tissue from one individual. Staining in kidney tissue was limited to the 
macrophages, dendritic cells and monocytes located between tubules. Liver hepatocytes and zona reticularis cells in the adrenal gland 
showed very light staining. The images were captured at 40× magnification and the scale bar is the same for all images.
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to be stained by SH7129, but examination of the control 
slides (those stained with hematoxylin and eosin without 
SH7129) revealed this brown coloration is melanin 
pigment, not bound SH7129 (Figure 2). Some staining 
was observed in kidney tissue, but the bound SH7129 was 
limited to the macrophages, dendritic cells and monocytes 
located between tubules.

Cells in the zona reticularis of adrenal tissue were 
stained very lightly with SH7129, suggesting these cells 
may also express very low levels of HLA-DR. HLA-DR 
expression by adrenal cells has been reported previously 
[130, 131] and it has been suggested that this expression 
might be induced during the final maturation step for 
reticularis cells as they become competent to secrete 
androgens. It has also been suggested the HLA-DR may 
trigger the induction of apoptosis in these cells via MHC 
class II mediated programmed cell death as part of the 
normal process of adrenal cell turnover [131]. A very low 
level of SH7129 binding was also observed in cerebellum 
white matter (Figure 3). Others who have also reported the 
binding of anti-HLA-DR antibodies to white matter have 
suggested this binding may be to resting or non-reactive 
microglia [132], which are cells of the central nervous 
system that function as macrophages. HLA-DR expression 
has been shown to increase in the microglia of individuals 
diagnosed with the neurogenerative diseases Alzheimer’s, 
Parkinson’s, and multiple sclerosis as well as in the 
elderly who do not exhibit dementia [132–138]. Very light 
staining of parietal cells was also observed in stomach 

sections (Figure 3) obtained from two individuals, while 
no staining was observed in the section obtained from the 
third individual. Parietal cells are epithelial cells that have 
been reported to express HLA-DR in cases of gastritis 
[139, 140].

While SH7129 did not bind to lung, esophagus, 
prostate, cardiac muscle, and parathyroid tissues obtained 
from two of the three individuals, the tissue from one 
individual in each case showed very light staining which 
is just barely detectable in the captured images. Although 
these tissues do not normally express HLA-DRs [86, 
141–144], the low level binding to the tissues from these 
individuals may reflect undetected tissue inflammation or 
very early stage disease. In the lung and esophagus tissue 
section showing staining, SH7129 binding was localized 
to the epithelial cells in the alveolar ducts of the lung 
and the squamous epithelium of the esophagus (Figure 
3), which are cell types that have been shown to express 
HLA-DRs during inflammatory lung and esophagus injury 
or disease [86, 145–152]. The prostate case showed a 
very light staining of the stroma, while no binding was 
observed to the acinar or basal cells (Figure 3). In certain 
cases of chronic immuno-mediated inflammation, such as 
benign prostatic hyperplasia, prostate stromal cells have 
been reported to express HLA-DR and function as antigen 
presenting cells [153, 154]. In the cardiac tissue section 
from the one individual showing extremely light staining, 
the binding appeared to be associated with some (not all) 
of the myocytes (Figure 3)—an observation others have 

Figure 2: Skin section stained with H&E (without SH7129) or SH7129 (without H&E) showing melanin (arrows) in 
basal keratinocytes. The apical region of the basal keratinocytes shown in the section stained only with H&E (left panel) has the same 
brown color as the apical regions of the keratinocytes in the sections stained with SH7129 (right panel). The images were captured at 40× 
magnification. The scale bar is the same for both images.
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reported to occur in association with transplant tissue 
[144, 155, 156], myocarditis [157–159] and other types of 
cardiovascular disease [157, 160, 161]. Thus, the very low 
level of SH7129 staining of these normal tissues appears 
consistent with observations in previous studies that have 
shown HLA-DR expression in healthy lung, esophagus, 
prostate, cardiac tissue, cerebellum and stomach is 
confined to non-lymphoid cells that begin functioning as 
antigen presenting cells in response to injury or disease.

The only other tissue to which SH7129 binding 
was observed to bind at a very low level was the liver 
(Figure 1). Hepatocytes in normal liver do not express 
HLA-DR [162–164], but epithelial cells surrounding 
portal tracts have occasionally been observed to express 
HLA-DR in tissue obtained from healthy individuals and 

much more frequently in cases of disease [165, 166]. 
Hepatocytes expressing HLA-DR have only been observed 
in patients with immune mediated liver disorders [164]. 
Since SH7129 binding was observed in the liver sections 
from all three individuals and appears to be localized 
specifically to hepatocytes, it is highly unlikely the tissues 
were obtained from three individuals that all have a liver 
disorder. A more likely possibility is that the staining may 
reflect a low level of SH7129 binding to something other 
than HLA-DR. Recent studies have shown that SH7139 
inhibits OATP1B1 and OATP1B3 [unpublished results], 
transporters that have only been found in the liver (normal 
hepatocytes) [167, 168] or certain cancers [168–170]. The 
abundance of these transporters (3.18 pmoles OATP1B1 
and 2.73 pmoles OATP1B3 per 106 hepatocytes [171]) 

Figure 3: Staining of several normal tissues exhibiting some evidence of SH7129 binding. (A) Cerebellum molecular layer 
(no binding). (B) Cerebellum white matter (arrow) showing a low level of SH7129 binding. (C) Lung alveolar epithelial cells (arrow) in 
one section from a normal individual showing SH7129 binding. Lung tissue from two other individuals showed no binding. (D) Esophagus 
tissue (no binding). (E) Area in tissue section of esophagus from one individual showing binding to squamous epithelial cells (arrows). 
Esophageal tissue from other two individuals showed no binding. (F) Section of stomach tissue from one individual showing binding to 
parietal cells (arrows). Stomach tissue from two other individuals showed no binding. (G) Section of normal prostate showing no binding 
to acinar (solid arrows) and basal cells (dashed arrows). (H) Section of one normal prostate tissue showing low level binding to stroma 
(arrow). Prostate tissue from two other individuals showed no binding. (I) Section of one normal heart tissue showing very low-level 
binding to myocytes (arrows). The images were captured at 40× magnification. The scale bar shown in B is the same for all the images.
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exceed the number of HLA-DR molecules expressed by 
the Burkitt lymphoma cell line Raji (2.66 pmoles/106 
Raji cells [172, 173]) and some of the highest expressing 
ovarian cancer cells (0.5 pmoles/106 cells [67]) by 2 to 10-
fold, respectively. While the binding affinity of SH7129 
has not been determined for either transporter, the IC50 for 
OATP1B1 (0.29 µM) and OATP1B3 (0.15 µM) inhibition 
by SH7139 indicate SH7129’s affinity for the transporters 
will be lower than its affinity for HLA-DR (KD = 23 pM 
[174]). However, SH7129 would be expected to bind to 
both transporters under the staining conditions used.

HLA-DR expression by non-Hodgkin’s 
lymphoma

Using the same SH7129 staining protocol, tumor 
biopsy sections obtained from patients diagnosed with 
seven subtypes of NHL were screened for the expression 
of HLA-DRs targeted by SH7139. Digital images of the 
tumor cells in each section were obtained from the stained 
and control (no SH7129 treatment) slides, the images were 
inverted, and the amount of bound SH7129 was estimated 
by processing the captured images of each tumor and 
quantifying the amount of brown oxidized DAB product 
generated by the horse-radish peroxidase using NIH 
ImageJ version 1.42 software.

SH7129 staining of biopsy tissues containing cells 
expressing HLA-DR show binding to HLA-DR proteins 
located on the surface of the tumor cells, in the cytoplasm, 
and near the nucleus where the endoplasmic reticulum 
is located in agreement with previously reported results 
in cultured Burkitt lymphoma (Raji) cells [51, 175]. 
Connective tissue is not stained. As shown in Table 1, a 
significant number of the tested tumors in each of the types 
of NHL examined were found to bind SH7129. Tumor 
biopsies obtained from all twenty-four of the anaplastic 
large cell lymphoma (ALCL) cases examined expressed 
the targeted HLA-DR and bound SH7129. Nearly every 
MALT lymphoma (75 of the 80 cases) biopsy sample 
examined also bound the diagnostic. At the other end of 
the spectrum, only 28% of the mantle cell and 34% of the 
follicular lymphomas were observed to express the target 
and bind SH7129.

Within a typical lymphoma biopsy section, the 
cell to cell variation in SH7129 binding, as measured by 
image analysis of the horse-radish peroxidase generated 
oxidation product of DAB deposited in individual tumor 
cells, was less than 3-fold (Table 2). The level of HLA-DR 
expression and SH7129 binding by the cells in different 
patient’s tumors within the same type of NHL, however, 
differed by as much as 10 to 100-fold (Figures 4 and 5). 
Statistical analyses of SH7129 bound by the seven types 
of NHL indicate these NHL tumors fall into three groups. 
Biopsy tissues obtained from patients diagnosed with 
anaplastic large cell lymphoma (ALCL) exhibited the 
highest level of SH7129 binding. Diffuse large B-cell 

lymphomas (DLBCL), small lymphocytic lymphomas 
(SLL), and mucosa-associated lymphoid tissue (MALT) 
lymphomas bound intermediate amounts of SH7129. 
Follicular lymphomas (FL), Burkitt’s lymphomas (BL) 
and mantle cell lymphomas (MCL) bound the least 
SH7129 of the types of NHL analyzed.

Identification of other solid cancers that also 
express HLA-DRs targeted by SH7139

Biopsy sections from eighteen additional solid 
cancers that have been reported by others to express MHC 
class II proteins were also examined for expression of the 
HLA-DRs targeted by SH7139 using the same staining 
protocol. While many (33–100%) of the tumors analyzed 
in sixteen of these cancers were found to bind SH7129 
(Table 1), only two of the ninety-nine esophageal (2%) 
and two of the forty head and neck tumors (5%) (Figure 
6) showed detectable SH7129 binding. The highest 
percentage of cases showing binding was observed for 
ovarian, lung, cervical, gastric, prostate, myeloma and 
colorectal cancers. Ovarian, colorectal, prostate and 
cervical cancers (Figure 7) exhibited the highest levels 
of SH7129 binding of all the solid tumors examined 
(Figure 8). In marked contrast to the other types of cancer, 
which had cases representing the full spectrum (low 
to high) of HLA-DR expression and SH7129 binding 
(Figures 9–11), all of the ovarian and all but one of the 
cervical cancer biopsy sections examined bound moderate 
to high levels of SH7129. The amount of SH7129 bound 
by the two esophageal and two head and neck tumors were 
amongst the lowest of all the cancers tested.

Similar to the results obtained in the analysis of the 
different subtypes of NHL, a broad range in the level of 
SH7129 binding/HLA-DR target expression was observed 
between individual tumors for many of these solid cancers. 
The gastric and pancreatic cancer cases (Figures 8 and 9) 
showed the least variability in SH7129 binding. Within 
the ovarian, prostate, melanoma, breast and bone cancers 
the tumors from a small number of outlier cases expressed 
extremely high levels of the HLA-DR target (Figure 8). 
The amount of SH7129 bound by these outliers was 
nearly twice the amount bound by the lymphoma outliers 
(Figure 5).

Variation in SH7129 binding by tumor type or 
grade within the non-hematological cancers

SH7129 binding to the different types of nine of the 
non-lymphoid solid cancers analyzed (Figure 12) was also 
compared to determine if a particular type might express 
more or less of the HLA-DRs. With one exception, the 
level of target HLA-DR expression by the different types 
of lung, liver, ovarian, laryngeal, gastric, breast, and 
bone cancers were not found to be statistically different. 
Within the cervical cancers analyzed, the squamous 
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Figure 4: SH7129 staining of tumor biopsy sections from seven subtypes of non-Hodgkin’s lymphoma. Sections from three 
different tumors are shown for each subtype: high level of SH7129 binding (A), moderate level of SH7129 binding (B), and no SH7129 binding 
(C). Diffuse large B-cell lymphoma: (A1) Tissue sample ODCTLYMLY02E3. (B1) Tissue sample LM482C8. (C1) Tissue sample LM482C5. 
Follicular Lymphoma: (A2) Tissue sample T203B6. (B2) Tissue sample 6050459. (C2) Tissue sample 1051864. Anaplastic large cell lymphoma: 
(A3) Tissue sample LM242D5. (B3) Tissue sample LM242D4. (C3) Tissue sample LM242B1. Mucosa-associated lymphoid tissue lymphoma: 
(A4) Tissue sample LY804E7. (B4) Tissue sample LY804A6. (C4) Tissue sample LY804G5. Mantle cell lymphoma: (A5) Tissue sample 
M685565. (B5) Tissue sample 15726/09. (C5) Tissue sample F721798. Burkitt lymphoma: (A6) Tissue sample LM482E3. (B6) Tissue sample 
BL1A8. (C6) Tissue sample BL1A1. Small lymphocytic lymphoma/chronic lymphocytic leukemia: (A7) Tissue sample F683134. (B7) Tissue 
sample 9543432. (C7) Tissue sample M672708. The images were captured at 40× magnification. The scale bar is the same for all images.
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cell carcinomas (SC) bound more SH7129 than the 
adenocarcinomas (A) (p = 0.006).

A comparison of the amount of SH7129 bound 
to tumors classified by grade yielded a similar result 
(Figure 13). No difference in SH7129 binding was 
observed as a function of tumor grade in liver, ovarian, 
gastric, prostate, laryngeal, lung, cervical or pancreatic 
cancers. The comparison suggested what appears to be 
a significantly higher level of SH7129 binding to grade 
3 compared to grade 2 kidney cancers (p = 0.0350), but 
this result is based on the analysis of only two grade 3 
cases. While this difference may prove to be real, such 
a conclusion cannot be confirmed until a much larger 
number of cases are examined. It is important to point 
out that the same is true for many of the cancer types 
and grades analyzed. The results obtained from the 
comparisons involving only a few cases per cancer type 

or grade may not reflect the true variation that is present 
in the larger population.

DISCUSSION

The SH7129 used to stain the tumor biopsy tissue 
sections in this study is a biotinylated analog of SH7139 
that was synthesized for use in cell binding studies and 
as a potential companion diagnostic for prescreening 
patients to identify those with tumors that express the 
HLA-DRs SH7139 targets. The HLA-DR targeting 
domains of SH7139 and SH7129 are identical and the two 
molecules differ only in the effector (a DOTA chelating 
group or a biotin, respectively) conjugated to the free 
amine at the non-functional end of the scaffold that links 
the recognition elements together. The replacement of the 
DOTA by biotin has been reported in earlier studies to 

Table 1: Solid cancers tested for SH7129 binding as an indicator of their expression of the HLA-
DRs targeted by SH7139
Cancer Type Number of Cases Percent Expressing Target

Non-Hodgkin’s Lymphoma
DLBC Lymphoma 75 57.3
Follicular Lymphoma 118 33.9
Anaplastic LC Lymphoma 24 100
MALT Lymphoma 80 93.8
Mantle Cell Lymphoma 71 28.2
Burkitt Lymphoma 25 32.0
Small Lymphocytic Lymphoma 78 60.2

Other Cancers
Ovarian 64 100
Lung 85 98.8
Cervical 66 98.4
Pancreatic 89 65.1
Gastric 90 91.1
Esophageal 99 2
Breast, Medullary Carcinoma 77 66.2
Breast, Invasive Ductal 90 4.4
Kidney 69 79.7
Prostate 72 95.8
Thyroid 80 65
Liver 75 89.3
Colorectal 92 94.5
Bone 78 69.2
Bladder 60 61.7
Plasma Cell Myeloma 14 92.9
Larynx 70 48.6
Melanoma 122 46.7
Head and Neck 40 5
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have no impact on either the selectivity of the targeting of 
HLA-DR [51] or its biological activity [51–53].

With the exception of a single section of lung, 
esophagus, prostate, stomach and heart tissue derived from 
a single tissue donor, SH7129 binding to normal tissues 
was very weak or not observed. Expression of the MHC 
class II protein HLA-DR is typically restricted to antigen 
presenting cells in a healthy individual [37, 176]. These 
include the B-lymphocytes, monocytes, macrophages 
and dendritic cells found in blood, tonsils, spleen, lymph 
nodes, thymus, and bone marrow, Kupffer cells in 
liver, microglia in brain, Langerhans cells in skin, other 
lymphocytes and macrophages that are frequently found 
infiltrating numerous organs (e.g., the kidney, breast, and 
lung), as well as certain epithelial or endothelial cells 
that provide the first line of an organ’s defense against 
infection or injury. HLA-DRs are expressed at relatively 
low levels in resting lymphocytes (approximately 1–2 × 
105 molecules per cell) [172].

Expression of HLA-DR in normal tissues that lack 
APCs does not typically occur except following injury or 
the onset of disease. Low levels of HLA-DR expression 
have been observed in cases of primary biliary cirrhosis 
[177], gastritis [139, 140], cutaneous graft-vs-host disease 
[178], prostatitis [179], and hyperthyroidism [142]. HLA-
DR expression has also been associated with inflammations 
involving the lung [180], bowel [181, 182], pancreas 
[183], myocardial tissue [184], and skin [178] and with 
B-cell derived lymphomas, certain T-cell lymphomas, 
leukemias, myelomas, and a number of other solid 
cancers. Although HLA-DR is not normally expressed in 
skin [178, 185], it has been observed in keratinocytes in 
skin biopsies taken from individuals with psoriasis [186] 
and many other diseases caused by an overactive immune 
response that triggers inflammation, including lupus 
erythematosus, vitiligo, lymphocytic vasculitis, lichen 
sclerosus, morphea, lichen planus, erythema nodosum, 
granulomatous dermatoses, allergic dermatitis, various 
infectious dermatoses, and Sweet’s syndrome [187, 188].

As expected, normal lymphoid tissues containing 
APCs bound SH7129. The extremely low levels of 

SH7129 binding to zona reticularis (adrenal) and white 
matter (cerebellum) appear related to HLA-DR expression 
by adrenal cells destined for turnover [131] and microglia 
or fibrous astrocytes that take on the role of antigen 
presenting cells in the white matter of the cerebellum of 
the elderly [132–138] or following brain injury or the 
onset of neurological disease [132–134, 136, 189, 190]. In 
each of the isolated cases of a single normal tissue section 
showing HLA-DR expression, as well as the observed 
staining of hepatocytes and cells in the white matter of the 
cerebellum, the level of SH7129 binding to the expressed 
HLA-DR was only a small fraction of that observed for 
resting B-cell lymphocytes [54] and was so low that it 
could only be detected in tissue sections that were not 
counterstained. The staining of hepatocytes, which do 
not express HLA-DRs, may be explained by SH7129’s 
binding to the abundant OATP1B1 and OATP1B3 
transporters present in liver.

Based on the results of a series of toxicology 
and safety studies conducted with SH7139 in dogs and 
rats at doses of the drug up to 4,000 and 12,000 times, 
respectively, of the anticipated therapeutic dose (data not 
shown), the low-level of SHAL binding to these normal 
tissues does not appear to have an adverse impact on their 
function. No organ or tissue in the treated animals showed 
any macroscopic or microscopic indication of pathology 
or toxicity, B-cell lymphocytes expressing low levels of 
HLA-DR were not adversely affected, the serum chemistry 
of the treated animals showed no evidence of liver or 
renal damage, there were no observed abnormalities in 
electrocardiography parameters (heart rate, RR interval, 
PR interval, QRS duration, QT interval or QTc interval), 
and the Functional Observational Battery performed to 
assess the central nervous system for pharmacological 
effects showed no indication of an adverse association 
with SH7139 exposure.

Consistent with previous reports of HLA-DR 
expression by a number of different lymphomas and 
leukemias [30, 37, 191–193], a significant fraction of 
each of the seven NHL subtypes tested in this study 
were found to express HLA-DRs that bind SH7129. In 

Table 2: Cell to cell variation in SH7129 binding in a typical NHL tumor
Lymphoma Type Biopsy Sample ID Level of SH7129 Binding Cell Range SH7129 Bound
Diffuse Large B-Cell LM482E3 High 2.98
Follicular T203B6 Moderate 1.69
Burkitt’s LM482D8 Moderate 2.42
MALT LY804E7 High 1.94
Anaplastic Large Cell LM242D5 High 2.75
Mantle Cell MC2B9 Moderate 1.78

Bound SH7129 was quantified by image analysis for 50 cells representing the full range of binding within a biopsy sample obtained from patients diagnosed 
with each of six subtypes of NHL. The Level of SH7129 Binding is a subjective descriptor of the overall intensity of SH7129 staining of the tumor tissue 
relative to other tumors in that subtype. Cell Range in SH7129 Bound is the amount of SH7129 bound by the most intense staining tumor cell divided by the 
amount of SH7129 bound by the least intense staining tumor cell in the tumor section.
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addition to providing additional confirmation that HLA-
DR is expressed by most, if not all, B-cell lymphoma 
subtypes, the current results also show the majority of 
the tumors examined (56% of all cases tested) expressed 
HLA-DRs recognized by SH7129. Binding was observed 
in each of the anaplastic large cell lymphoma cases tested. 
Only about a quarter of the mantle cell lymphomas and 
one third of the follicular lymphomas were found to bind 
SH7129. Although the median level of binding was lower 
than that observed for the other NHL subtypes, one mantle 
cell lymphoma bound more SH7129 than any other NHL 
subtype.

Similar results were obtained for sixteen of the eighteen 
other solid cancers examined. Cervical, ovarian, prostate and 
colorectal cancers bound considerably more SH7129 than 
any of the lymphomas and many of the other solid cancers. 
SH7129 binding comparable to the levels found in NHL were 
observed in melanoma, kidney, breast, bladder, pancreatic, 
lung, bone, prostate, larynx, liver, gastric, and thyroid cancers. 
SH7129 binding was rarely detected in esophageal and head 
and neck cancers. As observed for the different types of NHL, 
a wide range in tumor to tumor variability in SH7129 binding 
was also observed for the majority of the non-hematological 
cancers expressing HLA-DR.

Although there were too few cases of the non-
hematological cancer types represented in the tumor biopsy 
sets analyzed to be able to draw definitive conclusions 
regarding cancer type differences in SH7129 binding, 

the available data suggest differences in HLA-DR target 
expression and SH7129 binding amongst the different 
types of liver, larynx, thyroid, ovarian, gastric, cervical, 
lung, or bone cancers are likely to be small if they differ 
at all. Only the medullary carcinomas (MC) and invasive 
ductal carcinomas (IDC) of breast cancer were observed 
to differ in their expression of HLA-DRs recognized by 
SH7129. While the amount of SH7129 binding appears 
to be similar, based on the analysis of a very limited 
number of invasive ductal cases, the frequency with which 
the two types of breast cancer expressed the HLA-DR 
target was quite different. Approximately 4% of the IDC 
tumors were found to express the target HLA-DRs and 
bind detectable levels of SH7129. Two thirds of the MC 
tumors, in contrast, bound SH7129. The larger percentage 
of medullary carcinomas binding SH7129 in this study are 
consistent with reports by others who also show a much 
higher incidence of HLA-DR expression by medullary 
breast cancers, which typically have heavier and more 
frequent lymphocytic infiltration [81, 82], compared to 
invasive ductal carcinomas [194–197].

While SH7139 was originally developed as 
a therapeutic and imaging agent for B-cell derived 
lymphomas, the current results suggest SH7139 should 
also be considered as a viable alternative for treating 
many other types of cancer. Since the HLA-DR target 
is unique, SHALs can be used in combination therapies 
with most other drugs. Because cervical, ovarian and 

Figure 5: Tumor to tumor variability in SH7129 binding to seven types of NHL. Tumor microarrays containing biopsy tissue 
sections from tumors of patients diagnosed with diffuse large B-cell lymphoma (DLBCL), follicular lymphoma (FL), Burkitt lymphoma 
(BL), small lymphocytic lymphoma (SLL), mantle cell lymphoma (MCL), mucosa-associated lymphoid tissue lymphoma (MALTL), and 
anaplastic large cell lymphoma (ALCL) were stained with SH7129 and the biotin in the bound SHAL was detected using SAHRP and the 
substrate DAB. The amount of bound SH7129 was determined by densitometric analysis of each tumor section. Not all biopsies contained 
tumor cells expressing the HLA-DR target to which SH7129 binds. Only those tumors exhibiting SH7129 binding are included in the plot. 
The value plotted is the amount of bound SH7129 (integrated staining density) per 384-pixel area of tumor tissue. Each point corresponds 
to a tumor from a different patient. A significant number of tumors representing each subtype of NHL were observed to bind SH7129. The 
range in SH7129 binding to the tumors within each NHL subtype varied by as much as 100-fold.
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Figure 6: SH7129 stained sections of representative esophageal, head and neck, and breast (invasive ductal and medullary 
carcinoma) cancers expressing HLA-DRs targeted by SH7139. Sections from three different tumors are shown for each cancer: high 
level of SH7129 binding (A), moderate level of SH7129 binding (B), and no SH7129 binding (C). Esophageal cancer: (A1) Tissue sample 
ESC1021H1, adenocarcinoma. (B1) Tissue sample EC1021A12, squamous cell carcinoma. (C1) Tissue sample ESC1021B2, squamous cell 
carcinoma. Head and Neck: (A2) Tissue sample HN483C3, squamous cell carcinoma. (B2) Tissue sample HN483A4, squamous cell carcinoma. 
(C2) Tissue sample HN483E5, squamous cell carcinoma. Invasive Ductal breast cancer: (A3) Tissue sample BC08118A9. (B3) Tissue sample 
BC08118A5. (C3) Tissue sample BC08118H3. Medullary breast cancer: (A4) Tissue sample BR807A1. (B4) Tissue sample BR807A2. (C4) 
Tissue sample BR807B8. The images were captured at 40× magnification. The scale bar is the same for all images.
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Figure 7: SH7129 stained sections of representative ovarian, colorectal, prostate, and cervical cancers expressing HLA-
DRs targeted by SH7139. Three examples are shown for each cancer: high level of SH7129 binding (A), moderate level of SH7129 
binding (B), and no SH7129 binding (C). Since all of the tested ovarian cancer biopsy sections bound SH7129, the ovarian cancer example 
shown in (C) is a third tumor showing SH7129 binding. Ovarian cancer: (A1) Tissue sample OVC1501E4, endometrioid adenocarcinoma. 
(B1) Tissue sample OVC1501D1, mucinous cystadenocarcinoma. (C1) Tissue sample OVC1501G4, serous cystadenocarcinoma. Colorectal 
cancer: (A2) Tissue sample ODCTDGCOL04D1, adenocarcinoma. (B2) Tissue sample ODCTDGCOL04B3, adenocarcinoma. (C2) Tissue 
sample ODCTDGCOL04F8, adenocarcinoma. Prostate cancer: (A3) Tissue sample PR803CA10, adenocarcinoma. (B3) Tissue sample 
PR803CE1. (C3) Tissue sample PR803CH2. Cervical cancer: (A4) Tissue sample CXC1501C6, squamous cell carcinoma. (B4) Tissue 
sample CXC1501G3, adenocarcinoma. (C4) Tissue sample CXC1501F6, squamous cell carcinoma. The images were captured at 40× 
magnification. The scale bar is the same for all images.
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colorectal cancer express much higher levels of the 
HLA-DRs that bind SH7129, these cancers would be 
expected to respond even more favorably to SH7139 
therapy than NHL. The cell surface HLA-DR molecules 
to which SH7139 binds are rapidly internalized [198], and 
tumor cells with significantly larger numbers of HLA-
DR molecules on its surface would be expected to more 
rapidly accumulate SH7139 and achieve much higher 
intracellular concentrations of the drug.

One unexpected finding in our analysis of SH7129 
binding to the non-hematological cancers was that a 
significant number of pancreatic and liver cancer cases 
bind the diagnostic, indicating they also express HLA-
DRs targeted by SH7139. Although the median level of 
SH7129 binding was low compared to other cancers, it 
was similar to some types of NHL, such as the mantle 
cell lymphomas. Patients diagnosed with pancreatic, liver, 
and lung cancers currently have the poorest prognoses, 
with five-year survival rates of only 9%, 19%, and 20% 
respectively [199]. Therapies targeting the HLA-DRs 
expressed by pancreatic, liver and lung cancers, either 
alone or in combination with other drugs, could markedly 

improve the outcomes for patients diagnosed with these 
malignancies.

HLA-DR expression by tumor cells, as in normal 
antigen presenting cells, is often accompanied by the 
presentation of peptide antigens to T-cell lymphocytes 
[19, 67, 73, 200–202]. Among these antigens are peptides 
derived from proteins that bear mutations not found 
in normal cells [21, 22, 203–207], contain a unique 
conformational epitope or post-translational modification 
[208, 209], or whose expression is specific to the tumor 
cell [26, 210–212] or the normal cell from which the tumor 
developed [213–218]. One consequence of HLA-DR’s 
presentation of these abnormal or ‘non-self’ antigenic 
peptides to T-cells is the induction or enhancement of 
an immune response that targets the tumor producing 
the proteins from which the peptides originated [22, 
200, 219]. Such responses have been reported to lead to 
systemic immunity [21] and better prognoses for patients 
with lymphoma [220], melanoma [221], colorectal [98, 
100, 101, 222], gastric [111], ovarian [63] and certain 
types of laryngeal [107], and breast [81, 223, 224] cancers 
expressing HLA-DR than others diagnosed with same 

Figure 8: Tumor to tumor variability in SH7129 binding to other cancers. Tumor microarrays containing biopsy sections from 
tumors of patients diagnosed with one of eighteen different types of solid cancers were stained with SH7129 and the biotin in the bound 
SHAL was detected using SAHRP and the substrate DAB. The amount of bound SH7129 was determined by densitometric analysis of each 
tumor section. Not all biopsies contained tumor cells expressing the HLA-DR target to which SH7129 binds. Only those tumors exhibiting 
SH7129 binding are included in the plot. The value plotted is the amount of bound SH7129 (integrated stain density) per 384-pixel area of 
tumor tissue. Each point corresponds to a tumor from a different patient. A significant number of tumors representing 16 of the 18 cancers 
analyzed were observed to bind SH7129. Only two of the head and neck and two esophageal cancers bound SH7129. While the range in 
SH7129 binding to different cervical, ovarian, breast or myeloma tumors expressing the HLA-DR target is small (5 to 16-fold), SH7129 
binding to individual tumors in many of the other non-hematological cancers vary by more than 100-fold. The solid cancers tested include: 
melanoma (Mela), thyroid (Thy), ovarian (Ova), colorectal (Col), gastric (Gas), head and neck (HN), laryngeal (Lar), kidney (Kid), bladder 
(Bla), prostate (Pro), esophageal (Es), lung (Lun), pancreatic (Pan), breast (Bre), cervical (Cer), plasma cell myeloma (Mye), liver (Liv), 
and bone (Bon).
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Figure 9: SH7129 stained sections of representative laryngeal, melanoma, gastric, and pancreatic cancers expressing 
HLA-DRs targeted by SH7139. Sections from three different tumors are shown for each cancer: high level of SH7129 binding (A), 
moderate level of SH7129 binding (B), and no SH7129 binding (C). Laryngeal cancer: (A1) Tissue sample LP801A7, squamous cell 
carcinoma. (B1) Tissue sample LP801C6, basaloid squamous cell carcinoma. (C1) Tissue sample LP801G1, squamous cell carcinoma. 
Melanoma: (A2) Tissue sample Me1004EA10. (B2) Tissue sample Me1004EG6. (C2) Tissue sample Me1004 EB1. Gastric cancer: (A3) 
Tissue sample ODCTDGSTM01E4, adenocarcinoma. (B3) Tissue sample ODCTDGSTM01J4, ring cell carcinoma. (C3) Tissue sample 
ODCTDGSTM01I9, adenocarcinoma. Pancreatic cancer: (A4) Tissue sample PA961CF1, duct adenocarcinoma. (B4) Tissue sample 
PA961CH2, carcinoid. (C4) Tissue sample PA961CF10, adenocarcinoma. The images were captured at 40× magnification. The scale bar 
is the same for all images.
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Figure 10: SH7129 stained sections of representative kidney, lung, thyroid and liver cancers expressing HLA-DRs 
targeted by SH7139. Sections from three different tumors are shown for each cancer: high level of SH7129 binding (A), moderate level 
of SH7129 binding (B), and no SH7129 binding (C). Kidney cancer: (A1) Tissue sample BC07014B1, clear cell carcinoma. (B1) Tissue 
sample BC07014AH2, transitional cell carcinoma. (C1) Tissue sample BC07014AB7, clear cell carcinoma. Lung cancer: (A2) Tissue 
sample LUC1021E1, squamous cell carcinoma. (B2) Tissue sample LUC1021C1, adenocarcinoma. (C2) Tissue sample LUC1021E3, 
squamous cell carcinoma. Thyroid cancer: (A3) Tissue sample TH802C1, papillary carcinoma. (B3) Tissue sample TH802E6, follicular 
adenoma. (C3) Tissue sample TH802G7, embryonic adenoma. Liver cancer: (A4) Tissue sample LVC1501A9, hepatocellular carcinoma. 
(B4) Tissue sample LVC1501A8, bile duct carcinoma. (C4) Tissue sample LVC1501F7, hepatocellular carcinoma. The images were 
captured at 40× magnification. The scale bar is the same for all images.
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cancers that do not express HLA-DR. Tumors that do 
not express MHC class II proteins or have a deletion of 
the H2-DM gene which prevents the loading of antigenic 
peptides onto HLA-DRs containing CLIP [225] also 
appear to be better at escaping immunosurveillance 
[226–230] which has been suggested to lead to poorer 
tumor containment [228, 231–233], the outcome of which 
provides a worse prognosis for the patient [84, 100, 222, 
224, 233–238]. While some exceptions have been reported 
[88, 239–241], this has led to the suggestion that one 
approach for improving cancer therapy might be to force 
all cancer cells to become antigen presenting cells [219, 
226, 242]. Should such an approach be implemented as a 
means to trigger the patient’s immune system to mount a 
more effective antitumor response, it would also sensitize 
those tumors that do not normally express HLA-DR to 
SH7139 and other HLA-DR targeted therapeutics.

The correlation between HLA-DR expression and 
more positive outcomes for patients has not, however, 
been observed for all types of cancer. HLA-DR expression 
by acute myelogenous leukemias [241], myelomas [240] 
and diffuse large B-cell lymphomas [237] have been 
reported to be highly predictive of poor patient survival. 
These reports, combined with the fact that a large fraction 
of so many different types of cancer express HLA-DRs, 
suggest the presence of tumor associated HLA-DRs may 
in some cases confer a benefit to the growth or survival 
of cancer cells. At least two mechanisms that help 
cancer cells expressing HLA-DR avoid detection by the 
immune system have been described in support of this 
idea. Increased expression of HLA-DR by tumors in the 
absence of the co-stimulatory receptors CD80 or CD86, as 
one example, has been shown to suppress T-cell activation 
and tumor infiltration by lymphocytes. In the absence of 

Figure 11: SH7129 stained sections of representative bone, bladder and plasma cell myeloma cancers expressing HLA-
DRs targeted by SH7139. Sections from three different tumors are shown for each cancer: high level of SH7129 binding (A), moderate 
level of SH7129 binding (B), and no SH7129 binding (C). Bone cancer: (A1) Tissue sample OS802F5, chondrosarcoma. (B1) Tissue sample 
OS802B8, osteosarcoma. (C1) Tissue sample OS802C6, osteosarcoma. Bladder cancer: (A2) Tissue sample BC12011BD3, urothelial 
carcinoma. (B2) Tissue sample BC12011BE4, urothelial carcinoma (C2) Tissue sample BC12011E6, urothelial carcinoma. Plasma cell 
myeloma: (A3) Tissue sample T291B3. (B3) Tissue sample LM482A6. (C3) Tissue sample LM482A1. The images were captured at 40× 
magnification. The scale bar is the same for all images.
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these receptors the tumor not only evades detection, but 
its cells can more easily kill those lymphocytes that do 
invade tumor tissue [243]. Expression of the transcription 
regulator CD74, which always accompanies expression 
of HLA-DR, and its binding to the chemokine migration 
inhibitory factor (MIF) has also been shown to improve 
tumor cell survival by suppressing CD-44 mediated-
apoptosis [244] and modulating other pathways that 
involve immune regulation and cell survival [245].

CD74, which is also called “Ii”, has a second 
function as a chaperone protein that is co-expressed along 
with HLA-DR to facilitate its proper folding, protect its 
antigen binding site from premature loading with peptides 
that will be presented to T-cells, and to direct the HLA-
DR proteins to the late endosomal lysosomal antigen-

processing compartments containing the antigenic proteins 
and peptides they will eventually present to T-cells [246]. 
In the endoplasmic reticulum, the α and β-subunits 
of HLA-DR bind to trimers of CD74 to form large 
nonameric complexes [247]. Following the transport of 
these complexes across the trans-Golgi network into late 
endosomal lysosomal antigen-processing compartments 
containing the antigenic proteins and peptides, the CD74 
in the complex is processed by a series of proteolytic 
cleavages leaving the class II-associated Ii chain peptide 
(CLIP) bound inside the peptide binding site of HLA-
DR. Upon removal of CLIP by HLA-DM, the antigenic 
peptides then bind inside the HLA-DR peptide binding 
site. In addition to those HLA-DR: CD74 complexes 
trafficked to the endosome, some of the complexes are 

Figure 12: SH7129 binding to different types of nine non-lymphoid solid cancers. SH7129 binding data shown in Figure 
8 were sorted by type for nine of the cancers and the binding to the different tumors within each type were plotted for comparison. 
SH7129 binding to the different types of lung, liver, ovarian, laryngeal, gastric, breast, and bone cancers were not found to be significantly 
different. In a number of cases there were two few cases to provide a meaningful comparison. A statistically significant difference was only 
observed for two types of cervical cancer; the squamous cell carcinomas (SC) bound more SH7129 than the adenocarcinoma (A) type (p 
= 0.006). Liver cancers: hepatocellular carcinoma (HC), bile duct carcinoma (BDC), and clear cell carcinoma (CCC). Ovarian cancers: 
serous cystadenocarcinoma (SC), endometrioid (EA), mucinous cystadenocarcinoma (MC), granulosa cell tumor (G), thecoma (T), and 
undifferentiated adenocarcinoma (U). Breast cancers: ductal and medullary. Larynx cancer: squamous cell carcinoma (SCC), basaloid 
squamous cell carcinoma (BSCC), and acinic cell carcinoma (ACC). Gastric cancers: adenocarcinoma (AC) and ring cell carcinoma (RCC). 
Lung cancers: bronchioloalveolar carcinoma (BC), adenocarcinoma (A), squamous cell carcinoma (SCC), adenosquamous carcinoma 
(ASC), and neuroendocrine tumor (NT). Thyroid cancers: papillary carcinomas (PC), follicular papillary carcinoma (FC), tall cell papillary 
carcinoma (TCP), medullary carcinoma (MC), follicular adenoma (FA), colloid adenoma (CA), embryonic adenoma (EA) and clear cell 
adenoma (CCA). Cervical cancers: squamous cell carcinoma (SC), adenocarcinoma (A), and adenosquamous carcinoma (ASC). Bone 
cancers: osteosarcoma (OS) and chondrosarcoma (CS).
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also transported directly to the plasma membrane. Many 
of these complexes are under populated by HLA-DRs, 
leaving CD74 molecules on the surface of the cell that 
can bind to MIF and function as a transcription factor to 
promote tumor cell survival [245, 248].

The observation that HLA-DR expression by 
some cancers provides a benefit to the patient and its 
expression by other cancers provides a benefit to the tumor 
demonstrates the complexity of the cellular mechanisms 
that contribute to tumor cell survival and the immune 
system’s response to cells considered non-self. In the 
absence of other contributing factors, HLA-DR expression 
by tumors can stimulate an immune response targeting 
the tumor in those cases where the peptide antigens are 
immunogenic when presented to T-cells [21, 200, 219]. 
In cases where a sufficiently strong anti-tumor response 
cannot be induced by the antigens presented by HLA-
DR, the co-expression of receptors such as CD74 that 
promote tumor cell survival may dominate the result. In 
other cases the outcome may be dictated by unrelated 
immunosurveillance evasion processes that come into 
play, such as increased production of T-reg lymphocytes 
[249], the secretion of immunosuppressive molecules 

(programmed death-ligand 1, TGF-β, indoleamine 
2,3-dioxygenase, IL-10 or Fc receptor-like 6) that induce 
pathways that limit or repress the activity of cytotoxic 
T-cell lymphocytes or NK cells [250, 251], blocking of 
inhibitory checkpoints for immune activity [252], blockage 
of death receptor signaling [253, 254], downregulation 
or loss of MHC class I molecules [255–258], defects or 
alterations in MHC class I antigen processing [259] or 
interferon signal transduction, or the loss of gene function 
[260].

The SH7129 staining protocol used in this study 
provided a simple method to screen biopsy sections to 
identify tumors expressing the HLA-DRs SH7139 targets 
and to also obtain an estimate of the amount of SH7139 
one might expect to bind to different tumors. In contrast 
to the Lym-1 antibody, which could also be used to detect 
the expression of a subset of HLA-DRs (including HLA-
DR10), SH7129 works well for staining formalin fixed 
tissues. During our analysis of the samples, however, 
several limitations of the current method were identified 
that will need to be addressed as the diagnostic and 
staining protocol are developed further. One relates to the 
observation that the detection of SH7129 binding using 

Figure 13: Comparison of SH7129 binding to nine cancers by grade. SH7129 binding data shown in Figure 8 were sorted by 
grade for nine of the cancers for which there was grade information, and the binding to the different tumors within each type were plotted 
for comparison. Statistical analyses of the data indicate there is no correlation between the amount of SH7129 bound and tumor grade in 
liver, ovarian, gastric, prostate, laryngeal, lung, cervical, or pancreatic cancers. The comparison suggested what appears to be a significantly 
higher level of SH7129 binding to grade III compared to grade II kidney cancers (p = 0.0350), but this result is based on the analysis of 
only two grade III cases.
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horse-radish peroxidase and the current DAB substrate 
cannot be used to quantify HLA-DR target expression 
and SH7129 binding to tumor cells that are pigmented 
or contain significant amounts of melanin. The image 
analysis approach we used to quantify SH7129 binding to 
the tumor cells could not distinguish between the brown 
insoluble product formed by horse-radish peroxidase 
oxidation of the DAB substrate and the similarly colored 
melanin pigment present in a number of the melanoma 
biopsies (Figure 14A and 14B) or the melanin present 
in the basal keratinocytes found in normal skin tissue. 
Melanin does not fluoresce under visible or ultraviolet 
light excitation. One solution might be to replace SH7129 
with a fluorochrome-tagged analog of SH7139, provided 
the presence of the fluorescent dye does not influence 
HLA-DR binding or alter the reagent’s selectivity.

Other factors, such as the presence of large numbers 
of tumor infiltrating lymphocytes (TILs), macrophages 
or dendritic cells that also express HLA-DR (Figure 14C 
and 14D), could make it difficult to accurately quantify 
SH7129 binding by the tumor cells. If the numbers of TILs 
in the section are small, the impact will be negligible. But 
if large numbers of these cells are present in the tissue, the 
extent of SH7129 binding to the tumor cells can only be 
determined in areas free of the antigen presenting cells. 
The lack of structural uniformity within the tissue being 
imaged can also present quantification issues. While all 
cores in a tumor microarray are usually cut to the same 
thickness, differences in thickness can contribute to 
variation in the amount of cellular material that is stained 
and the amount of diagnostic bound. This is particularly 
important when the target protein, such as HLA-DR, is not 

Figure 14: Examples of tumor cases with infiltrating lymphocytes or cells containing pigment that impact or prevent 
the assessment of SH7129 binding using DAB as a substrate. (A) Tissue sample ME481AB6, unstained moderately pigmented 
melanoma showing small pigment particles (arrows) similar in color to the insoluble product produced by SAHRP oxidation of DAB. 
(B) Tissue sample ME481AA8, unstained heavily pigmented melanoma section. (C) Tissue sample M672708, SLL/CLL tumor section 
showing SH7129 stained lymphocytes and macrophages (arrows). (D) Tissue sample BR807C3, breast medullary carcinoma section 
showing SH7129 stained infiltrating lymphocytes and macrophages (arrows). The images were captured at 40× magnification. The scale 
bar is the same for all images.
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only found bound to the membrane but is also abundant in 
the cytoplasm. Local variation in the optical properties of 
unstained cells and supporting or connective tissue also 
contribute background absorption and attenuation of the 
light transmitted through the tissue that adds to the signal 
provided by the oxidized product of the DAB substrate. 
Tumor to tumor differences in density of cells packed 
within the section, disruptions in the integrity of the core 
(tears or missing tissue) or the presence of vacuoles, 
capillaries, or necrotic regions can change the amount of 
tumor tissue that is available to bind the diagnostic. The 
use of sequentially cut cores for the stained and unstained 
control slides should help minimize these contributions 
to variability and reduce errors in the quantification of 
SH7129 binding to tumor cells.

MATERIALS AND METHODS

Chemicals and reagents

The chemicals and reagents used in this study were 
obtained from the following sources: Key Organics, 
Camelford, UK (4-[4-[(4-chlorophenyl) methyl] 
piperazin-1-yl]-3-nitrobenzoic acid and 3-[2-[3-chloro-5-
(trifluoromethyl) pyridin-2-yl] oxyanilino]-3-oxopropanoic 
acid), Sigma-Aldrich, St. Louis, MO (3,3′-diaminobenzidine 
tetrahydrochloride, hydroxybenzotriazole, trifluoroacetic 
acid, anhydrous dimethylformamide, 2-(1H-benzotriazol-
1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate, 
Wang trityl chloride resin, phosphate buffered saline, 
citrate buffer, hematoxylin, xylene, ethanol), Macrocyclics, 
Plano, TX, USA (DOTA NHS ester), TCI, Shanghai, 
China (Dabsyl chloride), GL Biochem, Shanghai, China 
(Fmoc-D-Lys (Boc)-OH, Fmoc-D-Lys (Dde)-OH), Fmoc-
L-Val-OH), Biomatrik, Zhejiang, China (Fmoc-8-amino-
3,6-dioxaoctanoic acid), Electron Microscopy Sciences, 
Hatfield, PA, USA (Permount, 30% hydrogen peroxide), 
VWR Scientific, Radnor, PA, USA (acetonitrile, biotin 
N-hydroxysuccinimide ester, N, N-diisopropylethylamine) 
Roche Molecular Diagnostics, Pleasanton, CA, USA 
(Ventana Endogenous Biotin Blocking kit), Leica 
Biosystems Inc, Buffalo Grove, IL, USA (Leica BOND 
RX Automated Slide Stainer reagents) and Vector Labs, 
Burlingame, CA, USA (streptavidin conjugated horse-
radish peroxidase).

Synthesis of the biotin analog of SH7139

SH7129 was synthesized and purified by 
AmbioPharm Inc., (North Augusta, SC, USA) using 
a modification of the procedure described previously 
[51, 52]. Briefly, the SHAL was synthesized using solid 
phase chemistry by the stepwise attachment to a Wang 
resin of Fmoc-D-Lys#1(Boc)-OH, Fmoc-AEEA-OH#1 
(Fmoc-8-amino-3,6-dioxaoctanoic acid), Fmoc-D-
Lys#2(Dde)-OH, Fmoc-AEEA-OH#2, Fmoc-L-Val-

OH, and Dabsyl chloride using standard Fmoc (N-9-
fluorenylmethoxycarbonyl) chemistry with HBTU 
(2-(1H-benzotriazol-1-yl)-1,1,3,3-tetramethyluronium 
hexafluorophosphate)/HOBt (Hydroxybenzotriazole)/
DIPEA (N, N-Diisopropylethylamine) as the coupling 
reagents. The side chain amino group of D-Lys#2-
(Dde)-OH was deprotected with 4% hydrazine in 
dimethylformamide (DMF) and then coupled to Fmoc-
D-Lys#3-(Dde)-OH using the same coupling procedure. 
Fmoc-AEEA-OH#3 was next coupled to deprotected 
D-Lys#3(Dde) and 4-(4-(4-chlorobenzyl) piperazine)-
3-nitrobenzenecarboxylic acid (Cb ligand) was then 
linked to the deprotected AEEA-OH#3 using the same 
coupling procedure. The third ligand Ct (3-(2-((3-chloro-
5-(trifluoromethyl)-2-pyridinyl) oxy)-anilino)-3-
oxopropanoic acid) was then attached to the deprotected 
ε-amine of D-Lys#3. The assembled free amine form of 
the SHAL was cleaved from the resin, deprotected and 
subsequently precipitated as a crude solid. The crude 
product was purified by standard RP-HPLC methods 
and isolated by lyophilization. Biotin was attached to 
the free amine on the terminal lysine by dissolving the 
SHAL in anhydrous DMF, N, N-Diisopropylethylamine 
(DIEA) and adding solid biotin N-hydroxysuccinimide 
ester (biotinyl-OSu). The mixture was nutated for 15 
min, and the reaction was monitored by analytical HPLC. 
Upon completion, the reaction solution was diluted with 
a small volume of water/acetonitrile (50/50) containing 
1% trifluoroacetic acid (TFA) and purified by HPLC. The 
purified SH7129 was lyophilized and then analyzed by 
LC/MS and NMR spectroscopy to determine its purity 
(96.2%) and confirm its molecular mass (2165.6 Da) and 
structure, respectively.

Tissue and tumor microarrays

The normal human tissue microarrays (FDA808-
1 and FDA808-2) containing fixed and paraffin 
embedded sections of twenty-four different tissues 
obtained from three individuals and tumor microarrays 
(TMAs) containing fixed and paraffin embedded tumor 
biopsy sections obtained from patients diagnosed with 
different non-Hodgkin’s lymphoma subtypes (LM241, 
LM242, LM482, LY804, LY1001b, NHL801, NHL802, 
NHL803, OD-CT-LyMly02) and other solid cancers 
(BC07014a, BC08118, BC041115d, BC12011b, 
BM483, BR807, CXC1501, ESC1021, HN483, LP801, 
LUC1021, LVC1501, Me481a, Me1004e, OD-CT-
DgCol04, OD-CT-DgStm01, OD-CT-LyMly02, OS802, 
OVC1501, PA961c, PR803c, T111, T291, TH802) were 
obtained from U. S. Biomax (Rockville, MD, USA). An 
additional set of diffuse large B-cell lymphoma, mantle 
cell lymphoma, follicular lymphoma and SLL/CLL 
TMAs were obtained from Dr. John G. Gribben, Barts 
Cancer Institute, Queen Mary University of London, 
Charterhouse Square, London, UK.
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SH7129 staining protocol

SH7129 was prepared as a stock solution by 
dissolving 10 mg of the dry compound in 1 ml dimethyl 
sulfoxide. The formalin fixed normal tissue and tumor 
microarrays were stained using a Leica BOND RX 
Automated Slide Stainer (Leica Biosystems Inc., Buffalo 
Grove, IL, USA) to maximize slide-to-slide uniformity 
in staining and processing. The fixed slides were 
deparaffinized using the Leica dewax solution, rehydrated 
with an alcohol series (100%, 95%, 70% and 30% for 4 
min each) followed by antigen retrieval in citrate buffer 
at pH 6 and 90°C for 20 min. After performing a 5 min 
hydrogen peroxide block, the slides were washed three 
times with BOND Wash Solution, endogenous biotin was 
blocked using the Ventana Endogenous Biotin Blocking 
kit (Roche Molecular Diagnostics, Pleasanton, CA, USA), 
the slides were washed three additional times with BOND 
Wash Solution, and then stained with SH7129 (100 µg/ml 
in PBS, 1% DMSO) for 30 min. Following three washes 
with BOND Washing Solution, the slides were treated 
with Streptavidin-horse radish peroxidase (SAHRP) 
for 30 min, washed 3 times with BOND Wash Solution 
and once with deionized water, treated with Mixed DAB 
(3,3-diaminobenzidine) Refine for 10 min, and then washed 
four times with deionized water, once with BOND Wash 
Solution and a final deionized water wash as per the BOND 
Polymer Refine IHC protocol (Histowiz Inc., Brooklyn, 
NY, USA). The SH7129 stained tumor microarray slides 
were not counterstained with hematoxylin. The slides were 
then dehydrated by immersion in an alcohol series (30%, 
70%, 95% and 100% for 4 min each), cleared with xylene 
and mounted with Permount.

Analysis of SH7129 binding to NHL and other 
solid tumors

Whole slide images of the SH7129 stained and 
control (duplicate slide cut from same core treated 
with PBS instead of SH7129) normal tissue and tumor 
microarrays were captured at 40× magnification using an 
Aperio AT2 Digital Pathology Scanner (Leica Biosystems, 
Buffalo Grove, IL, USA). SH7129 binding or lack of 
binding to the cells was confirmed by visual inspection. 
Cells expressing the HLA-DRs that bind SH7129 showed 
stain associated with both the membranes and cytoplasm. 
Cell-to-cell variation in SH7129 binding was determined 
by performing densitometric analyses of fifty (50) 
individual tumor cells from a representative moderate to 
high SH7129 binding tumor for six of the NHL subtypes 
using NIH ImageJ version 1.42 software [262]. An effort 
was made during the analysis to include cells representing 
the full range of SH7129 binding. Individual cell data 
were not obtained for the small lymphocytic lymphomas 
due to our inability to accurately define the individual 
cell boundaries in these tumors. To estimate the tumor-

to-tumor variation in SH7129 binding, additional lower 
magnification digital images containing the array of cores 
for the two slides (SH7129 stained and control without 
SH7129) were captured at 10× magnification, the images 
were inverted, and the amount of bound SH7129 was 
determined by densitometric analysis of each tumor 
section using the same NIH ImageJ software. Integrated 
density data were collected from a 384-pixel area of each 
core and from ten blank (background) 384-pixel areas 
distributed across the slide near or between the cores. Core 
sections containing voids or tears (missing tissue), lacking 
a corresponding core in the control slide, or obtained from 
pigmented tumors were not analyzed. In cases where 
there were duplicate or triplicate cores for each biopsy 
on the slides, the data obtained from the analyses of the 
replicates were averaged. The amount of bound SH7129 
(per 384-pixel area) was then calculated for each biopsy 
sample as follows:

Bound SH7129 = (IntDenSH7129 – IntDenSH7129Bkg) – 
(IntDenNoSH7129 – IntDenNoSH7129Bkg)

where IntDenSH7129 is the integrated density of the biopsy 
section stained with SH7129, IntDenSH7129Bkg is the mean 
of the integrated densities of the ten blank regions of 
the SH7129 stained slide, IntDenNoSH7129 is the integrated 
density of the biopsy section that was processed for 
staining without SH7129, and IntDenNoSH7129Bkg is the mean 
of the integrated density of the ten blank regions of the 
control slide processed for staining without SH7129.

The data were analyzed and plotted using GraphPad 
Prism version 8.1.2. Statistical analyses of two groups of 
data were performed using an unpaired t-test. Analyses 
of three or more groups of data in which the standard 
deviations of the groups were similar were analyzed using 
a one-way ANOVA test followed by Tukey’s multiple 
comparison test. Data sets containing three or more 
groups in which the standard deviations of the groups 
being compared were different were analyzed using both 
a Brown-Forsythe and Welch’s ANOVA test followed by 
Dunnett’s T3 multiple comparisons test. In both cases in 
which three or more groups were compared, the assumption 
was made that the data fit a Gaussian distribution based 
on the observation that the amount of SH7129 bound per 
biopsy case did roughly fit a Gaussian distribution.

CONCLUSIONS

The tumor biopsy binding studies conducted with 
SH7129 have shown the HLA-DRs targeted by SH7139 
are expressed by many different types of cancer. A 
significant fraction of the cases in each of the seven 
subtypes of B-cell lymphomas were found to express 
these HLA-DRs, as indicated by the binding of SH7129, 
and the range of expression varied by as much as 10 to 
100-fold. Plasma cell myelomas and seventeen other 
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types of non-hematological cancers have also been found 
to express the HLA-DRs recognized by these SHALs, 
with some at levels much higher than many types of 
NHL. Cervical, ovarian, prostate and colorectal cancers 
bound the most SH7129, followed by non-Hodgkin’s 
lymphomas, plasma cell myelomas, lung, liver, bone, 
kidney, thyroid, melanoma, breast, laryngeal, gastric, 
pancreatic and bladder cancers. Only a few cases of 
head and neck and esophageal cancers bound SH7129. 
Comparisons of SH7129 binding to different types of nine 
non-hematological cancers only revealed a significant 
difference for two types of cervical and two types of breast 
cancer. SH7129 binding did not correlate well with tumor 
grade in the nine cancers for which data was available. 
The results obtained in this study also provide additional 
evidence of SH7129’s utility as a diagnostic to identify 
tumors expressing the HLA-DRs targeted by SH7139 and 
to estimate the magnitude of their expression. SH7129 
should prove useful in future clinical trials as a surrogate 
biomarker detection reagent for screening formalin-fixed 
paraffin embedded biopsy sections to identify patients with 
HLA-DR expressing tumors targeted by SH7139, Lym-1 
antibody in Lym-1 CAR T-cell therapy clinical studies 
[261], and SHALs administered in combination with other 
drugs to individualize therapy and optimize treatment 
protocols for each patient. The observation of moderate 
to high levels of HLA-DRs expression by so many of the 
tumors tested suggest there are patients diagnosed with 
many cancers, in addition to NHL, that may benefit from 
the development of oncology drugs that target HLA-DR.
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