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Abstract: Quantum key distribution (QKD) systems provide a method for two users to exchange
a provably secure key. Synchronizing the users’ clocks is an essential step before a secure key can
be distilled. Qubit-based synchronization protocols directly use the transmitted quantum states to
achieve synchronization and thus avoid the need for additional classical synchronization hardware.
Previous qubit-based synchronization protocols sacrifice secure key either directly or indirectly,
and all known qubit-based synchronization protocols do not efficiently use all publicly available
information published by the users. Here, we introduce a Bayesian probabilistic algorithm that
incorporates all published information to efficiently find the clock offset without sacrificing any
secure key. Additionally, the output of the algorithm is a probability, which allows us to quantify
our confidence in the synchronization. For demonstration purposes, we present a model system
with accompanying simulations of an efficient three-state BB84 prepare-and-measure protocol with
decoy states. We use our algorithm to exploit the correlations between Alice’s published basis and
mean photon number choices and Bob’s measurement outcomes to probabilistically determine the
most likely clock offset. We find that we can achieve a 95 percent synchronization confidence in only
4140 communication bin widths, meaning we can tolerate clock drift approaching 1 part in 4140 in
this example when simulating this system with a dark count probability per communication bin
width of 8× 10−4 and a received mean photon number of 0.01.

Keywords: quantum key distribution (QKD); clock synchronization; Bayesian statistics

1. Introduction

Introduced in 1984 [1], quantum key distribution (QKD) is a symmetric encryption
protocol that promises unconditional information security founded on the fundamental
laws of physics, rather than on the difficulty of computational problems. Bennett and
Brassard established the first QKD protocol (BB84), which used the polarization degree of
freedom of single photons to transmit information. Subsequently developed protocols have
extended QKD to different types of systems [2] and relaxed the requirement for a true single-
photon source [3], paving the way for practical implementations of quantum cryptography.

For the sake of concreteness, we consider a polarization-based prepare-and-measure
protocol. Here, one user (Alice) prepares and transmits a periodic sequence of quantum
states with period τA encoded in at least two mutually unbiased orthonormal bases. In our
example system, we use two bases: horizontal/vertical (H/V) polarization and left cir-
cular/right (L/R) circular polarization. We also use the decoy-state protocol where Alice
occasionally sends the vacuum quantum state. A second user (Bob), measures each quan-
tum state randomly in one of the two bases and records the result. After the measurement
phase is complete, Alice and Bob publish their basis choices for each measurement and
keep only the measurements where Bob registers a click with his single-photon counting
detectors and they use the same basis. This process, called sifting, allows distilling a raw
key, which, after error correction and privacy amplification [4], becomes the secret classical
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key securely shared between Alice and Bob. Because qubits are lost to the environment via
transmission loss and environmental radiation is detected due to stray light and thermal
effects, our system is formally considered open. However, the security of the system is
still guaranteed using privacy amplification based on the quantum bit error rate (QBER).
Our example system uses a pulsed stochastic photonic source with decoy states [3], where
the decoys are photonic wavepackets with a lower mean photon number. To simplify the
example system and make it more efficient, we only transmit one state in the monitoring
basis, which gives an equivalent secure key rate in comparison to transmitting both states
in this basis [5,6].

A practical issue in quantum communication protocols is synchronizing Alice and
Bob’s two data streams. If Bob does not know precisely when Alice begins data transmis-
sion, he must begin recording measurements early or else risk missing some of Alice’s
transmission. In either case, because some signals do not arrive at Bob due to channel loss,
and extraneous events are caused by stray light and detector dark counts, the first event
Bob records is unlikely to be the first event Alice sends, resulting in some timing offset
that must be determined. Correcting this offset is an essential precursor to sifting: If Alice
and Bob do not agree on the timing of the events, they will compare basis choices from
different events, resulting in a high QBER and likely share no information. In addition,
determining which time bins correspond to Alice’s wavepacket arrival and which do not
allows timing-based noise filtering.

Further complicating the communication protocol is that the relative clock offset may
not be a constant due to drift in the relative phase and frequency between the transmitter
and receiver clocks. Alice has a communication protocol temporal bin width τA that may
be different from Bob’s bin width τB. The timing offset between their clocks ∆ at the nth
communication time bin since the most recent clock synchronization is given by

∆ = t0 + (τA − τB)n + ε (1)

for an initial timing offset t0 and higher-order timing error ε. In this way, small differences
in clock frequencies can gradually change the clock offset so that a previously calculated
synchronization is no longer valid. Other timing errors, such as clock jitter and frequency
drift, also contribute to the need for a more robust synchronization solution. We denote the
time over which synchronization is maintained as Tb, i.e., the time over which the error in
∆� τA.

Clock synchronization is sometimes achieved by directly sending Alice’s clock sig-
nal to Bob over a separate channel via an optical link or using a radio-frequency sig-
nal [7–16]. However, this introduces additional hardware requirements and increases
the cost and complexity of the setup. One way to avoid these additional resource re-
quirements is to use the quantum channel itself to transmit the information necessary to
perform the synchronization [17–20]. One such qubit-based synchronization protocol was
introduced and demonstrated by Calderaro et al. [17]. Their protocol uses a dedicated
clock-synchronization phase followed by a key distribution phase. In the synchronization
phase, a pre-agreed synchronization string is transmitted to Bob and the clocks are aligned
during post-processing.

The pre-agreed synchronization string is used to find the initial offset between Alice
and Bob’s clocks. Because it must be public knowledge, it cannot be used to generate a
secure key. If the clock frequencies are not consistent, simple clock offset recovery only
temporarily aligns until the clock drift becomes of-the-order-of the communication protocol
temporal bin width τA. Correcting for this clock frequency drift using only clock offset
recovery requires repeated synchronization/key distribution phases with a regularity that
depends on the stability of the clocks used in the experiment. This reduces the overall secure
key rate because no QKD states can be sent while the synchronization states are being sent,
which may result in zero key rate due to finite-key effects [21,22]. However, to account
for this drift without needing to send regular synchronization strings, Calderaro et al.
performs clock frequency recovery using the periodic arrival times of Alice’s qubits. Unlike
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the clock offset recovery, this does not require a pre-agreed synchronization string and thus
does not decrease the amount of key that can be sent.

While our method only uses clock offset recovery at this time, it avoids these potential
impacts on secure key rate by synchronizing the clocks using only information that is
already publicly sent over the insecure classical channel by Alice and Bob for sifting and
security analysis: The basis choices and the mean photon number of the transmitted signal.
Because we are transmitting only one state in the monitoring basis, the basis choices provide
information about which of Bob’s measurement outcomes are more likely. The decoy state
choices, which determine Alice’s mean photon number for each wavepacket, also contain
information about Bob’s measurement outcomes. For example, Bob is unlikely to record
any detections if Alice sends the vacuum decoy state.

By comparing this information to his measurement outcomes, Bob can probabilistically
determine the timing offset. To account for potential clock drift, Bob can perform this
synchronization in subsets of length Tb. Thus, Bob can find the up-to-date timing offset
and ensure that the basis choices he publishes are properly lined up with the ones sent to
him by Alice, but this requires an efficient analysis method to reduce the data requirements.
Of course, our approach as well as Calderaro’s requires low enough channel loss so that
there are enough events received by Bob over a drift interval as discussed below.

Another example of a qubit-based synchronization protocol for continuously-pumped
entanglement-based QKD systems was introduced by Ho et al. [20]. Here, they correlate
Alice and Bob’s detection events without considering basis information. Their synchro-
nization method relies on Alice’s knowledge that some communication time bins are
empty (assuming essentially unit detection efficiency for Alice’s setup) and hence Bob’s
corresponding time bin should also be empty. There is a single dominant peak in the
correlation function that identifies ∆ assuming a large enough number of Bob’s detection
events. Because the detection timing information must already be shared publicly, this
strategy does not sacrifice any secure key. This method fails when the probability of Alice
generating a photon per communication time bin approaches unity because every time bin
is likely to be filled and hence the correlation function will have multiple high-value peaks
that create timing ambiguity.

In the next section, we outline our synchronization algorithm and its advantages, and de-
rive a formula for the synchronization probability using Bayesian analysis. In Section 3 we
introduce a model system, and in Section 4 we simulate data in this model system to
demonstrate the effectiveness of our method. In Section 5 we present our conclusions and
the potential applicability of this work to other QKD systems.

2. Qubit-Based Synchronization Algorithm

Similar to previous approaches, our algorithm uses a cross-correlation of Alice’s
periodically transmitted data and Bob’s received data to find the number of each type
of event pairing, where the cross-correlation is computed efficiently using a Fast Fourier
Transform (FFT). One complication of a prepare-and-measure scheme is that Alice attempts
to send a quantum state every communication time bin, corresponding to the high-photon-
probability limit of the Ho et al. [20] method discussed above. This problem is addressed
here using the decoy-state protocol [3], which must be used anyway to prevent a photon-
number-splitting attack.

Decoy states are sent by Alice randomly and correspond to wavepackets with a mean
photon number smaller than the signal state and often includes sending the vacuum state.
The vacuum state is particularly effective in the synchronization process because Alice
has high certainty that she sent no photons, limited by her ability to completely block the
source. Bob should then also see no photons, limited by the source of detection clicks from
non-ideal effects such as detector dark counts, detector afterpulsing, stray light, and the
bleed through of light from Alice’s source.

Beyond the decoy states, there are additional sources of correlation that can be ex-
ploited to help improve the synchronization process. For example, Alice’s use of the
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efficient three-state protocol, where she only sends one state in the monitoring basis, gives
useful information if Alice and Bob also share basis-state information, which is already
required for sifting. We use a Bayesian statistical method, described below, that uses all
prior knowledge of the system characteristics, such as the state fidelities, the mean photon
numbers, the channel loss, the fractional sorting of Bob’s device for the two bases, and the
detector efficiency, to generate a lookup table of Bob’s detection probabilities for Alice’s
different inputs. With these, we can easily compute the synchronization probabilities of
different possible offsets using Bayesian statistics. Alice and Bob’s data is most correlated
when they are synchronized.

A significant advantage of our approach is that it does not sacrifice any secure key:
We only use the information that is already sent publicly over the insecure classical channel.
This is an improvement over synchronization protocols that share some fraction of the
raw data for synchronization purposes, as well as protocols that have a dedicated clock-
synchronization phase [17] during which no QKD states can be sent.

Bayesian analysis is a logical choice for synthesizing all available information and
using it to make accurate predictions about ∆. It also has the advantage that it predicts
the probability that ∆̂ is the best estimate of synchronization offset. This allows us to
quantitatively express our level of confidence in the synchronization estimate. Furthermore,
the additional information we incorporate in the protocol allows us to make a decision
with fewer received qubits, which makes the system more robust to clock drift.

Our algorithm uses FFTs to compute cross-correlations between Alice’s inputs and
Bob’s outputs, allowing us to count the number of each type of input-output pairing for
the different time offsets. The computational complexity of our algorithm is dominated
by these FFTs, which go as O(N log N) where N is the number of sampling bins. Each
cross-correlation requires three FFT computations, so the number of FFTs that must be
performed is 3× nin × nout for a number of distinct inputs nin and distinct outputs nout.
In this example, nin = 5 (H/V signal, H/V decoy, L/R signal, L/R decoy, and vacuum) and
nout = 4 (H,V,L, and R), thus maintaining the computational complexity of O(N log2 N).

Synchronization Probability

Here we will use the strings of Alice and Bob’s data. A string of Bob’s data consists
of the results of each of his detectors at each sampling bin. Typically, Bob’s strings are
very sparse because there are many sampling bins in which he registers no detections.
A string of Alice’s data consists of her published information at each sampling bin. If the
communication time bin width is greater than the sampling time bin width, Alice will
have multiple string entries for each state she sends, each corresponding to what she
is sending at that part of her duty cycle. Determining the synchronization probability
consists of comparing different strings of Bob’s data (starting at different temporal offsets)
to strings of Alice’s data and calculating which of Bob’s strings D is most likely to be the
one generated by Alice’s corresponding string. We determine, for a particular string of
Bob’s, the probability that it could have been generated by Alice’s published string.

Mathematically, we phrase this as the likelihood p(D|S) of generating Bob’s string D
given the assumption that its generating string is the one Alice has published, denoted
by S. The uninformed assumption, which we will denote as S̄, is that Bob’s string D has
been generated by a random string other than Alice’s published string (from some other
portion of Alice’s sent data), with the stipulation that the other string is also periodic. This
mathematical framework will consider a subset of Alice’s data of N sampling bin widths
compared against a subset of Bob’s data of N + M sampling bin widths, meaning there
will be M possible offsets to consider.

To begin in our protocol formalism, we note that D is a string of length M + N of
Bob’s measurements at each sampling bin (including sampling bins where no detections
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were received). Each measurement Bi in Bob’s string consists of the click or no-click results
at all of Bob’s detectors. Bob’s string D can be written as

D = {B1, ..., BM+N}, (2)

which we can rewrite as
D = {B1, D′}, (3)

where
D′ = {B2, ..., BM+N}. (4)

We prefer to write the likelihood p(D|S) in terms of known quantities such as the
p(B1|S), the conditional probability of a time bin measurement B1 given S. Using this
notation, p(D|S) is given by

p(D|S) = p(B1, D′|S) = p(B1|D′, S)p(D′|S), (5)

where the final equality is a result of the product rule. Because we have assumed that B1 is
generated from Alice’s string, knowing D′ gives us no additional information about B1.
At best, it informs us whether S is true, which is already assumed; the bits are otherwise
independent because Alice’s sequence is random. Using these observations, we obtain

p(B1|D′, S) = p(B1|S), (6)

and, by extension,

p(D|S) =
N+M

∏
i=1

p(Bi|S), (7)

allowing us to write the likelihood as the product of the measurement probabilities at
each sampling bin. We note that even in the example where Alice only sends one state in
the monitoring basis, Bob must still measure both states in each basis to detect potential
eavesdropper attacks [5,6]. For computational ease, we also determine each sampling bin
measurement probability as the product of the probabilities of the outcomes at the four
different detectors b`, which are given by

p(Bi|S) =
4

∏
`=1

p(b`|S) (8)

Again, because the detectors’ events are assumed to be generated by independent
random processes, these probabilities can be considered independent when the generating
string is known.

When the generating string is not known (under the uninformed assumption S̄),
the detection probabilities can be approximated as independent when the received mean
photon number is low. Because the synchronization task is most difficult in low-signal
regimes, we use this approximation going forward. Thus,

p(D|S̄) =
N+M

∏
i=1

p(Bi|S̄) (9)

and

p(Bi|S̄) =
4

∏
`=1

p(b`|S̄). (10)

For a given input from Alice, each of Bob’s four detectors has an opportunity to detect
a photon above the detection clicks arising from non-ideal behaviors. Naturally, we will
use our knowledge of the system (the state fidelities, the quality of the polarization sorting,
the dark count rates, the detector efficiencies, and the signal and decoy received mean
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photon number) to estimate the detection probabilities as accurately and efficiently as
possible. Using a lookup table of the detection probabilities for the different inputs from
Alice, these likelihoods can be calculated using standard statistical methods.

However, the likelihood of generating D from Alice’s published string is not the same
as the probability that Alice’s published string is the one that generated D, which is given
by p(S|D) and is the most relevant quantity to determine synchronization. Bayes’ theorem
allows us to rewrite this quantity, called the posterior, as

p(S|D) =
p(D|S)p(S)

p(D)
. (11)

In addition, we must also include the information that we expect exactly one correct
synchronization offset (not just one on average).

To formulate the problem as an exclusive synchronization, we must find the probability
that some discreet timing offset, given by the time-bin index j, is the correct synchronization
offset, and that all the other offsets are incorrect. In other words, the probability that, for a
given string of length N published by Alice, all the measurements before the jth bin
are generated randomly, the measurements from j to j + N are generated from Alice’s
published string, and the measurements after j + N are generated randomly. Under these
assumptions, we can write p(B1, ..., BM+N |Sj) as a product of the likelihoods of these three
sections as

p(B1, ..., BM+N |Sj) = p(B1, ..., Bj−1|S̄j)p(Bj, ..., Bj+N |Sj)p(Bj+N+1, ..., BM+N |S̄j). (12)

Here we introduce S̄j, the assumption that the data is produced by a random string
other than the synchronization string in question, but one with the same phase (i.e.,
the signal arrives at the same time bin in each period as it does for Sj).

We can find the conditional probability for matching Alice’s string to Bob’s string at a
potential synchronization index j in this framework using Equation (11), which gives

p(Sj|B1, ..., BM+N) =
p(B1, ..., BM+N |Sj)p(Sj)

p(B1, ..., BM+N)
. (13)

Equation (13) is our main result and is the quantity of interest to identify clock
synchronization between Alice and Bob. We determine the optimum synchronization index
based on the value of j that maximizes this quantity, and the quantity itself gives us our
confidence in that choice.

The denominator in Equation (13) can be written in terms of known quantities using
marginalization. Marginalization consists of rewriting a probability as a sum of the com-
prehensive conditional probabilities; in this case, the different possible synchronization
indices written as

p(Sj|B1, ..., BM+N) =
p(B1, ..., BM+N |Sj)p(Sj)

M

∑
i=1

p(B1, ..., BM+N |Si)p(Si)

, (14)

where the i denotes the other potential synchronization indices.
To evaluate Equation (13), the likelihoods p(B1, ..., BM+N |Sj) and p(B1, ..., BM+N |Si)

can be determined using Equations (7), (9) and (12). The quantity p(Sj), called the prior, is
the ad hoc probability that D corresponds to Alice’s published string. That is, p(Sj) is the
probability that we are at the correct synchronization index. We use a uniform prior, which
assumes each candidate has a naïve 1/M probability of being the correct one given that we
have M candidate indices, which means that

p(Si) = p(Sj) =
1
M

(15)
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so that the prior terms cancel, giving us

p(Sj|B1, ..., BM+N) =
p(B1, ..., BM+N |Sj)

M

∑
i=1

p(B1, ..., BM+N |Si)

. (16)

Next, we apply Equation (12) to obtain

p(Sj|B1, ..., BM+N) = (17)

p(B1, ..., Bj−1|S̄j)p(Bj, ..., Bj+N |Sj)p(Bj+N+1, ..., BM+N |S̄j)

M

∑
i=1

p(B1, ..., Bi−1|S̄i)p(Bi, ..., Bi+N |Si)p(Bi+N+1, ..., BM+N |S̄i)

and use Equations (7) and (9) (of which the latter uses a low received mean photon number
approximation) to write everything in terms of known quantities as

p(Sj|B1, ..., BM+N) ≈

j−1

∏
k=1

p(Bk|S̄j)
j+N

∏
k=j

p(Bk|Sj)
M+N

∏
k=j+N+1

p(Bk|S̄j)

M

∑
i=1

(
i−1

∏
k=1

p(Bk|S̄i)
i+N

∏
k=i

p(Bk|Si)
M+N

∏
k=i+N+1

p(Bk|S̄i)

) (18)

Equation (18) is our master equation for the synchronization probability of an index j.
The numerator consists of the probability of an N-length string of Bob’s data starting at j
being produced by Alice’s published string, along with the probability that the remaining
data was produced by an unknown string of Alice’s data. The denominator sums this
same quantity over all possible synchronization indices, ensuring normalization. We take
the value of j that maximizes this quantity to be the optimum synchronization index,
and the value of p(Sj|B1, ..., BM+N) gives us the probability that we are correct. We can
compute this conditional probability using FFTs to count the number of each unique bin
measurement along with a lookup table of the probabilities of the events.

3. Model System

To illustrate our protocol, we simulate a model QKD system using a polarization-
based prepare-and-measure protocol with decoy states and only sending one state in the
monitoring basis. We set Alice’s repetition rate to be fA = 1/τA and a wavepacket duration
of ∆t = τA/m with m = 8 for a duty cycle of 12.5 percent. We set Bob’s sampling rate to
n fA with n = 8 so that his sample period is matched to the wavepacket duration. These
conditions are illustrated in Figure 1. Alice generates a pseudorandom sequence such that
four quantum states L/R/H and a vacuum decoy state (a decoy state with mean photon
number equal to zero) are sent in equal parts on average.

For our numerical experiments, we simulate a QKD session by generating data that
emulates the state preparation and measurement, including aspects such as the received
mean photon number µ, probability of a detector dark count d over one communication
bin width τA, and variation in ∆ due to clock drift, assumed to be constant over Tb. This
allows us to test how these factors impact the synchronization performance. We assume
a transmitted mean photon number µA = 1 where the received mean photon number
µ = ηµA for a channel transmission η. While this µA is on the upper end of values used
in typical experiments, it allows us to explore the performance and limitations of our
algorithm at or beyond the greatest received mean photon number one would realistically
use: µA = 1 with zero loss.



Entropy 2021, 23, 988 8 of 12

Figure 1. Illustration of the relative times used in the QKD protocol. Here, the signal (red) straddles
bins 1–2 due to an offset of ∆, and we do not consider bins 3–8. We take τA = τB, which is
approximately correct for a short enough data subset.

Assuming a Poisson distribution for Alice’s source, the probability of Bob registering
a click p(click, `) over a period τA at a particular detector ` is given by

p(click, `) = 1− (1− d)e−µ` (19)

where µ` is the mean photon number received by detector `. The portion of the total mean
photon number µ that goes to the different detectors depends on which polarization state is
sent. We use ideal BB84 sorting in our model system so that all states have an equal chance
of being measured in either basis. States measured in the same basis as they are prepared
are detected accurately, while states measured in the opposite basis have an equal chance
of being measured in either opposite-basis state. For example, if Alice prepared an H-state
that Bob receives µ = 0.8, Bob’s measures µH = 0.4, µv = 0, and µL = µR = 0.2.

We assume that the observation window is long enough so that the p’s and µ’s can
be estimated accurately from the finite number of observations. This means the average
click probability can be extracted from the Bob’s raw data and we rewrite Equation (19) as
a function of p(click, `) so that

µ` = ln
(

1− d
1− p(click, `)

)
(20)

The mean photon numbers of the constituent pulses incident at the four detectors sum
to the average mean photon number of the main pulse just before it enters Bob’s detection
apparatus, so we can estimate the received mean photon number of a signal state as

µ =
4
3

4

∑
`=1

ln
(

1− d
1− p(click, `)

)
, (21)

where the factor of 4/3 accounts for the fact that we are sending vacuum states 25% of
the time.

We divide the data set into subsets duration Tb and perform synchronization and
sifting on each subset. Bob can record up to eight events (each of which may or may not
include a detection event or dark count) assuming that the detector deadtime is less than
Bob’s sampling time. However, because the clocks can only be synchronized to a resolution
of Bob’s sampling bin width, we expect Alice’s wavepacket to straddle 2 bins as illustrated
in Figure 1, with the end bins only having a partial wavepacket. The remaining six bins
only contain dark counts, which can be discarded after we determine ∆ to reduce noise.
This amounts to detector time-gating in the post-analysis.

We assume that Bob begins recording before Alice begins transmitting, and continues
to record after she stops sending, so our received data is bookended by low signal regions.
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We find a best-fit step function to identify where the transmission begins and ends, which
gives us a coarse approximation of the synchronization index. For a range of different
string lengths N that determine the number of sampling bin widths in each synchronization
subset, we examine a window of M = 4000 nearby potential synchronization indices.
This value is chosen based on the typical precision of the coarse approximation of the
synchronization given by the best-fit step function.

4. Synchronization Simulations

To verify that our algorithm returns an accurate probability of synchronization, we
run 1000 simulated trials with a known synchronization index and compare the average cal-
culated probability of synchronization p(Sj|B1, ..., BM+N) to the average rate of finding the
correct index, which we denote by f (Sj|B1, ..., BM+N), in Figure 2. If our model is accurate,
then p(Sj|B1, ..., BM+N) ∼ f (Sj|B1, ..., BM+N), in which case we can take p(Sj|B1, ..., BM+N)
to be a reliable metric for quantifying our confidence in obtaining the correct ∆.

Figure 2. Bob’s required data record length needed to determine synchronization for two different
channel transmissions of (a) η = 0.05, corresponding to µ = 0.05 and (b) η = 1, corresponding
to µ = 1. We also show the probability of not obtaining synchronization, which better highlights
transition to high-certainty synchronization.

We see that p(Sj|B1, ..., BM+N) ∼ f (Sj|B1, ..., BM+N) to within our errorbars for mod-
erate channel loss (Figure 2a). However, p(Sj|B1, ..., BM+N) is consistently larger than
f (Sj|B1, ..., BM+N) for the case of zero channel loss (Figure 2b), a condition that is unlikely
to be encountered in an experiment but highlights the limitation of our algorithm. This
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result is not surprising given that our derivation given in Section 2 assumes low µ to arrive
at Equation (9). Assuming a transmitted mean photon number of 1, Figure 2b corresponds
to a zero channel loss system. This represents an upper limit on µ encountered in a typical
decoy state protocol where µA . 1 and thus, also serves as a lower bound on the accuracy
of our calculated synchronization probability.

A lower received mean photon number means a lower density of detected events.
Because detected events provide more information than no-detection events, a lower
µ requires us to consider a larger set of sampling bin widths N to achieve the same
synchronization confidence. Despite the fact that p(Sj|B1, ..., BM+N) does not match
f (Sj|B1, ..., BM+N) as well at higher values of µ, we can still achieve equivalent average
values of f (Sj|B1, ..., BM+N) at lower values of N. This fact is also illustrated in Figure 3,
where we see a direct correlation between µ and the N at which the synchronization
probabilities converge to one. The higher values of µ converge at lower values of N.

Figure 3. Average calculated synchronization probability as a function of string length on a logarith-
mic scale for different received mean photon numbers. The probability of registering a dark count
during one communication bin width is d = 8× 10−4.

Another way to view this relation between µ, N, and p(Sj|B1, ..., BM+N) is to consider
the string length N required to achieve a particular synchronization confidence as a function
of µ as shown in Figure 4. For high µ and low N, we observe an approximately linear
relation between log10µ and log10N with a slope of ∼−1, which means that N ∼ 1/µ.
For lower µ, where there are fewer events and dark counts play a larger role, the probability
curves exhibit steeper slopes, demonstrating that synchronization becomes increasingly
difficult. This data can be used to estimate whether it is possible to synchronize over an
experimentally measured temporal block length Tb and, if it is possible, how low a value
of µ can be tolerated while still synchronizing reliably. As a concrete example, Bob needs
33,110 sampling bin widths, or about 4140 communication bin widths, to achieve a 95%
confidence for clock synchronization for µ = 0.01 and d = 8× 10−4. This means we can
tolerate clock drifts approaching 1 part in 4140, or 242 µs of drift per second, because our
method assumes that the clock drift is much less than one communication bin width.
For context, we measure the rate of clock drift between two phase lock loops driven
by crystal oscillator clocks on DE10 Standard field programmable gate arrays (FPGAs),
and find the average clock drift rate to be 13.5 µs per second. Thus, our algorithm can
tolerate realistic clock drift rates in this example.
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Figure 4. Dependence of string length threshold to achieve 95 percent synchronization confidence on
received mean photon number on a logarithmic scale, parameterized by different dark count probabilities.

5. Conclusions

In conclusion, we develop a novel probabilistic approach to qubit-based clock syn-
chronization using Bayesian analysis. By exploiting correlations between information Alice
shares publicly, such as basis and decoy state choices, and Bob’s detection events, we can
find the correct synchronization clock offset without sacrificing any secret key. Additionally,
our algorithm is more robust to noise, loss, and clock drift in comparison to other protocols
by incorporating all publicly available information using the Bayesian framework. Finally,
we demonstrate that our algorithm is successful and robust using a simulated BB84 com-
munication scheme, which confirms that our synchronization metric corresponds to the
probability of synchronization, especially in the low-µ limit. Our algorithm is applicable to
other QKD systems that use other degrees-of-freedom of the photon for which it is possible
to divulge some timing information.
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