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TOPICAL REVIEW

Acute Viral Illnesses and Ischemic Stroke
Pathophysiological Considerations in the Era of the COVID-19 Pandemic

Mona N. Bahouth, MD, PhD; Arun Venkatesan , MD, PhD

ABSTRACT: The severe acute respiratory syndrome coronavirus 2 or coronavirus disease 2019 (COVID-19) pandemic has 
raised concerns about the correlation with this viral illness and increased risk of stroke. Although it is too early in the pandemic 
to know the strength of the association between COVID-19 and stroke, it is an opportune time to review the relationship 
between acute viral illnesses and stroke. Here, we summarize pathophysiological principles and available literature to guide 
understanding of how viruses may contribute to ischemic stroke. After a review of inflammatory mechanisms, we summarize 
relevant pathophysiological principles of vasculopathy, hypercoagulability, and hemodynamic instability. We will end by 
discussing mechanisms by which several well-known viruses may cause stroke in an effort to inform our understanding of 
the relationship between COVID-19 and stroke.
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A wide range of viruses has been linked to an 
increased risk of ischemic stroke.1 In many cases, 
the infection occurs in the periphery with no detect-

able virus in the central nervous system (CNS), and yet 
stroke incidence is elevated. Indeed, case-control studies 
have consistently demonstrated an association between 
a preceding systemic infection and stroke, often with 
a time frame of several days from onset of infectious 
symptoms to stroke.2–5 In such cases, the predominant 
pathogenic mechanism is thought to result from sys-
temic immune activation, which in concert with associ-
ated hypercoagulability or endothelial dysfunction may 
cause vascular injury or formation of thromboemboli. In 
contrast, other viruses such as the herpesviruses can 
invade the CNS and directly infect blood vessels.6 In such 
scenarios, the pathogenic mechanism of stroke may be 
more straightforward to explain, although CNS invasion 
does not preclude an additional role of systemic immune 
activation in stroke pathogenesis (Figure 1).

VIRUSES AND INFLAMMATION
Before turning to pathophysiological mechanisms by 
which viruses may induce stroke, it is worth considering 

how the immune system of the host responds to viral 
infection. Viruses are obligate intracellular parasites that 
invade the cells of the host to survive and replicate. Most 
human viruses only replicate in certain host tissues as 
a result of tissue-specific distribution of viral receptors.7 
Once viruses attach to cellular receptors and gain entry 
into cells, they use a combination of virally encoded pro-
teins and host cell machinery to replicate within cells. 
Many viruses then induce cytolysis to promote release 
of new infectious viral particles. During the viral life cycle, 
viruses interact with the host immune system in numer-
ous ways and encounter multiple innate and adaptive 
defenses that serve to combat the infection.8

The effectiveness of the immune response to viruses 
depends in large part upon rapid detection of viral com-
ponents by the host’s innate immune system. Viral con-
stituents that are recognized include capsid proteins, 
glycoproteins on the viral surface, and nucleic acids, 
and together these are termed pathogen-associated 
molecular patterns. Pathogen-associated molecular pat-
terns are detected by host PRRs (pattern recognition 
receptors) such as Toll-like receptors and retinoic acid-
inducible gene I–like receptors, which allow the host to 
distinguish viral from host components.9 Sensing of viral 
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pathogen-associated molecular patterns by PRRs trig-
gers signaling cascades such as stimulator of interferon 
genes that lead to the production of a myriad of host 
defense molecules, including IFNs (interferons) and pro-
inflammatory cytokines.10 These compounds can directly 
inhibit viral replication (eg, type 1 interferons such as 
IFN-α and IFN-β), enhance innate immune responses 
by, for example, recruiting myeloid cells, such as neutro-
phils and macrophages, and assist in inducing adaptive 
immune responses.8,11–13 Adaptive immune responses, 
whose effectors are T and B lymphocytes, are particu-
larly important for promotion of viral clearance. Thus, 
these immune cascades are indispensable for not only 
mounting an effective initial antiviral response but also 
in ultimately terminating the viral infection. Importantly, 
they are tightly controlled with respect to amplitude and 
duration due to a multitude of feedback mechanisms that 
serve to titrate the response. Unrestrained activation in 
the setting of certain infections or genetic abnormalities 
can result in marked systemic inflammation with deleteri-
ous consequences to the host.14,15

In the case of direct viral infection of the CNS, neural 
cells including microglia, astrocytes, and neurons collab-
orate with immune cells to contribute to antiviral immune 
responses. Microglia are a key innate immune mediator 
in the CNS and assist in control of viral replication via 
production of antiviral cytokines and phagocytosis of 
virus-infected neurons.16 Astrocytes can be activated by 
a variety of mechanisms, including direct viral infection, 
release of viral particles, death of neighboring neurons, 
or via proinflammatory cytokines released by microg-
lia.17,18 In the setting of flaviviral infection, for example, 
astrocytes produce type I interferons and restrict viral 
spread.19 Moreover, activated astrocytes can regulate 
the adaptive immune response through upregulation of 
major histocompatibility complex class I molecules,20,21 
thus also contributing to viral clearance. It has also been 
recognized that neurons can produce type I interferons 
and that they express major histocompatibility complex 
class I molecules, thus actively participating in antiviral 
defenses.22,23 In addition, all 3 cell types—astrocytes, 
microglia, and neurons—can produce chemokines that 
recruit leukocytes to the CNS, thus furthering the innate 
immune response and assisting in development of the 
adaptive immune response.17

GENERAL PATHOPHYSIOLOGICAL 
MECHANISMS OF VIRAL INFECTIONS 
AND STROKE
Vasculopathy
Vasculopathy is a general principle to describe any 
condition that affects blood vessels. This may include 
inflammatory, hemostatic, metabolic, or genetic disor-
ders. Several mechanisms have been proposed in the 
association of systemic infections and intracranial vas-
culopathy. The effect on the blood vessel may be due to 
direct vascular invasion, immune complex deposition into 
the endothelium, inflammation, or immune modulation 
with activation of T lymphocytes changing the surface 
milieu of the endothelial wall.24,25 The systemic vascular 
responses can lead to vessel wall inflammation, direct 
change in the shape of the blood vessel wall, rupture of 
atherosclerotic plaques, or destabilization of cardiovas-
cular conditions ultimately leading to a variety of clinical 
conditions, including stroke.

Infectious agents with direct tissue tropism to the 
vascular endothelium cause structural changes in the 
vascular wall. This can result in direct vascular damage 
via a variety of mechanisms, including the example of 
binding of viral components to the endothelial cell result-
ing in activation of adhesion molecules (eg, P-selectin) 
with subsequent release of proinflammatory cytokines 
and chemoattractants.26 In this example, the host vessel 
can develop roughing of the endothelial or formation of 
mycotic aneurysm. There are other notable examples of 
direct causation of vascular wall damage, including the 
hepatitides where immune complexes synthesized in 
response to infection can be found in the blood vessel 
wall causing vasculitis. In such cases, medium-sized ves-
sels are typically affected, potentially leading to polyar-
teritis nodosa-like illnesses.27,28 In other examples, shared 
epitopes between the pathogen and host can upregu-
late heat shock proteins and stimulate lymphocytes that 
mediate destruction of the vessel wall via autoreactive 
T cells. In the case of giant cell arteritis, viruses such 
as varicella zoster have been associated with the vas-
culopathy that is potentially triggered by direct infec-
tion or the immune response from antigen deposition in 
the blood vessel wall.29,30 Overall, viral infection and the 

Figure 1. Schematic of potential 
mechanisms by which viral infections 
can cause ischemic stroke.



Topical Review

Stroke. 2021;52:1885–1894. DOI: 10.1161/STROKEAHA.120.030630� May 2021    1887

Bahouth and Venkatesan� Viral Illness and Stroke

inflammatory changes caused in the vaso vasorum may 
accelerate the development of atherosclerosis or lead to 
destabilization of existing plaques, development of a pro-
thrombotic state, and onset of ischemic stroke.31,32

Numerous hypotheses have been put forth for the 
causes of indirect vasculitis. One increasingly popular 
consideration is that change in the renin-angiotensin 
system via alterations in ACE (angiotensin-converting 
enzyme) may be a potential contributor to vasculi-
tis. Angiotensin II is the primary effector molecule of 
the reticular activating system and is a proinflamma-
tory modulator that triggers and perpetuates immune 
responses.33 ACE-2, a homolog of ACE degrades 
angiotensin II to angiotensin. Angiotensin is well known 
for its vasodilating and antithrombotic properties. It has 
been proposed that antibodies to ACE-2 leads to vas-
culopathy34 and vasculitis susceptibility in a series of 
studies of ACE polymorphisms.33

Inflammation and Atheromatous Plaque
Atheroma development and destabilization are 2 pro-
cesses that are directly impacted by inflammation. 
Inflammation may generate atheroma development 
which eventually can contribute to disturbed cerebral 
blood flow. However, in the setting of viral infection, it 
is the destabilization and eventual plaque rupture that 
require attention.35 Various mechanisms have been 
proposed to explain the relationship between systemic 
inflammation and plaque rupture, including expansion of 
the atheromatous plaque and direct enzymatic degra-
dation of the cap.25,26 The systemic inflammatory reac-
tion and recruitment of blood immune cells may result 
in dynamic expansion in cholesterol when crystalizing 
from a liquid to solid state with the potential for sharp 
crystals to perforate the fibrous cap.36 Alternatively, the 
inflammatory cytokines and proteases may lead to deg-
radation and direct thinning of the atheromatous plaque 
with eventual plaque rupture.37 In either scenario, plaque 
rupture leads to turbulence in blood flow in that region 
and a highly thrombogenic site.

Thrombosis, Hypercoagulability, and Viral 
Infections
As we conceptualize the origination and propagation of 
venous thrombosis in the setting of acute viral infections, 
one of 3 factors is often present: stasis, hypercoagulabil-
ity, and changes in the blood vessel wall (the so-called 
Virchow triad). Homeostatic coagulation is an intricate 
balance between procoagulant and anticoagulant mech-
anisms and disruption of those finely tuned systems can 
lead to bleeding, abnormal clotting, or both.38 The endo-
thelium is a critical contributor to this process.39 Acute 
viral illness can disrupt any of the homeostatic processes 
that govern those activities directly or indirectly via 

changes in the vessel wall integrity, changes in platelet 
function, triggering of acute phase reactants, or activa-
tion of the coagulation cascade, leading to either throm-
bosis or hemorrhage; here we will focus on the former.

Platelets are the key contributor to primary hemosta-
sis, and their function can be directly altered by viral infec-
tion. Indeed, the binding of viruses to platelets results in 
platelet activation, resulting in exposure of P-selectin on 
the platelet surface.38 This can trigger activation of plate-
let-leukocyte aggregates and endothelial cells with asso-
ciated increased expression of molecules, such as von 
Willebrand factor. This process, in turn, induces aggrega-
tion of platelets and fibrin as an acute phase reactant, 
which contributes to thrombus initiation and growth.40

Secondary hemostasis or changes in the coagula-
tion cascade are largely maintained by inhibitory mech-
anisms and can be influenced by active viral infection at 
a variety of points in the process.41 Tissue factor is the 
main initiator of the coagulation cascade that leads to 
thrombin formation and is located in the subendothe-
lium, leukocytes, and platelets. Tissue damage leads to 
activation of tissue factor (extrinsic system) triggering 
the coagulation cascade to form small amount of Factor 
X and thrombin. This, in turn, feeds back on the intrinsic 
system to activate Factor XI which eventually triggers a 
very robust activation of factor X with a large amount of 
thrombin produced followed by large amounts of fibrin 
clot. The overall activity of the coagulation cascade is 
controlled by circulating anticoagulant factors such as 
tissue factor pathway inhibitor which decreases extrin-
sic pathway activity, activated protein C/S which down-
regulate factor VIII and Factor V, and antithrombin/
heparin cofactor II to reduce factors like thrombin and 
activated factor X.38 Additionally, an intact fibrinolytic 
pathway that requires release of tissue-type plasmino-
gen activator from the endothelium hydrolyzes fibrin to 
degrade formed fibrin strands. Clotting events increase 
when the balance is tipped toward procoagulant forces, 
activated platelets, increased thrombin formation, and 
impaired breakdown of fibrin clot.

In the setting of viral infections, changes in the blood 
vessel wall can perpetuate thrombosis. These changes 
can occur via (1) the inflammatory response: comple-
ment attacking the endothelium that upregulates clot-
ting factors and damages the endothelial wall; and (2) 
directly invasion by the virus. Many viruses—in particular 
respiratory viruses, such as influenza, parainfluenza, and 
adenovirus—along with herpesviruses can infect endo-
thelial cells, thus directly causing endothelial cell activa-
tion and promoting hypercoagulability. Viral mechanisms 
of endothelial activation include altering the composition 
of exposed phospholipids, direct generation of thrombin 
formation on the surface of endothelial cells initiated by 
viral components, and increasing available binding sites 
for inflammatory cells, including granulocytes and plate-
lets, that can, in turn, produce procoagulant cytokines.42–45 
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Activation of the endothelium can result not only in 
hypercoagulability but can also contribute to furthering 
of cytokine production, thus leading to further inflam-
mation and hypercoagulability. A notable example is that 
of influenza virus, where in an animal model endothelial 
cells were found to elaborate numerous proinflammatory 
mediators, including CCL2, CCL5, and CXCL10, that 
contribute to the systemic proinflammatory response.46 
In some animal models focused on select viral infections, 
fibrin-rich platelet aggregates that are associated with 
neutrophil extracellular traps are released by activated 
leukocytes triggering hypercoagulability and a hemato-
logic state that further damages the endothelium.47 This 
initiates a perpetuating cycle of hypercoagulability, pro-
gressive occlusion of microvasculature, and increased 
risk for sequential organ failure through large artery and 
small vessel mechanisms.

Other Physiological Considerations for 
Secondary Stroke Associated With Viral 
Infection
Infection, inflammation, and changes in hypercoagula-
bility can have systemic effects including the propen-
sity to increase hemodynamic and cardiac events.48–50 
Taken individually or together, many of the above-
described processes can lead to changes in cardiac 
function. Many viruses, including adenovirus, are com-
monly associated with myocarditis or acute injury to 
the myocardium which increases risk for cardioembolic 
event.48 In the setting of myocarditis, the myocardium 
is enlarged and pumping is impaired, leading to. This 
increased risk for cardioembolic. In the setting of viral 
illnesses, consideration of superinfection, with Strep-
tococcus pneumonia or Staphylococcus aureus, is also 
important as secondary, bacterial infection can occur 
raising the risk of endocarditis and embolic stroke.51

In addition to hypercoagulability, metabolic sequelae 
of acute viral infection or hemodynamic changes with 
sepsis secondary to the viral infection may include hemo-
dynamic fluctuation due to dehydration and alterations in 
intravascular volume.52 As one example, dehydration can 
occur due to insensible losses from fever, diarrhea, or 
poor fluid intake related to malaise and anorexia. Patients 
with vascular risk factors like diabetes may be espe-
cially vulnerable since infection may worsen hyperglyce-
mia leading to additional dehydration associated with a 
hyperglycemic state.53 Dehydration contributes to a pro-
thrombotic states and may destabilize several vascular 
risk factors, such as atrial fibrillation, potentially leading 
to increased risk for stroke.54 Additionally, dehydrated 
patients who demonstrate blood pressure fluctuations 
or become orthostatic may suffer changes in cerebral 
perfusion pressure and infarction especially when those 
hemodynamic fluctuations exceed the autoregulatory 

capacity of the individual.55,56 Patients with stroke who 
are in a volume contracted state at the time of stroke 
demonstrate worsened functional outcomes.57 When 
superimposed on a background of baseline vascular 
risk factors and the presence of atherosclerotic disease, 
this type of physiological change in itself may contribute 
heavily to the timing of stroke in proximity to viral illness.

Finally, on a more practical level, malaise and anorexia 
common with acute viral syndromes may lead to the dis-
ruption of daily prescribed medications that can destabilize 
comorbid vascular conditions or to the addition of over the 
counter medications to treat those symptoms. Over the 
counter medications, such as nasal decongestants and 
cough suppressants, often taken to symptomatically treat 
viral infection, deserve attention when considering the 
relationship between acute viral infection and stroke. Many 
of these medications contain vasoactive substances like 
phenylephrine and other sympathomimetic agents. Use of 
these medications has been linked to destabilized hyper-
tension, ischemic stroke, and intracerebral hemorrhage. 
These medications may have a more direct consequence 
on vasomotor tone and have been associated with the 
onset of reversible cerebral vasoconstriction syndrome.58

Taken together, acute viral illnesses may contribute 
to a variety of stroke subtypes. Large vessel occlu-
sion or multifocal stroke may occur in settings of bac-
teremia, cardiac dysfunction, and arrhythmias leading 
to cardioembolic. Hypercoagulability can cause large 
vessel occlusion or small vessel stroke. Endothelial 
changes can cause thrombosis of large or small ves-
sels. Dehydration and hypercoagulable states might 
lead to venous sinus thrombosis. In general, prolonged 
critical illness and immobility may lead to stasis, disrup-
tion of the Virchow triad and increased risks for venous 
thromboembolism. A clinician caring for patients in the 
setting of acute viral illness should consider stroke 
when a sudden change in neurological exam occurs in 
traditional vascular patterns or in the setting of more 
diffuse but sudden changes. Other associated symp-
toms such as fever, elevation in inflammatory markers 
like the erythrocyte sedimentation rate, absence of 
existing vascular risk factors, and immunocompromised 
status of the patient would raise the suspicion for infec-
tion as the potential cause of the stroke.

PATHOPHYSIOLOGICAL MECHANISMS IN 
SPECIFIC VIRAL INFECTIONS: LESSONS 
LEARNED AND EXTRAPOLATION TO 
COVID-19
Varicella-Zoster Virus
Primary infection by the varicella-zoster virus (VZV), a 
common occurrence worldwide, results in the typically 
self-limiting disease varicella (chickenpox). Following 
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primary infection, the virus establishes lifelong latency 
in sensory ganglia via mechanisms that have yet to be 
fully characterized. Viral reactivation can occur in the 
setting of immunosuppression or aging.59,60 When reac-
tivation proceeds peripherally, the painful rash of zoster 
occurs, while when central propagation occurs the virus 
can cause encephalitis, myelitis, and stroke.61–64 In an 
effort to prevent VZV-associated illness, most children 
in the United States receive a live attenuated VZV vac-
cine, which is 80% to 85% effective in preventing chick-
enpox; however, it, too, can establish latent infection 
and be reactivated since neurovirulence is retained.65 
Notably, VZV-associated stroke does not solely occur 
following viral reactivation but can also occur in the set-
ting of acute chickenpox.66 Strokes following VZV infec-
tion or reactivation can occur in the acute or subacute 
phases or may occur as a chronic, recurrent process. 
The pathogenesis, which likely depends, in part, upon 
the time course following infection, may involve multiple 
processes alone or in combination, including systemic 
hypercoagulable state, in situ thrombosis, or vasculi-
tis.67–69 The latter is the most well-recognized phenom-
enon, and typically occurs weeks to months following 
infection and reactivation, although the timing can be 
quite variable (Figure 2).70

Humans are the only natural host for VZV, and the 
restricted species specificity has defied efforts to develop 
a robust animal model of infection that recapitulates all 
phases of disease.71,72 As a result, the pathogenesis of 
VZV vasculitis has largely been elucidated from examina-
tion of arteries of infected subjects and in vitro studies of 
primary human cerebrovascular cells infected with VZV. 
These studies, while informative, are notably limited in 
scope. Immunohistochemical analysis of cerebral arteries 
from 3 patients with virologically confirmed VZV vasculitis 
demonstrated the presence of VZV antigen in the adven-
titial layer early in infection and in the media and intima 

later in the course of the disease.73 This pattern is consis-
tent with transaxonal spread of the virus from trigeminal 
ganglia to the vessel adventitia followed by transmural 
spread. Characteristics of VZV infected arteries include 
disrupted internal elastic lamina, thickened intima com-
posed of myofibroblasts, and a paucity of smooth muscle 
cells, all of which may contribute to disruptions in integrity 
of the vessel wall. Overt inflammation of the blood ves-
sels is often described, with neutrophils, B and T lympho-
cytes, and macrophages seen. Transmural granulomatous 
inflammation with multinucleated giant cells is the pre-
dominant pattern, and less commonly, there is a frank 
necrotizing arteritis; rarely a noninflammatory thrombotic 
occlusion in the setting of intimal proliferation is seen.68,74 
Cerebrospinal fluid studies from 30 patients with virologi-
cally confirmed VZV vasculitis demonstrated increased IL 
(interleukin)-6, IL-8, and MMP (matrix metalloproteinase) 
-2, all of which could play a role in inflammatory damage 
to the vascular wall.75

The presence of neutrophils in early VZV vasculitis in 
the adventitia is of interest since they can produce reac-
tive oxygen species in the setting of infection, thereby 
triggering vascular remodeling.76 Secretion of neutrophil-
derived elastases and matrix metalloproteinases can 
result in loss of blood vessel integrity via breakdown of 
the extracellular matrix.

Recent in vitro work suggests that the centripetal spread 
of the virus from adventitia to intima may occur via mic-
roparticle containing VZV virions.76,77 Human brain adven-
titial vascular fibroblasts infected with VZV were found to 
release microparticles containing VZV virions to neighbor-
ing cells, including other human brain adventitial vascular 
fibroblasts as well as endothelial cells, resulting in trans-
mission of infection. Importantly, the microparticle-induced 
endothelial infection was associated with markers of endo-
thelial activation and inflammation, including increased 
IL-6, IL-8, TNF (tumor necrosis factor)-α, and reactive 

Figure 2. Select patterns of vasculopathy and ischemic stroke in varicella-zoster virus (VZV) infection.
A, Magnetic resonance angiogram demonstrating vasculopathy involving the right middle cerebral artery territory in the setting of acute VZV 
infection. B, Diffusion-weighted imaging (DWI) sequence demonstrates deep region of restricted diffusion in acute VZV infection. C, Scattered 
areas of restricted diffusion on DWI imaging in the setting of subacute VZV infection.
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oxygen species production. In addition, human brain adven-
titial vascular fibroblasts infection was associated with the 
transformation of adventitial fibroblasts to myofibroblasts, 
thus potentially contributing to arterial remodeling. Notably, 
in the same study, VZV-containing microparticle complexes 
were also detected in the circulation of children with VZV 
vasculitis, although the study sample was quite small.

Recent work has also demonstrated the presence 
of VZV antigen in the adventitia of temporal arteries of 
patients with giant cell arteritis, raising the possibility of a 
pathogenic role for VZV in giant cell arteritis.76 However, 
uncertainty remains and more work needs to be done 
to substantiate a potential role of VZV infection in the 
pathogenesis of giant cell arteritis.78

Common Respiratory Viruses
Several respiratory infections have shown ability to propa-
gate in the CNS either by direct invasion or hematologic 
spread. While bacterial respiratory diseases more com-
monly cause direct invasion of the blood vessels; for exam-
ple, Mycobacterium tuberculosis leading to granulomatous 
changes and fibrinoid necrosis, several series suggest that 
viral respiratory pathogens, such as Parvovirus B19, may 
also have a role in increased stroke risk due to arteriopa-
thy.1,79 Other studies do not show increase in stroke risk 
in association with any single pathogen but instead con-
siders the infectious burden when assessing the relation-
ship to stroke.80 In general, inflammation is thought to be 
a primary mechanism. In a large prospective series includ-
ing 19 063 patients with stroke, respiratory tract infection 
in the prior 3 days was associated with 3.19 increased 
incidence ratio for stroke (95% CI, 2.81–3.62).81 We will 
discuss influenza as a model case since it is common and 
has both animal and population-level data.

There are data to suggest that influenza-like illnesses 
are associated with an increased risk of incident stroke. 
In one large cohort study, 554/36 975 ischemic stroke 
patients had at least one influenza-like syndrome with the 
highest odds of stroke if the flu-like syndrome occurred 
in the preceding 15 days (adjusted odds ratio, 2.88 
[95% CI, 1.86–4.47]).82 To elucidate the mechanisms of 
the relationship to poor outcome after viral infection and 
stroke, researchers infected mice with human influenza 
A then occluded the middle cerebral artery to induce 
stroke.83 They found significantly increased expression 
of neutrophils, IL-1β, monocytes chemoattractant protein 
1, MIP (macrophage inflammatory protein)-2, and TNF 
in the brains of stroke mice who were coinfected with 
influenza A, concluding that influenza aggravates stroke 
pathophysiology out of proportion to fever or hypoxemia.

Coronavirus Disease 2019
There is a suggestion that coronavirus disease 2019 
(COVID-19) infection increases risk for stroke, but this 

association is yet unproven.84 To date, published series 
are small and comorbid conditions cloud the ability to 
ascertain causality.85–88 Larger, population-based studies 
will be required to determine if the association between 
COVID-19 and stroke is different as compared to the 
relationship between other acute viral illnesses and 
stroke. In a cohort study,84 researchers compared stroke 
incidence in 1916 patients hospitalized with COVID-19 
infection during a 2-month period to the 1486 patients 
hospitalized with influenza A/B over a 2 year period. 
Basic demographics were relatively similar between the 2 
groups, with the exception of higher numbers of patients 
with hypertension in the COVID-19 group. In this cohort, 
there was a 7.6 (95% CI, 2.3–25.2) increased odds of 
acute ischemic stroke in the COVID-19 group compared 
with those admitted with influenza after adjustment for 
age, sex, and race. Although there are notable method-
ological issues limiting broad generalization, this study 
gives us a first insight to the behavior of COVID-19 and 
stroke as compared with other more well-known viral 
infections and raises the possibility that COVID-19 infec-
tion carries a stronger association with stroke.

How might COVID-19 infection increase the risk 
for stroke? Several of the above mechanisms, includ-
ing hypercoagulability, may be at play when consider-
ing the relationship between severe acute respiratory 
syndrome coronavirus 2 (SARS-CoV-2) and stroke 
risk.89 In its simplest pathophysiological explanation, 
changes in the cardiovascular system including intra-
vascular volume changes in the setting of critical infec-
tion with COVID-19 may increase atrial fibrillation 
and cardioembolic potential, or more directly lead to 
changes in cerebral perfusion pressures that exceed 
the autoregulatory capacities of this population.90 This 
explanation will most likely apply to those patients who 
have comorbid illnesses known to accelerate intra and 
extracranial disease and superimposed critical illness. 
Venous thromboembolism may be explained conceptu-
ally through the Virchow triad especially in a population 
of critically ill, older adults who are immobile and at 
high risk for both stasis and activation of inflammatory 
mediators that increase procoagulant forces and the 
likelihood of more clotting events. Alternatively, expres-
sion of ACE-2, the receptor for coronavirus entry, in 
both venous and arterial endothelium raises the pos-
sibility of direct viral effects on endothelial cells with 
resultant increased propensity for ischemic stroke.91,92

Vascular changes with the propensity to cause stroke 
are not confined to the cerebrovascular system. It has 
been recently suggested that downregulation of ACE-2 
leading to both arteriopathy and thrombosis may play a 
central pathophysiological part in the development of 
stroke during SARS-CoV-2 infection.93,94 ACE overacti-
vation and ACE-2 underactivation are involved in lung 
injury and influences the renin-angiotensin system, which 
has a variety of vascular effects. ACE-2 underactivation 
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results in a higher formation of angiotensin II which can 
lead to prothrombotic state and vasoconstriction which 
both conspire to cause cerebral ischemia.93 A unify-
ing mechanism like this one is biologically reasonable 
and could explain several comorbid conditions seen 
in patients with SARS-CoV-2 infection, although this 
clearly requires additional investigation.

Much attention has also been focused upon the 
marked immune dysregulation resulting in hypercyto-
kinemia, or cytokine storm in both the periphery and 
the CNS that has been observed in some COVID-19 
affected individuals. Patients admitted to the intensive 
care unit with SARS-CoV2 infection had higher levels 
of multiple proinflammatory mediators in their serum, 
including IP10 (interferon γ-induced protein 10), 
MCP-1 (monocyte chemoattractant protein-1), MIP1A 
(macrophage inflammatory protein 1α), and TNF-α 
compared with those not admitted to the intensive care 
unit.95 Moreover, those who died of COVID-19 com-
plications had higher serum levels of proinflammatory 
molecules, including IL-6 and C-reactive protein.96 An 
early imbalance between proinflammatory and antiin-
flammatory molecules has been postulated to lead to 
a cascade of events that culminates in cytokine storm. 
Levels of classic proinflammatory cytokines, including 
TNF-α and IL-1β, along with chemotactic cytokines, 
such as IL-8 and MCP-1, rise promptly in the condi-
tion and facilitate a sustained increase in IL-6.97 IL-6 
then activates the Janus kinase-signal transducer and 
activator of transcription pathway, leading to synthesis 
of additional proinflammatory molecules as well as IL-6 
itself, thus resulting in a feed-forward loop of inflam-
mation.98 Notably, deficiency of type I IFN responses 
may contribute to the observed hypercytokinemia. 
Indeed, in those with severe disease, type I interferon 
responses were diminished while proinflammatory 
cascades were upregulated; moreover, autoantibod-
ies against type I IFNs or genetic deficiencies in type 
I IFN pathways have been observed in individuals with 
severe disease.99–101 Of interest given the preponder-
ance of severe disease in older age is that the immune 
changes that occur during aging result in alterations 
in humoral- and cell-mediated responses, as well as 
impaired clearance of infected and dying cells, that 
may predispose the elderly to unrestrained inflamma-
tion.102 The observed hypercytokinemia is associated 
with low levels of cytotoxic T cells, which may contrib-
ute to reduced viral clearance and further propagation 
of the inflammatory response.103 The consequences of 
runaway hypercytokinemia can be disastrous and may 
include endothelial dysfunction, vascular damage, and 
hypercoagulability. Indeed, the observed endotheliitis 
in patients with severe COVID-19 infection,104 and 
the finding of elevated D-dimer in the majority of case 
series may, in some cases, be directly related to hyper-
cytokinemia.89 Endothelial exocytosis could trigger 

changes in the local milieu altering the balance of local 
clotting factors, specifically von Willebrand factors and 
Factor VIII. Thus, it has been posited that the inflamma-
tory and clotting factor imbalance leads to a perpetuat-
ing cycle of microvascular thromboses in a variety of 
end organs.105

Additional considerations about the neurotropic 
potential of this novel virus are yet unknown. The fam-
ily of human pathogenic coronaviruses has been shown 
to be capable of invading the CNS in both animal mod-
els and humans.106,107 Entry of the pathogen through the 
cribriform plate with potential direct spread has not yet 
been demonstrated, however, it has been suggested 
that such a pattern of SARS-CoV-2 dissemination could 
cause changes in the posterior circulation.106 While more 
data will be needed to definitively answer this question, 
it is our opinion that neuroinvasion by SARS-CoV-2 
seldom occurs—particularly in immunocompetent indi-
viduals—and thus such a mechanism is unlikely a major 
contributor to stroke in the setting of COVID-19.

CONCLUSIONS AND FUTURE 
DIRECTIONS
Viral infections can impact both the periphery and the 
CNS, leading to increased risk of stroke. The importance 
of understanding basic pathophysiological concepts 
related to acute viral illness and stroke has been high-
lighted by the potential relationship between COVID-19 
and stroke. Future studies will need to focus on a variety 
of mechanistic hypotheses underlying a potential asso-
ciation between COVID-19 and stroke onset. These will 
include studies to identify endothelial injury and hyper-
coagulable states at a micro and macro level. Careful 
assessment of inflammatory markers and the potential 
development of prothrombotic autoantibodies will need 
to be performed. Studies including vessel wall imaging 
would be useful to understand the frequency of vascu-
lopathy in this population. Imaging studies would allow for 
better quantification of the various patterns of stroke in 
this population, however, may be challenging to obtain in a 
population of critically ill patients with infectious potential 
and strict isolation precautions. Characterization of well-
defined cohorts of patients with careful consideration of 
confounders will aid in elucidation of populations at risk, 
which can subsequently be targeted in treatment trials. 
At a population level, an epidemiological study of asymp-
tomatic or mildly ill patients with COVID-19 would assist 
the understanding of the unique association between the 
SARs-CoV-2 virus and stroke by eliminating confound-
ing factors of critical illness. Finally, population-based 
studies comparing patients infected with COVID-19 to 
other viral illnesses that lead to critical respiratory illness 
will help to determine whether there is a unique associa-
tion between COVID-19 and stroke.
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