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Abstract

The Frontal Aslant Tract (FAT) is a tract recently described as having implications on lan-
guage function. The originally proposed anatomical FAT definition characterizes a connec-
tion between Broca’s territory and anterior supplementary and pre-supplementary motor
areas in the Superior Frontal Gyrus (SFG). Here we propose an extended definition of the
FAT (the exFAT) that propagates more anteriorly into the SFG. A sample of 834 subjects
from the WU-Minn HCP 900 subjects data release (S900) was selected. The bilateral
exFATs were reconstructed for the whole sample using an automated pipeline and thre-
sholded adjusted tract volumes were calculated. A laterality test was performed on the
whole sample. The frontal cortex has known implications on superior cognitive functions, so
here we evaluate the implications of exFAT volume on performance in a language task and
on a set of working memory tasks. Two sub-samples of 70 subjects each were drawn from
the S900 sample by selecting the 35 top-performers and 35 bottom-performers for both lan-
guage and working memory tasks. Additional laterality tests were performed on each sub-
sample. We did not find the exFAT to be lateralized in any of the samples. We found
statistically significant differences in left adjusted exFAT volume between top-performers
and bottom-performers in the language task. We also found statistically significant differ-
ences in right adjusted exFAT volume between top-performers and bottom-performers for
2-back working memory tasks. To check for the predictive power of the exFAT volumes as
correlates for performance, we ran a repeated random sub-sampling cross-validation proce-
dure based on a Support Vector Machine (SVM) classifier that was capable of correctly clas-
sifying holdout subjects to their corresponding group (top-performer vs bottom-performer)
with an average accuracy of 74.5% for language task performance based on left exFAT vol-
ume and an accuracy of 64.2% for Working Memory performance based on right exFAT
volume.
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Introduction

The Frontal Aslant Tract (FAT) is a novel brain tract first described by Catani et al. in virtual
dissection studies validated against blunt dissection [1]. The FAT is described as a left-lateral-
ized bilateral tract connecting Broca’s territory (specifically Pars Opercularis (POp), with some
connections reaching Pars Triangularis (PTr)) and the supplementary and pre-supplementary
motor areas of the Superior Frontal Gyrus (SFG). A homologous tract has been described in
monkeys [2] and its existence has been further corroborated in dissection and tractographic
studies [3].

Given that the FAT connects Broca’s territory with motor regions in the left hemisphere, it
has been posited that the left FAT could have functional implications in motor aspects of lan-
guage. Numerous studies yield results confirming this hypothesis: The left FAT integrity has
been shown to be reduced in Primary Progressive Aphasia patients [4] and its damage pre-
dicted speech fluency alterations in chronic post-stroke aphasia [5]. Additionally, intraopera-
tive electrical stimulation of the left FAT territory in awake brain surgery induces transient
stuttering [6] and speech arrest [7,8]. Patients who underwent surgical resection of tumors in
the left FAT territory presented speech and motor initiation disorders shortly after the surgery.
These disorders spontaneously reverted after 3 months, with most patients recovering their
baseline speech and motor functions [6,9]. Some evidence points to additional cognitive impli-
cations of the FAT: Sierpowska et al. showed that the left FAT could be involved in the applica-
tion of morphological derivation rules in speech production [10].

Evidence elucidating the functional role of the right FAT is sparser: It has been shown that
it could be involved in voluntary hand movement [11] and its lesion could induce transient
motor inhibition [9], but overall its function is not yet well understood.

The late discovery of the FAT compared to classically described neural pathways is in part
explained by the deceivingly non-eloquent nature of the frontal lobe, once labeled the “silent
lobe”, as Bozkurt et al. reports [12]. Furthermore, the complex white matter architecture of the
FAT territory makes its tractographic reconstruction challenging under traditional tensor-
based tractographic techniques. Thus, two critical conditions for proper tractographic FAT
assessment become apparent: a) advanced diffusion models should be used to minimize arte-
factual reconstructions and false negatives, and b) a large sample size becomes paramount to
achieve enough statistical power as to accurately assess relationships between FAT’s anatomy
and its function.

One central aspect of tractography reconstruction is the selection of ROIs (regions of inter-
est), as it often involves manual procedures which can be time-consuming and require expert
anatomist knowledge as well as special care to control for operator-induced variability. The
originally proposed methodology for FAT reconstruction involves the manual placement of
ROIs, making the analysis of large samples unfeasible.

Regarding ROI placement for FAT delineation, a less restrictive criteria consisting of “an
axial AND ROI around the white matter of the SFG and a sagittal AND ROI around the white
matter of the IFG including pars opercularis, triangularis and orbitalis” has been described
[11]. Nonetheless, the reported FAT reconstructions do not show a trajectory reaching more
anterior regions, making us think that the SFG white matter ROI was selected around supple-
mentary and pre-supplementary motor areas and not around the full extension of the white
matter of the SFG.

Introducing the extended FAT (exFAT)

Here, we propose an extended FAT definition (the exFAT) composed of fibers explicitly con-
necting Broca’s territory (defined as POp and PTr) with the totality of the SFG, reaching
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anterior superior frontal regions which are known for having functional implications in high
order cognitive functions such as working memory: Chronic spatial working memory deficits
have been reported in patients after tumor resection in the right prefrontal parenchyma [13].

The rationale for defining the exFAT is twofold: first, it allows us to readily leverage the
power of automated segmentation systems in a large high quality sample in a replicable way
while avoiding operator-induced biases. Secondly, given that evidence shows that working
memory systems and language function are mediated by related cognitive abilities [14-16], the
exFAT could be a reasonable candidate for a tract subserving both functions.

To our knowledge there is no compelling evidence in the literature that the FAT alone is
involved in working memory function. Although not directly related to the study of frontal
aslant connections, studies looking for statistical relationships between left hemisphere white
matter volume and language function, and right hemisphere white matter volume and high
order cognitive functions have been conducted. For example, it has been shown that white
matter volume of Brodmann Area 39 in the right hemisphere is associated with higher IQ [17],
and it has been shown in a Voxel-Based Morphometry study that fast learners presented higher
white matter density in left Heschl’s Gyrus than slow learners in a foreign speech phonetic
learning task [18].

Given this extended definition, and according to the presented evidence, we hypothesize
that a) the left exFAT mediates language performance, and b) the right exFAT mediates work-
ing memory performance.

Material and methods

For the present study, a total of 834 healthy subjects were selected from the WU-Minn Human
Connectome Project (HCP) 900 data release (S900) preprocessed dataset [19] after discarding
those who lacked diffusion acquisitions or relevant tests scores. This study was conducted with
the approval of the Bioethics Committee of the University of Barcelona. Institutional Review
Board (IRB00003099).

We developed a fully automated pipeline based on the standard MRTrix3 [20] HCP pipe-
line that reconstructs the bilateral exFAT. Tissue-segmented images were generated for
Anatomically Constrained Tractography. Multi-Shell Multi-Tissue Constrained Spherical
Deconvolution was used in order to obtain the exFAT tractographic reconstructions.

The HCP dataset offers high quality atlases containing FreeSurfer [21] parcellations and seg-
mentation maps that are aligned to the subjects diffusion space while being robust against poten-
tial systematic biases that FreeSurfer could show when parcellating individual subjects. For each
hemisphere, atlas labels were used to define seed regions as the sum of POp and PTr. The SFG
ROI was used as an inclusion mask and every other gray matter structure other than the two
explicitly defined as seed and inclusion was employed as an exclusion mask to produce auto-
mated and robust tract reconstructions while reducing the presence of false positive tracts [22].

Tracts were reconstructed in subjects native space using the iFOD2 algorithm [23] with rec-
ommended MRTrix3 parameters for HCP datasets and 1M fibers per tract were fired. A maxi-
mum length limit of 150mm was defined to reduce the presence of false positives. Density
maps were calculated from the exFAT tractographies and a hard threshold of 10 fibers was
applied using FSL [24] to exclude artefactual false positive reconstructions that would bias the
tract volume measure while preserving the main tract bundle. Left and right exFAT volumes
were calculated from the thresholded density maps. Adjusted exFAT tract volume indices were
calculated to control for sex induced volume differences by dividing the tract volume by the
total brain volume; the resulting dimensionless quantities were multiplied by 10° for scaling
convenience.
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For cognitive functions assessment, we used the average accuracies from the Binder et al.
language processing task [25] for language assessment and both 0-back and 2-back working
memory tasks for working memory assessment as available in the S900 sample. A summary of
samples descriptors can be found in Table 1.

A laterality test was performed on the global sample using Welch’s t-test to compare left
and right adjusted exFAT volume indices while correcting for variances inequality.

To study the exFAT implication in language function and working memory, two extreme
subsamples were created:

1. Language extreme group: A sample of 70 subjects was constructed by selecting the 35 bot-
tom-performers and the 35 top-performers on the adjusted language task test.

2. Working memory extreme group: A sample of 70 subjects was constructed by selecting the
35 bottom-performers and the 35 top-performers on the 2-back working memory test.

In the extreme groups, correlations were calculated for the relevant task score between top-
performers and bottom-performers. Handedness and age were used as covariates for the lan-
guage groups correlations and age alone was used as a covariate for the working memory
groups correlations. Welch’s t-tests were applied to check for differences in average adjusted
exFAT volume indices between top-performers and bottom-performers for left and right
exFAT (performance test), and between left and right exFAT for top-performers and bottom-
performers (laterality test).

Statistical tests were performed using R statistical software [26]. A Bonferroni-corrected sig-
nificance threshold of o = 0.00156 was established for Hj rejection, corresponding to 32 com-
parisons at an original threshold of o. = 0.05.

Finally, to further confirm the validity of the results, we ran a repeated random sub-sam-
pling cross-validation procedure in Python [27] with a Support Vector Machine (SVM) model
using SVC module from SKLearn library [28] with a linear kernel. A holdout ratio of 0.2 was
used and 100 repetitions were considered for each result validation.

Results

The adjusted volume indices for the global sample and extreme subsamples can be found at
Table 2. Additional descriptors for characterization of the global sample can be found at
S1 Fig.

Global sample results

We did not find a significant difference in the adjusted volume indices between the left exFAT
(M =21.33, SD = 7.17) and right exFAT (M = 20.90, SD = 6.34) in the global sample; t(1641.7)
= 1.304, p = 0.192. Data shown in Table 3.

Table 1. Description of the samples.

Group N Age Handedness Language task score Working memory 2-back task score
Global sample 834 28.78(3.86) 65.43(44.69) 88.78(6.97) $3.44(10.80)
Language bottom performers 35 28.46(3.85) 66.43(55.26) 71.3(4.38) 75.45(11.97)
Language top performers 35 28.29(2.83) 59.71(39.60) 100(0) 90.48(5.79)
Working memory bottom performers 35 30.11(3.81) 75.43(44.54) 81.50(14.32) 55.98(5.93)
Working memory top performers 35 27.89(3.69) 80.00(15.31) 93.54(4.19) 98.22(0.94)

Language task scores and working memory 2-back task scores are shown in a 0-100 scale. Standard deviations are shown in parentheses.

https://doi.org/10.1371/journal.pone.0200786.t001
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Table 2. Adjusted volume indices for exFAT samples.

Group N Left adjusted exFAT volume Right adjusted exFAT volume

indices indices

Global sample 834 21.33(7.17) 20,90(6.34)

Language bottom performers 35 18,06(7,25) 18,46(7.08)

Language top performers 35 23.77(5.53) 23.15(5.29)

Working memory bottom 35 19.07(8.21) 17.76(7.52)

performers

Working memory top performers | 35 22.84(5.85) 23.4(6.0)

Adjusted volume indices were calculated by dividing tract volume by total brain volume and multiplying by 10°.

Standard deviations are shown in parentheses.

https://doi.org/10.1371/journal.pone.0200786.t002

A probability map depiction of the exFAT trajectory is shown in Fig 1.

Language extreme results

We found statistically significant correlations between language task performance and the
bilateral adjusted exFAT volume indices. Data shown in Table 4.

We did not find a significant difference in the adjusted volume indices between the left
exFAT and right exFAT neither in the bottom-performers language task group (Mleft = 18.06,
SDleft = 7.25; Mright = 18.46, SDright = 7.08) nor in the top-performers language task group
(Mleft = 23.77, SDleft = 5.53; Mright = 23.15, SDright = 5.29). Data shown in Table 5.

For the extreme language task groups, we found that the top-performers had a greater
adjusted volume index than bottom-performers for the left exFAT: bottom-performers
(M =18.06, SD = 7.25); top-performers (M = 23.77, SD = 5.53); t(63.579) = -3.7083, p<0.001.
We did not find a significant difference in the adjusted volume indices between top-perform-
ers and bottom-performers in the language task groups for the right exFAT: bottom-perform-
ers (M = 18.46, SD = 7.08); top-performers (M = 23.15, SD = 5.29); t(62.938) = -3.143,

p = 0.0025. Data shown in Table 6.

An additional boxplot representation of the left adjusted exFAT volume indices distribution
for the language extreme groups can be found at S2 Fig.

Machine learning model for language extreme groups. The averaged results for the
holdout sample in the SVM classifier-based repeated random sub-sampling cross-validation
with a holdout fraction of 0.2 after 100 random permutations were: accuracy: 0.745 + 0.984;
AUC: 0.755 * 0.094 for language task score vs adjusted left exFAT volume index.

Working memory results

We did not find any statistically significant correlation between the 0-back working memory
task and adjusted exFAT volume indices. We found statistically significant correlations
between adjusted right exFAT volume indices and global working memory task accuracy,

Table 3. Lateralization test for global sample.

Global sample

Left Right t-test
M SD M SD t(df) p
21.33 7.17 20.90 6.34 1.304(1641.7) 0.192

M, group mean; SD, group standard deviation; t, value of Welch’s t statistic; df, estimated degrees of freedom; p, p-value.

https://doi.org/10.1371/journal.pone.0200786.t003

PLOS ONE | https://doi.org/10.1371/journal.pone.0200786  August 1,2018 5/13


https://doi.org/10.1371/journal.pone.0200786.t002
https://doi.org/10.1371/journal.pone.0200786.t003
https://doi.org/10.1371/journal.pone.0200786

o @
@ : PLOS | ONE Extended Frontal Aslant Tract and working memory

/ I ﬂ:imnum"“h

p H@i sy f

Fig 1. Bilateral exFAT probability map. Probability map showing average fiber density along the bilateral exFAT
trajectory. Values are only shown in voxels present in >10% of subjects.

https://doi.org/10.1371/journal.pone.0200786.9001

global 2-back working memory task accuracy and tool 2-back working memory task accuracy.
Data shown in Table 7.

We did not find a significant difference in the adjusted volume indices between the left
exFAT and right exFAT neither in the bottom-performers working memory task group
(Mleft = 19.07, SDleft = 8.21; Mright = 17.76, SDright = 7.52) nor in the top-performers work-
ing memory task group (Mleft = 22.84, SDleft = 5.85; Mright = 23.4, SDright = 6). Data shown
in Table 8.

For the extreme 2-back working memory task groups, we found that the top-performers
had a greater adjusted volume index than the bottom-performers for the right exFAT: bottom-
performers (M = 17.76, SD = 7.52) and top-performers (M = 23.4, SD = 6.0); t(64.791) =
-3.487, p<0.001. We did not find a significant difference in the adjusted volume indices
between top-performers and bottom-performers in the 2-back working memory task groups
for the left exFAT: bottom-performers (M = 19.07, SD = 8.21); top-performers (M = 22.84,
SD = 5.85); t(61.431) = -2.21; p = 0.031. Data shown in Table 9.

An additional boxplot representation of the right adjusted exFAT volume indices distribu-
tion for the working memory extreme groups can be found at S3 Fig.

Machine learning model for working memory extreme groups. The averaged results
for the holdout sample in the SVM classifier-based repeated random sub-sampling cross-
validation with a holdout fraction of 0.2 after 100 random permutations were: accuracy:

Table 4. Language task vs adjusted volume index correlations.
Left adjusted exFAT volume index Right adjusted exFAT volume index
Language task performance 0.460* 0.444*

Age and handedness were used as covariates.
* indicates H rejection at p<0.0015625.

https://doi.org/10.1371/journal.pone.0200786.t1004
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Table 5. Lateralization tests for language samples.

Language top performers

Language bottom performers

Left Right t-Test
M SD M SD t(df) p
23.77 5.53 23.15 5.29 0.481(67.859) 0.63
18.06 7.25 18.46 7.08 -0.234(67.961) 0.815

M, group mean; SD, group standard deviation; t, value of Welch’s t statistic; df, estimated degrees of freedom; p, p-value.

https://doi.org/10.1371/journal.pone.0200786.t005

Table 6. Performance tests in language samples.

M
Language left exFAT 18,06
Language right exFAT 18.46

0.642 + 0.128; AUC: 0.654 + 0.123 for 2-back working memory task score vs right adjusted
exFAT volume indices.

Discussion

Although many advanced diffusion-based indices have been proposed to study microstruc-
tural integrity and functional implications of white matter connections, a clear consensus
about how they characterize the FAT has not yet been reached. Evidence shows that in chil-
dren the FAT shows little to no microstructural differences with age while the Arcuate Fascicu-
Ius does [29] and its characterization is still an open problem.

Given that the exFAT contains the original FAT and extends it, we employed tract volume
as our reference index of anatomical variability given its methodological simplicity and robust-
ness regarding to tractography reconstruction parameters. To solve the problem of multiple
comparisons, we used the Bonferroni correction as we intended to apply the most conservative
correction method that still detects a signal relating Language function with the left hemi-
sphere aslant connections anatomy, which is a well-described relationship in the literature,
and apply that rigorous criterion elsewhere in the study. It is true that a less stringent correc-
tion method could lead to a reduced risk of type II errors, but given the risk of inflating type I
errors while reporting results that go beyond what can be found in the literature, we opted to
err on the side of caution.

Controlling for total brain volume implicitly removes potential biases induced by sex.
Given that the employed language task is designed to be easy and general [25] and that work-
ing memory training only produces short-term specific effects that do not generalize [30],
education level was not included as a covariate: It should be expected that people with higher
language capacity as measured by the Binder task and higher working memory capacity will
reach, on average, a higher education level, while it is not clear that the opposite implication
should be true. Then, covariating by education level could reduce the explanatory power of
the model by subtracting a large proportion of the signal we intend to detect in the first
place.

Further studies should be conducted to better characterize the microstructural properties of
the frontal aslant connections using state-of-the-art diffusion indices.

Low High t-Test
SD M SD t(df) p
7.25 23.77 5.53 -3.708(63,579) 0.00044*
7.08 23.15 5.29 -3.143(62.938) 0.0025

M, group mean; SD, group standard deviation; t, value of Welch’s t statistic; df, estimated degrees of freedom; p, p-value.

* Indicates Hy rejection at p<0.00156.

https://doi.org/10.1371/journal.pone.0200786.t006
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Table 7. Working memory vs adjusted volume index correlations.

Left adjusted exFAT volume index Right adjusted exFAT volume index
Global accuracy 0.264 0.408*
Global 0-back accuracy 0.26 0.336
Global 2-back accuracy 0.226 0.39*
Body 0-back accuracy 0.165 0.152
Body 2-back accuracy 0.172 0.282
Face 0-back accuracy 0.245 0.298
Face 2-back accuracy 0.163 0.355
Place 0-back accuracy 0.176 0.203
Place 2-back accuracy 0.219 0.329
Tool 0-back accuracy 0.109 0.222
Tool 2-back accuracy 0.162 0.399*

Age was used as a covariate
* Indicates Hj rejection at p<0.0015625

https://doi.org/10.1371/journal.pone.0200786.t007

exFAT and language

Numerous studies on the FAT function have focused on the left FAT implications on language
and motor function, which is a reasonable approach given the left-lateralization of language in
most of the population. Our results suggest that the left exFAT mediates performance in lan-
guage-related tasks. It must be noted that under the present approach, it is hard to determine
which language functions the exFAT is actually subserving. Further studies should be con-
ducted to better understand the implications of the left exFAT and its different parts in cogni-
tive aspects of language function.

exFAT and working memory

One of the main driving hypotheses behind the present study was that extending the anatomi-
cal definition of the FAT by allowing its course to take a more anterior trajectory into the SFG
would allow it to reach high level cognitive areas such as the dorsolateral prefrontal cortex and
thus making it sensitive to differences in domains such as working memory performance that
are not detectable by measuring the FAT alone, while still being at least partially sensitive to
differences attributed to the original FAT. Further studies should be conducted in order to
determine whether the anterior part of the exFAT show the strongest implication in working
memory performance.

Our results suggest that the right exFAT has implications in working memory: we have
found that adjusted right exFAT volume index was significantly correlated with 2-back task
accuracies, but not with 0-back task accuracies, and average right adjusted exFAT volume indi-
ces were higher for the top-performers than for the bottom-performers in the 2-back working

Table 8. Lateralization tests for working memory samples.

Left Right t-Test
M SD M SD t(df) p
Working memory top performers 22.84 5.85 234 6.0 -0.417(67.956) 0.678
Working memory 19.07 8.21 17.76 7.52 0.699(67.485) 0.487

bottom performers

M, group mean; SD, group standard deviation; t, value of Welch’s t statistic; df, estimated degrees of freedom; p, p-value.

https://doi.org/10.1371/journal.pone.0200786.t008
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Table 9. Performance tests in working memory samples.

Working memory
left exFAT

Working memory right exFAT

Low High t-Test
M SD M SD t(df) p
19.07 8.21 22.84 5.85 -2.21(61.431) 0.031
17.76 7.52 23.4 6.0 -3.487(64.791) 0.0009*

M, group mean; SD, group standard deviation; t, value of Welch’s t statistic; df, estimated degrees of freedom; p, p-value.

* Indicates Hj rejection at p<0.00156.

https://doi.org/10.1371/journal.pone.0200786.t009

memory task. This result is in line with Kinoshita et al., who have reported spatial working
memory deficits in patients after right prefrontal glioma resection [13].

To our best knowledge, this represents a novel result regarding the functional implication
of the frontal aslant connections that has not been previously reported by studying the FAT
alone.

Cross-validated ML model

For further validation of our results, we trained a SVM classifier in a repeated random sub-
sampling cross-validation paradigm with a holdout fraction of 0.2 and 100 random permuta-
tions. The resulting accuracies indicate the ability to correctly classify the 20% subjects that
have not been used for the algorithm training after using the remaining 80% as a training
sample.

The accuracy results based on the SVM classifier model should to be taken in conjunction
with the confirmatory data analyses provided. While a classification accuracy of 64.2% on its
own is not suitable for a real life classification task, it should be emphasized that we were able
to obtain an above-than-chance accuracy when averaging over a large number of permuta-
tions, and this increases our confidence that we are indeed measuring an actual underlying
relationship between brain anatomy and function and not just an unlikely statistical artefact.

Limitations

Although we have used strict criteria when controlling for multiple comparisons, the reported
values for the correlation studies are no bigger than 0.45 corresponding to a weak-to-moderate
linear relationship. This could be explained on the basis of a) the subtle functional implications
of the frontal aslant connections and b) the S900 dataset consisting of healthy subjects; the
strategy of sampling the extremes of the distribution works only as a rough tendency approxi-
mation to what could be expected in an actual comparison between a pathological group and a
healthy control group. Given that no subject in this study presents language or working mem-
ory impairments, the classical criterion of considering r~ = 0.4 as a weak-moderate relation-
ship could be too conservative. Studies using pathological samples should yield stronger
results and an improvement in accuracy scores in the classification tasks should also be
expected.

Additionally, a machine learning model could be fed with a large number of parameters
and this could improve the resulting classification accuracy, but choosing the parameters is a
nontrivial task that demands a deeper understanding of the fundamental aspects of the exFAT
structure before it can be safely approached.

The language task proposed by Binder et al. included in the S900 protocol was designed to
elicit strong fMRI activation of the anterior temporal lobe [25], making it unsuitable for assess-
ment of specific language function components. Moreover, language performance scores were
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strongly biased towards high values (i.e. the test was too easy) thus limiting its discriminative
power. Studying the exFAT volumes with more specific and discriminative language tests
should help to better understand the exFAT language implications as well as its possible role in
the language networks of the brain.

It should be noted that significant results for top vs bottom comparisons are not bilateral,
while we failed to reject the null hypothesis that left and right exFAT adjusted volume indices
are different. This possibly indicates that for a larger sample size a statistically significant dif-
ference between left and right exFAT adjusted volume indices would be found, although its
magnitude would be so small that its real life relevance should only become apparent when
studying large populations.

Future work

Further studies should be conducted to assess whether the bilateral exFAT coordinates lan-
guage and working memory functions: Given that the exFAT is a wide tract that includes the
FAT, it could be useful to split the exFAT into its original FAT component and an anterior
FAT component in order to elucidate to what extent these separate components have disjoint
functional implications. Given the left-lateralized nature of the FAT and the symmetrical
nature of the exFAT, the anterior FAT should be expected to be a right-lateralized tract.

Conclusions

We did not find the exFAT to be lateralized in any of the studied groups. For the extreme
groups, we report as significant those results that allow us to reject Hy both in a correlation test
and in a t-test after applying a very conservative multiple comparison correction, and addition-
ally score at a higher-than-chance level in the holdout set of a machine learning cross-validated
classifier model. Namely, we found the left adjusted exFAT volume index to be associated with
performance in a general language task and the right adjusted exFAT volume index to be asso-
ciated with performance in a 2-back working memory task. To our best knowledge, the later
observation represents a novel result that has not been previously reported by studying the
FAT alone.

Further studies should be conducted to better characterize the microstructural properties of
the exFAT, and to understand the specific functional implications of its potential different
parts.

In the present study, we presented a methodology based on a high quality open access data-
set and free software tools that can be easily replicated and extended to study other white mat-
ter tracts. We have shown that sampling extreme subjects from the Human Connectome
Project dataset can be a useful strategy for studying the functional implications of brain struc-
ture in the healthy human brain.

Supporting information

S1 Fig. Descriptors for global sample. Histograms (1, 2) and scatter plots (3, 4, 5, 6) charac-
terizing the global sample (N = 834) for left (1, 3, 5) and right (2, 4, 6) exFAT adjusted volume
indices.

(TIF)

S2 Fig. Language extreme groups. Boxplots showing adjusted exFAT volume index distribu-
tion in language extreme groups. The triangle indicates the mean value. Whiskers extend
0.5*IQR beyond the first and third quartile lines. Notches indicate confidence interval around
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the median.
(TIF)

S3 Fig. Working memory groups. Boxplots showing adjusted exFAT volume index distribu-
tion in working memory extreme groups. The triangle indicates the mean value. Whiskers
extend 0.5*IQR beyond the first and third quartile lines. Notches indicate confidence interval
around the median.

(TIF)
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