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Neuromorphic computing, an alternative for von Neumann architecture,
requires synapse devices where the data can be stored and computed in the
same place. The three-terminal synapse device is attractive for neuromorphic
computing due to its high stability and controllability. However, high non-
linearity on weight update, low dynamic range, and incompatibility with
conventional CMOS systems have been reported as obstacles for large-scale
crossbar arrays. Here, we propose the CMOS compatible gate injection-based
field-effect transistor employing thermionic emission to enhance the linear
conductance update. The dependence of the linearity on the conduction
mechanism is examined by inserting an interfacial layer in the gate stack. To
demonstrate the conduction mechanism, the gate current measurement is
conducted under varying temperatures. The device based on thermionic
emission achieves superior synaptic characteristics, leading to high perfor-
mance on the artificial neural network simulation as 93.17% on the MNIST

dataset.

In the advent of the big data era, the dramatic advance of machine
learning technology and artificial intelligence have occurred,
demanding the computing ability to handle the data-intensive task’.
However, the currently exploited conventional von Neumann archi-
tecture has become the bottleneck due to its limitation to parallel
computing ability and high power consumption to deal with the big
data, caused by obligated data transfer through the data bus between
the physically separated processing unit and memory**. Therefore, to
perform successful big data analysis, new computing architectures
have been developed. The main key idea of the new architectures is to
compute the data in memory without data transfer (or small move-
ment of data), enabling reducing power consumption and suppressing
latency by parallel data processing ability*”’.

Neuromorphic computing is one of the candidates for post-von
Neumann architecture. By mimicking the synaptic behavior of the

biological neural network, the big data can be processed by parallel
computing in an energy-efficient way in real-time**°. For accelerating
the artificial neural network (ANN) with this new architecture, the
neuromorphic device, which can memorize and compute the data on
the same device, is required. Recently, several studies utilizing con-
ventional memory, such as DRAM and charge trap flash memory (CTF),
and emerging memory devices such as PRAM and ReRAM have been
reported in neuromorphic applications'*".

In the case of conventional memories, the well-established DRAM
secures fast write speed and linear conductance update’®. Capacitor-
based synaptic devices with a DRAM-like structure also have main
advantages in online training for repeated updates because of their
high endurance’®. However, because of poor retention characteristics,
the weight values must be transferred to nonvolatile memories very
frequently during the training process, resulting in high power
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consumption. Moreover, these devices are difficult to create and retain
analog conductance states with a single device and require a capacitor
(storing charges for weight values) and several additional transistors to
implement analog states'®">?°. This means that it has a drawback in
terms of device integration density compared to a single synaptic
device.

On the other hand, nonvolatile memories such as CTF can dis-
tinguish between states of multi-level cells depending on how many
charges are trapped in the charge trap layer, and have long retention'.
Additionally, several studies show that the endurance characteristics of
CTF can be significantly improved by structural and material engi-
neering of the device” *. Therefore, research using CTF devices is
being actively conducted for applications in neuromorphic computing,
as well as for the main memory for data storage. However, while data
can be stored for long periods without data loss, CTF normally has a
large operation voltage and slow speed, requiring more energy, espe-
cially for data erasing” . In the case of online training, using devices
with low update energy is advantageous because the training demands
repeated writing and erasing operations more than millions of times.

The two-terminal emerging memories have been extensively
studied as a promising candidate among neuromorphic devices due to
their simple structure and scalability. Furthermore, they can be inte-
grated into large-scale crossbar-array for vector-matrix multiplication,
which is essential for the basic operation of neuromorphic
computing®” %, However, their device variation caused by randomly
formed filament during set/reset. This stochastic behavior of ion
movement causes unreliable variation and it has been the significant
bottleneck for the successful application as a computing device**%. On
the other hand, the three-terminal synaptic device has the advantage
of enhancing synaptic weight controllability, and allows simultaneous
reading and writing the data®*>°2,

Besides suppressing the problems mentioned above, synapse
device characteristics such as high linear conductance update and
compatibility with the conventional Complementary-Metal-Oxide-
Semiconductor (CMOS) system are commonly required to acquire
the high performance of crossbar-array based neuromorphic com-
puting as that of software-based ANN*?~°. Especially, the linearity of
the Long-Term Potentiation and Long-Term Depression (LTP-LTD) is
regarded as one of the most important characteristics for synapse
device evaluation®. By achieving the linear conductance update with
identical consecutive pulse scheme, it is believed to enable the multi-
level operation while reducing the burden on peripheral circuits to
operate crossbar array'>’.

The conventional three-terminal floating gate-based flash mem-
ory shows high nonlinearity in weight updates”*****° due to the
Fowler-Nordheim (F-N) tunnelling, a vital function of the electric field
changed by electrons stored charge state®*°. lon-conducting elec-
trolyte-based three-terminal synapse devices show high linear con-
ductance update for weight state*~**. However, they are vulnerable in
the perspective of low on/off ratio, high programming pulse width,
and incompatibility with conventional CMOS devices.

In this paper, we propose a three-terminal Gate Injection-based
Field-Effect Transistor (GIFET), which utilizes the CMOS compatible
material and fabrication process. Through different operation
mechanisms from conventional flash memory, we derive superior
synapse device characteristics, such as high linearity and symmetry,
high temporal and spatial uniformity (<1.64%, 9.76%), and low power
consumption (50 f]/SOP). These performances lead to a high accuracy
of approximately 93.17% with the MNIST handwritten recognition
dataset.

Results

Structure and operation principle of GIFET

The dependence of current density through tunnelling oxide on the
current floating gate charge state triggers the nonlinearity of

conventional flash memory due to its primary update mechanism, F-N
tunnelling®~*°, To relieve the current density dependence on floating
gate charge, we program and erase the charges in the stored layer by
thermionic emission of an electron to and from the gate metal (see
Fig. 1a), which is the weaker function of electric field than field
emission**¢,

As the current density through the thermionic emission depends
on the barrier height between each layer, the band diagram of GIFET
was designed as shown in Fig. 1b. The barrier height between the
charge store layer (CSL) and blocking layer should be moderately low
to guarantee sufficient current density for a high on/off ratio and to
hold electrons, except during write/erase operation for high retention.
Therefore, we selected a CSL material (x5 =4.92eV)" with a greater
electron affinity than the blocking layer (yg, =3.93eV)*.

Figure 1c shows the cross-sectional Transmission Electronic
Microscope (TEM) image of the device. As presented, 20 nm-thick n*
doped Si layer was utilized on silicon dioxide layer to design device
area by mesa pattern. On top of that, silicon dioxide (SiO,) was applied
as the gate oxide. WO, was deposited as CSL with high electron affinity
to form a shallow well in the energy band diagram, where the electrons
are stored. Subsequently, a-Si:H was utilized as a blocking layer for a
lower barrier height difference with gate metal (see details in Methods
and Fig. 1d for Second lon Mass Spectroscopy (SIMS) data of the gate
stack of the GIFET). The amount of charge stored in the WO, layer
widens or shortens the Si channel’s depletion region by field-effect,
and this changing depletion region is the primary mechanism to con-
trol artificial synapse weight in terms of the conductance.

Figure le-g present the schematics of basic operations of the
GIFET for write, erase, and read process, respectively. When a positive
bias is applied on the gate while source and drain are grounded,
negative charge electrons on WO, layer are extracted to gate metal due
to electric field between gate and channel (see Fig. 1e). Therefore, the
depletion region in the channel decreases, leading to increasing
channel conductance (write process). Reversely, when a negative bias
is applied on the gate, and channel source-drain are grounded, elec-
trons are injected from gate metal to the WO, layer, decreasing
channel conductance (erase process, see Fig. 1f). In order to read the
stored weight of a device, the gate is grounded, and read voltage is
applied to drain to confirm the current weight state of the memory cell
by measuring the conductance of the cell (see Fig. 1g). More detailed
operating principles are described in Supplementary Fig. 1. In addition,
because GIFET is a transistor-based device, its electrical characteristics
are measured and evaluated as a transistor (see Supplementary Fig. 2).
As the number of electrons stored in the CSL by the write/erase
operation varies, the Ip-Vg and Ip-Vp characteristics can be changed,
which means that the weight of the synaptic device can be controlled.

The relationship between linearity and conduction mechanism
To investigate the effect of the conduction mechanism for charge
transport through the blocking layer on the linearity, we observed the
dependence of the current density through the blocking layer at sev-
eral temperatures. To focus on the current through the blocking layer
and confirm the presence of the Schottky barrier, a gate stack of the
device without the gate oxide was prepared as shown in Fig. 2a. I-V
characteristic measurements were conducted in the temperature
range 273 K-423 K.

Figure 2b presents the Arrhenius plot of In(//T?) versus g/kT. The
linear relationship between In(//7%) and g/kT is observed, which implies
the existence of the Schottky barrier, and the primary conduction
mechanism through the blocking layer is thermionic emission
current®. More details on barrier height are in Supplementary Fig. 3.
On the other hand, we also observed the current density of the gate
stack with SiO, interfacial layer between CSL and blocking layer to see
the temperature dependence (see Supplementary Fig. 4a). During the
write operation, the SiO, interfacial layer is under a higher electric field
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Fig. 1| Structure and operation principle of GIFET. a Schematic and band dia-
gram of GIFET. The charge is injected from or extracted to gate metal by ther-
mionic emission. b Flat band diagram of GIFET. The electron affinity of the charge
store layer (CSL) is higher than the blocking layer. ¢ TEM image of the cross section

of the gate stack. d SIMS data of the gate stack of GIFET. Schematic of GIFET during
write (e)/erase (f)/read (g) operation, respectively. The depletion region of the
channel is changed following charges in the CSL.

due to its lower dielectric constant than a-Si:H if they are in the same
thickness. Therefore, the voltage drop occurs through the interfacial
layer, and the barrier height between WO, and a-Si:H decreases.
Accordingly, the conduction mechanism between CSL and blocking
layer converted from thermionic emission to field emission or trap
assisted tunnelling through SiO, layer (see Supplementary Fig. 4b).
Supplementary Fig. 4c shows the Arrhenius plot of In(J/T?) versus q/kT
for the device with the interfacial layer. The zero slope of the graph
shows that the disappearance of the Schottky barrier, and the linear
relationship between In(//V?) and 1/V with the interfacial layer at room
temperature in Supplementary Fig. 4d implies the changed conduction
mechanism is F-N tunnelling®.

Consequently, the LTP-LTD characteristics of both the GIFET
device with the SiO, layer between CSL and blocking layer (field
emission dominant) and without the layer (thermionic emission
dominant) were estimated to examine the relation between linearity
and conduction mechanism for charge transfer through the blocking
layer. As displayed in Supplementary Fig. 4e, the device with SiO,
interfacial layer loses linear conductance update property compared
with the device without interfacial layer under the same pulse train

(write: 2.5V, 500 ps, erase: =3V, 500 ps, read: 1V, 500 ps), especially
during LTP.

Figure 2c is the LTP-LTD characteristic of the GIFET observed with
the 1000 potentiation (500 ps, 5V)-1000 depression (500 ps, —3.3 V)
gate pulse trains (see Supplementary Fig. 5 for pulse information). As
shown in Fig. 2c, the device has high linearity with low asymmetric
ratio®”' (see Supplementary Fig. 6 and Note 1). Conductance ratio
Gmax/Gmin around 10 is achieved, which was reported as the on/off ratio
value for achieving high performance in ANN task®. Furthermore,
1000 analog conductance levels are more than enough for high
accuracy. Figure 2d is enlarged conductance update from the part of
the data in Fig. 2c. Each figure illustrates potentiation or depression of
the weight with 100 switching pulses. As shown in Fig. 2d, the device
shows stable linear conductance updates in the entire conductance
state, which means it has similar conductance changes with the
same number of pulses.

Program operation time of GIFET is practicable to be reduced
while updating conductance linearly by controlling the pulse
condition to optimize appropriate synaptic properties, such as
on/off ratio and linearity for neuromorphic applications. In
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Fig. 2 | The linearity of GIFET and its relationship with the conduction
mechanism. a Schematic of the GIFET gate stack without gate oxide and band
diagram of CSL and blocking layer during write operation. The barrier exists
between the CSL and the blocking layer, and the charge in the CSL is extracted over
the barrier. b The Arrhenius plot measured from WO,/a-Si:H stack without the SiO,
layer between the channel and the stack from 273K to 423 K. ¢ The LTP-LTD
characteristic of GIFET under 1000 write (5V, 500 ps)-1000 erase (=3.3V, 500 pis)
consecutive pulse scheme (1V, 50 ps read voltage and 50 ps between each pulse

500 1000 1500 2000 2500 3000 3500
Pulse Number (#)

was used). d Linear write (red sphere)/erase (blue sphere) update of the LTD-LTD
during every 100 pulses in specific ranges matched the numbers shown in c. Almost
similar drain current increased/decreased within the same number of pulses. e The
LTP-LTD characteristics of the GIFET under arbitrary pulse trains (haphazard write/
erase pulse) consist of 500 write (1.4 'V, 500 ps)/erase (-2.5V, 500 ps)/hold (OV,
500 ps) gate pulses with a read pulse (1V, 200 ps) on the drain 200 ps after each
gate pulse (red: write operation, blue: erase operation, white: hold operation).

f Stable linear update values of data in e (E-W-W-E) (Al =5.71nA, 5.78 nA).

practical machine learning applications, the program operation
time of synaptic devices is considered the main parameter of the
system speed. Therefore, minimizing the operation time is
important, and the shortest program operation time of the GIFET
for linear weight update was determined to be 200 ps (see Sup-
plementary Fig. 7).

Figure 2e presents the linear conductance update with arbi-
trary pulse trains. Pulses consisting of 500 write pulses (1.4V,

500 ps), 500 hold pulses (0V, 500 pus) and 500 erase pulses
(-2.5V, 500 ps) were applied to the gate. For the read process, a
read pulse (1V, 200 ps) was applied to the drain terminal. As
shown in Fig. 2e, during the hold process, current change has
not been observed, which means that the data is well preserved.
It is important for synaptic devices to maintain nonvolatile
states at different intermediate conductance levels for neuro-
morphic computing applications. Moreover, the device has

Nature Communications | (2022)13:6431
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Fig. 3 | Measured GIFET data for high performance in a crossbar-array struc-
ture. Selected gate voltages based on reaching a constant current (3 nA) in Ip-Vg
characteristics. Gate voltage was double swept from -4 V to 7V, and 50 cycles in a
single device (a) and 15 different devices with the same gate width and length (b)
were measured. Insets are based on data from Supplementary Fig. 12. ¢ Repeated
LTP-LTD characteristics on a single GIFET device with 1000 potentiation-1000
depression (5V/-3.3V, 500 ps). d LTP-LTD characteristics for 15 different devices
with 1000 potentiation-1000 depression (5V/-3.3V, 500 ps). The cycle-to-cycle
and device-to-device variations of GIFET are 1.64% and 9.76%, respectively. e I-V¢

characteristic of the GIFET. f LRS current level of GIFET in Ip-V characteristic
(inset) according to channel doping concentration. g The endurance of GIFET over
2 x10° switching cycles (2 x 108 pulses). Each switching cycle is composed of 500
write pulses with 5V, 200 ps and 500 erase pulses with =5V, 200 ps. h Retention
characteristic of GIFET. Erase pulses (-3.3 V, 500 ps) were applied to the gate to
reach a certain conductance level, and read pulses (1V, 50 ps) were applied to the
drain every 1s after the erase pulse train. A 5.45% conductance value change was
observed after 1000s.

constant conductance change under repeated write/erase pulse
train, as magnified in Fig. 2f. This data implicates that the weight
stored in the device can be manipulated under an identical pulse
scheme, which helps soften the burden of the peripheral
circuit'>¥.

Next, the relationship between operation pulse amplitude/
duration and conductance change per pulse was investigated as
shown in Supplementary Fig. 8. It shows the relationship between
the pulse amplitude and current change at different pulse dura-
tions. GIFET can control the linear conductance update with small
current change per pulse in various pulse scheme (see Supple-
mentary Fig. 9-11). In other words, the GIFET shows stable char-
acteristics for controlling the pulse scheme for neuromorphic
computing applications, and has the advantage of being custo-
mizable to fit the needs of other applications.

Operational stability as a synaptic device

Besides the linearity in the LTP-LTD, to obtain high performance in the
large-scale crossbar-array structure, it is highly required to satisfy
various characteristics such as uniformity, Gyax/Gmin ratio, low power
consumption, endurance, and retention simultaneously’*>****2, To be
integrated as a large-scale crossbar array, spatiotemporal uniformity is
one of the essential properties®®*,

First, to investigate the spatio-temporal uniformity of the GIFET,
we assessed Ip-Vg characteristics of the GIFET by gate voltage
sweeping with constant read voltage on the drain. Figure 3a, b present
gate voltage at a specific drain current (/p =3 nA) from repeated cycles
on a single device for cycle-to-cycle variation and from 15 different
devices for device-to-device variation, respectively. In these figures,
cycle-to-cycle variation was observed as 4.30% at HRS and 1.15% at LRS
(o/w), while device-to-device variation was measured as 5.16% at HRS

Nature Communications | (2022)13:6431
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applied in the initial state, respectively, and read operations (1V, 50 ps) were per-
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and 3.67% at LRS (o/p) (ref. Supplementary Fig. 12). In addition,
the repeated LTP-LTD characteristics on a single device and several
different devices were observed with 1000 potentiation (5V,
500 ps,)-1000 depression (-3.3V, 500 ps) gate pulse trains, as shown
in Fig. 3¢, d. The LTP-LTD characteristics of the device in Fig. 3¢ pre-
sented a low variation of 1.64% (o/p) for 100 repeated cycles. The
device-to-device variation was experimentally measured on 15 devices
and it showed 9.76% (see Fig. 3d). The standard deviation of non-
linearity based on the LTP-LTD characteristics of 15 devices is also
calculated in Supplementary Fig. 13. The nonlinearity during poten-
tiation/depression in Supplementary Fig. 13a, b was fitted using the
method from Supplementary Note 2. Each spatial variation in the
results of the above Ip-Vg and LTP-LTD characteristics was slightly
higher than each temporal variation because of the Si channel thick-
ness variation during fabrication (see Methods section). This structure
shows uniform switching because it utilizes a large population of
electrons, minimizing the effect of fluctuation or stochastic behavior
of individual charged particles, instead of individual ion movement.
Figure 3e shows the Ig-Vg characteristics of the GIFET. As
observed, the gate current of the device was lower than 20 pA at 5V
gate bias, which means that power consumption for a write pulse with
500 ps pulse width is lower than 50 f]. In addition, the power con-
sumption during the read process in Fig. 3c is 5.54 pJ at the maximum
conductance level. Notably, the read current level of the device can be
modulated by controlling Si channel doping concentration (see Fig. 3f
and Supplementary Fig. 14), indicating that we can tune the device
operation speed and power consumption for specific applications
such as edge computing processor and high-performance processor.
The endurance and retention of the device are also crucial for
long-term and reliable neuromorphic computing applications®’. To

investigate the endurance of GIFET, we applied 500 consecutive
potentiation pulses with an amplitude of 5V and a width of 200 ps,
followed by 500 consecutive depression pulses with an amplitude of
-5V and a width of 200 ps per switching cycle. We then read the
change in state by drain voltage (1V, 50 ps) at each switching cycle. As
presented in Fig. 3g, the device achieves robust endurance (>2 x 108
pulses).

Figure 3h shows the data-holding ability of the GIFET. We
observed a data loss of 5.45% (13.6 nS) of the updated conductance
after 1000s. Also, several intermediate conductance levels were
maintained without severe degradation. It is essential for synaptic
devices to maintain non-volatile states at various intermediate con-
ductance levels in order to be used for neuromorphic computing
applications. There is a tradeoff between retention, endurance, and
linearity for weight update due to lowered barrier height of the
blocking layer. The newly developed device improves endurance and
linear conductance update while it loses data holding ability compared
to conventional flash memory devices. Because the barrier height
between the blocking layer and CSL can be controlled by the material
stoichiometry and film quality>**, the device characteristic can be
optimized for specific purposes through further engineering of pro-
cesses and materials utilized for CSL and blocking layer.

The Robustness of the GIFET to temperature variations

Figure 4a, b present the linear characteristics of the GIFET under
varying temperatures. We confirmed the robustness of the linearity
over a temperature change from 298 K to 393K during 1000 poten-
tiation (4 V, 500 ps) and 1000 depression (=4 V, 500 ps) operations. As
shown in Supplementary Fig. 15, the linearity of conductance update is
stable at all temperatures without severe degradation.
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characteristics with ideal device (software baseline simulation with ideal circum-
stances such as large Gax/Gmin ratio, ideal linearity, and no device variations), ideal
linearity (reflecting all the characteristics of GIFET except linearity and device
variations) and the devices with deteriorated linearity (nonlinearity of 3, 6 for
lightly-, highly-deteriorated linearity, respectively).

For verifying the reliability of multi-level conductance states in
high temperatures, the retention characteristics were measured for
two states according to temperature from 298 K to 393 K as shown in
Fig. 4c. Erase pulses (-3.3V, 500 ps) of 100 (read sphere) and 1000
(blue sphere) were applied in the initial state, respectively, and read
operations (1V, 50 ps) were performed every 1s. It was confirmed that
only the conductance level (drain current level) increased as the
temperature increased and that the conductance states remained
unchanged for 200 s. This indicates long-term plasticity properties,
and the proposed GIFET can hold data for online training, even at high
temperatures.

Figure 4d and Supplementary Fig. 16 shows the endurance char-
acteristics of GIFET. To investigate the robustness of the hardware, the
endurance was measured under the same pulse conditions over a
temperature change from 298 K to 393 K. The pulse train consists of
ten consecutive potentiation pulses with an amplitude of 6 V and width
of 500 ps, followed by ten consecutive depression pulses with an
amplitude of -6 V and width of 500 ps. As presented in Fig. 4d and
Supplementary Fig. 16, the device operates stably by holding its high-
level and low-level states, without severe degradation after 10°
switching cycles (2x10° pulses in total). This indicates reliable endur-
ance characteristics for highly frequent updates during online learning.

ANN simulation with the performance of GIFET

Figure 5a presents the read operation of the GIFET with 1V, 30 ps pulse
to read changed conductance with 1.8 V/-2.5V, 300 ps update pulses.
As presented in the graph, the read operation of GIFET can be con-
ducted without applying gate bias by read pulses of 30 ps, which is
comparable with that of conventional NAND flash®. Therefore, it has

advantages in terms of low power consumption for dense array
application, while NAND flash needs repeated processes that are
determining on/off of the cell using threshold voltage with applying
specific bias for reading current state.

To examine the performance of the GIFET for neuromorphic
computing as a large-scale crossbar array structure, we simulated the
device with the multi-layer artificial neural network using long-term
plasticity characteristics directly extracted from measured data® (see
Supplementary Fig. 17 and Note 4). The multi-layer perceptron ANN
consists of an input layer with 400 nodes, a hidden layer with 100
nodes, and an output layer with 10 nodes, as shown in Fig. 5b. Each 400
input node represents each pixel of 20x20 MNIST handwritten data
and this input data resulted in 10 output through 2-layer of vector-
matrix multiplication and activation function. Ten output nodes mean
the result of classification among 0-9 digits. Each weight of the
synapse device was updated based on the stochastic gradient descent
method with parameters of the GIFET such as nonlinearity, Gax/Gmin
ratio, cycle-to-cycle variation, device-to-device variation, and applied
pulse scheme to account for device non-ideality. 8000 random images
per each epoch out of 60,000 training image set were utilized in the
training process. After training, the system accuracy was evaluated
with 10,000 MNIST images of a testing set. To inspect the influence of
linearity on ANN performance, we conducted the simulations with
varying linearity. Figure 5c presents the resulting accuracy graphs of
MNIST classification by each epoch with the GIFET, the software
baseline with ideal device, the device with ideal linearity and sym-
metry, and the device with deteriorated linearity (see Supplementary
Fig. 18). As observed, the ideal device shows an accuracy of 96.78%, and
the GIFET-based artificial neural network obtained an accuracy of
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Table 1| Comparison with the various synaptic transistors for neuromorphic computing

7 44 * 2 58 “ 59 This work
The Number of Conductance States (LTP/LTD) 100/100 60/60 64/64 2L 2% 100/50 50/50 100/100 1000/1000
Area [um?] 0.52 3 15,000 350 N/A N/A 2000 100
Power Consumption [fJ] <400 30 =60,000 <20 N/A =160 N/A <50
On/off Ratio =3 =2 >10 =10° >10 =2 =9 >10
Program Voltage [V] 2 12 2.7~4.3 4 3.5 25 3 1.8
Program Time [ms] 100 100 10 10 10 10 100 0.3
Temporal Variation N/A N/A 2.36% N/A N/A <6.5% N/A 1.64%
Spatial Variation N/A N/A 3.93% N/A N/A <12% N/A 9.76%
Linearity (ideal=1) (LTP/LTD) 1.5/5.9 1.9/0.5 ISPP 1.51/-0.38 1.3/-0.3 N/A 0.96/-0.11 1.53/0.47
Retention N/A N/A 10%s 5000s N/A 100s N/A >1000s
Endurance (HRS/LRS switching cycles) N/A N/A >10° >400 N/A >40 N/A >2x10°
Simulation Accuracy 84.6% N/A 91.1% 91.7% 86.82% 87.3% 93.26% 93.17%
CMOS Compatibility No No Yes Yes Yes No No Yes

ISPP (Incremental Step Pulse Programming) is not identical pulse.

approximately 93.17% during 300 epochs, which is almost equivalent
to that of an ideal linearity device, 93.45%. Furthermore, the device
with lightly- and highly-deteriorated linearity exhibited degraded
training results as maximum accuracy of 85.13% and 70.56%, respec-
tively. Compared to other synaptic parameters of the same algorithm,
the GIFET shows high accuracy with fair comparison including number
of conductance states, nonlinearity, on/off ratio and spatio-temporal
variation. (see Supplementary Table 1). These results demonstrate the
importance of the linear conductance update for neuromorphic
computing on a large-scale crossbar array and suggest that the GIFET
has enough linearity.

Discussion

In summary, we developed a three-terminal synapse device for enhan-
cing linearity on LTP-LTD based on field-effect to control channel con-
ductance by stored charge in CSL, which is injected from or extracted to
gate metal based on thermionic emission. The effect of the conduction
mechanism between CSL and gate metal through the a-Si:H blocking
layer on linear conductance update was investigated by comparing the
device with and without interfacial layer and observing the gate current
through the blocking layer of each device under varying temperatures.
The thermionic emission-based GIFET reported linear conductance
update while the device with interfacial layer presented nonlinearity.
Furthermore, GIFET shows superior properties such as number of
conductance states, area, power consumption, on/off ratio, operating
voltage, programming time, spatio-temporal variation, linearity, reten-
tion, endurance, simulation accuracy and CMOS compatibility (see
Table 1), since the mechanism based on electron movement employs
the flash memory structure. In addition, low spatio-temporal variation,
reliable endurance and retention, and low power consumption of the
GIFET support that the device is qualified for the large-scale crossbar
array to conduct neuromorphic computing. Moreover, all the processes
and materials utilized for the GIFET fabrication were CMOS compatible,
which suggested low-cost and fast integration with the conventional
system. Artificial neural network simulation based on MNIST dataset
with the parameters extracted from GIFET measurement data shows
high accuracy of 93.17%, which implies the possibility of Al acceleration
with GIFET-based large-scale crossbar array.

Methods

Device Fabrication

The Si top layer of SOl wafer with 145 nm thickness oxidized by thermal
furnace and the oxide was removed by hydrofluoric acid to reduce the

thickness of the Si layer, remaining 20 nm. lon implantation (Dose
2x102cm™ 7.5KeV, Phosphorus) and annealing (1273 K, N, atmo-
sphere, 1 min) was conducted. Each cell on buried oxide were designed
with 5 pm channel width by mesa pattern lithography and Reactive lon
Etch (RIE) with SF¢ and Ar gas. Silicon dioxide 25 nm was deposited as
gate oxide using Plasma Enhanced Chemical Vapor Deposition
(PECVD). WO, was deposited with RF sputtering using WOj; sputtering
target (Kurt]. Lesker, USA). The sample was annealed in Rapid Thermal
Annealing system with O, atmosphere, 573 K to enhance stoichiometry
of WO, layer (see Supplementary Fig. 19 and Note 5). The WO, layer
was designed with 20 um gate length by lithography and RIE etch
with SF¢ and Ar gas. Hydrogenated amorphous silicon 50 nm was
deposited using PECVD and designed by lithography and RIE etch.
Silicon dioxide on source and drain was removed by wet etch with BOE.
Lastly Ti/Au (10 nm/50 nm) was deposited as metal pad for source,
drain, and gate.

Electrical Measurement
Parameter analyzer (Keithley 4200A-SCS) with the conventional probe
station was used to measure Ip-Vg characteristic of the GIFET by gate
voltage sweeping during applying read voltage on drain. The resolution
of sweep gate bias was 0.05 V. The analog conductance update under
successive identical pulse train was measured using parameter analyzer
and Pulse Measurement Unit (PMU), which allow setting pulse width
and amplitude on gate and drain intentionally. Read pulses applied to
drain after every write or erase process to read conductance state.
Data acquisition system (USB-6363, National Instrument) and
current preamplifier (DL instruments, Model 1211) were utilized to
measure the endurance of the GIFET. The pulse magnitude and width
were modulated through MATLAB® code. The repeated switching
cycle applied to the GIFET through DAQ and output current flowed to
preamplifier under drain read voltage. Current was measured by
averaging the output current over specified duration. Each switching
cycle was similar to what we utilized in measurement of analog con-
ductance update with parameter analyzer and PMU. LRS and HRS of
each switching cycle were extracted.

Conduction mechanism analysis

To investigate the conduction mechanism through gate stack, I-V
characteristic was measured at varied temperature under vacuum
condition (-107 Torr). Keithley 236 Source Measurement Unit (SMU)
driven by LabVIEW was utilized to apply voltage and measure current
with cryogenic probe station (ModuSystems, Inc).

Nature Communications | (2022)13:6431



Article

https://doi.org/10.1038/s41467-022-34178-9

MNIST simulation based on GIFET array

The simulation of the GIFET based crossbar array was conducted based
on “NeuroSim+”. The neural network was composed of three layers to
conduct supervised learning with back propagation. The input layer
had 400 nodes for 20 x 20 pixels of binary MNIST image and the
hidden neuron had 100 nodes, while the output neuron had 10 nodes
for results of classification, representing 0-9 digits. Stochastic gradient
decent was used for weight update. The gradient of the cost function
for the neural network parameters was computed using a stochastic
gradient descent algorithm. Stochastic gradient decent randomly
samples examples from the training dataset for each epoch to com-
pute the gradients. Therefore, it is usually much faster and widely used
for the training process™.

The simulation consists of two parts: the synaptic array and per-
ipheral circuitry. The peripheral circuit includes a switch matrix,
crossbar WL decoder, MUX decoder, analog-to-digital read circuit,
adder, and shift register. The device parameters of GIFET such as set
voltage, pulse width, min/max conductance, nonlinearity, cycle-to-
cycle variation, and device-to-device variation are utilized to perform
the simulation.

Data availability
The data that support the findings of this study are available from the
corresponding author upon reasonable request.

Code availability
The codes used for the simulations are available from the corre-
sponding author upon reasonable request.
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