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Abstract

Background: Evaluating individual health outcomes does not capture co-morbidities children experience.

Purpose: We aimed to describe profiles of child neurodevelopment and anthropometry and identify their predictors.

Methods: Using data from 501 mother-child pairs (age 3-years) in the Maternal-Infant Research on Environmental
Chemicals (MIREC) Study, a prospective cohort study, we developed phenotypic profiles by applying latent profile analysis
to twelve neurodevelopmental and anthropometric traits. Using multinomial regression, we evaluated odds of phenotypic
profiles based on maternal, sociodemographic, and child level characteristics.

Results: For neurodevelopmental outcomes, we identified three profiles characterized by Non-optimal (9%), Typical
(49%), and Optimal neurodevelopment (42%). For anthropometric outcomes, we observed three profiles of Low (12%),
Average (61%), and Excess Adiposity (27%). When examining joint profiles, few children had both Non-optimal neu-
rodevelopment and Excess Adiposity (2%). Lower household income, lower birthweight, younger gestational age, de-
creased caregiving environment, greater maternal depressive symptoms, and male sex were associated with increased odds
of being in the Non-optimal neurodevelopment profile. Higher pre-pregnancy body mass index was associated with
increased odds of being in the Excess Adiposity profile.

Conclusions: Phenotypic profiles of child neurodevelopment and adiposity were associated with maternal, socio-
demographic, and child level characteristics. Few children had both non-optimal neurodevelopment and excess adiposity.
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Introduction

One in eleven children in Canada, (age 4-11) have a neu-
rodevelopmental disability.1

Children with developmental disabilities are more likely
to have other diagnosed psychopathology and poorer
physical health than typically developing peers.2,3 The
presence of co-occurring conditions creates additional
barriers above and beyond challenges of individual health
conditions.4 Thus, studying multiple dimensions of chil-
dren’s health may more accurately identify vulnerable
subgroups experiencing multimorbidity.

Prior research has highlighted the importance of eval-
uating all aspects of health by characterizing its parts as a
‘phenome’ – patterns and profiles of disease states across
the life course.2,3,5 Considering multimorbidity has been
increasingly adopted in psychology as research moves away
from distinct psychiatric disorders classified within the
Diagnostic and Statistical Manual of Mental Disorders
(DSM) towards Research Domain Criteria because bio-
behavioral features often overlap with heterogeneously
defined disorder categories.6 The notion that children ex-
perience shared symptomatology across discretely defined
disorder diagnostic categories has also be applied in clinical
settings (e.g., Early Symptomatic Syndromes Eliciting
Neurodevelopmental Clinical Examinations [ESSENCE])
to recognize the need for multiple practitioners to support
children experiencing multimorbidity.7 In fact, clinical
practice focused on individual childhood conditions may
disadvantage children with multimorbidity.8 For example,
individuals with autism spectrum disorder often also have
attention deficit hyperactivity disorder,9 and are more likely
to have overweight or obesity compared to their typically
developing peers.10,11,12 Several early life risk factors are
associated with both adverse physical and neuro-
development outcomes. For instance, children who are born
preterm are at heightened risk of atypical neurodevelopment
and adverse physical health outcomes.13,14 Moreover, some
environmental pollutants (i.e., lead15) are risk factors for
altered growth and atypical neurodevelopment, suggesting
shared mechanisms that these factors disrupt. Thus, there is
a need to consider both salutogenesis, as in the study of the
origins of health,16 as well as pathogenesis, as in the factors
that cause disease,17 when investigating the predictors of
child health. Additionally, other fields of children’s health,
including children’s environmental health, have emphasized
the need to evaluate the complex existence of multiple
exposures at once, applying sophisticated methods to
capture the effects of exposure mixtures. However, health
outcomes are commonly evaluated individually, despite
evidence for multimorbidity, emphasizing the need to
employ statistical approaches to characterize the co-
occurrence of child health outcomes. While pediatricians
have recognized that some children experience

multimorbidity, relatively little research has characterized
aspects of the child health phenome as a primary outcome.

The purpose of this study was to describe patterns and
predictors of neurodevelopment and adiposity using ex-
ploratory data analysis, clustering, and multivariable
techniques in a prospective birth cohort.

Methods

Study participants

We used data from the Maternal-Infant Research on En-
vironmental Chemicals (MIREC) Study, a pan-Canadian,
prospective cohort designed to assess the impact of envi-
ronmental chemical and nutritional exposures on maternal,
infant, and child health.18 Pregnant women in their 1st

trimester were recruited from 10 cities (11 sites) across
Canada from 2008-2011. Eligibility including: ≥ 18 years of
age, <14 weeks’ gestation, willing to provide cord blood
samples, planning on delivering at a local hospital, and no
known fetal abnormalities or serious medical complications.
Of 8,716 women invited to participate, 5,108 were eligible,
2,001 consented, and 1,861 delivered singleton live births.
In-person follow-up around age 3-years was completed at
7 study sites (6 cities) on 610 children. Note, distributions of
participant characteristics for those who completed in-
person follow-up were similar between those from eligi-
ble sites for the child follow-up visits as well as the original
MIREC pregnancy cohort.19 After excluding those with
missing outcome data (n=109), our final analytic sample
was 501 children (eFigure S1).

The MIREC Study was approved by the Research Ethics
Board of Health Canada, and all participating study sites’
ethics review committees. All mothers provided informed
consent for themselves and their participating children.

Child Neurodevelopment and anthropometry

Neurodevelopmental assessments and anthropometric
measures of children were done at age 3-years (range: 3-3.9;
SD: 0.32) in the participants’ homes or study clinics.
Research staff assessed child cognitive abilities using the
Wechsler Preschool and Primary Scale of Intelligence
(WPPSI-III).10 The WPPSI is a validated assessment of
child full scale intelligence for children aged 2.5 years to
7 years, administered by trained examiners.20,21 TheWPPSI
derives a full-scale composite score (mean: 100 and SD: 15)
and also provides subsets and composite scores including
verbal compression and working memory. Scores were
found to be stable overtime within children based on test-
retest analyses.22

Behavior problems were assessed by maternal-report
using the Behavioral Assessment System for Children
(BASC-2).23 The BASC-2 is a reliable and valid assessment
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of child problem behaviors for children.24 This 185-item
behavior checklist can be administered by parents, teachers,
or even via self-report. There are four primary composite
scores including externalizing problems, internalizing
problems, behavior symptoms index, and adaptive skills,
with an additional 12 clinical subscales. Raw scores were
converted to sex-normalized T-scores (mean: 50, SD: 10)
based on US reference data.

Finally, social cognition was assessed with the Social Re-
sponsiveness Scale (SRS-2).25 The SRS is a 65-item, Likert style
questionnaire used to assess social reciprocity and autism-related
traits that yields dimensional scores.24,25 Based on caregiver
report, individual items are scored and summed to yield a total
raw score. Raw scores were converted to sex-normalized
T-scores (mean: 50, SD: 10) based on US reference data.
Higher scores are indicative of more autism-related behaviors.
The SRS has well-established psychometric properties within
both autism specific and general population samples,26,27 and
demonstrated validity against the gold standard Autism Diag-
nostic Interview-Revised (r=0.7).25,28 See section “Child Health
Components” for methods related to select phenome
components.29,30

Trained research assistants assessed weight, height,
head/waist/hip circumferences, and subscapular and triceps
skinfold thickness at the time of, or within 6 months of the
neurobehavioral visit. Length was measured with a portable
stadiometer to the nearest 0.1 cm and weight using a digital
scale to the nearest 2 grams. Head, waist, and hip cir-
cumferences were measured using a measuring tape and
established protocols.31 Using standardized procedures, a
caliper was used to estimate subscapular and triceps skin-
fold thickness. Two measures were taken for all anthro-
pometric characteristics, except in cases of discrepancies,
which required a third measure.

Covariates

We identified maternal, reproductive, and child level charac-
teristics as potential predictors a priori based on subject matter
knowledge for their associations with child health outcomes
based on prior literature. Mothers reported covariate infor-
mation during the 1st trimester (baseline), as well as during the
age 3-year follow-up visit using standardized questionnaires.
Mothers self-reported parity and pre-pregnancy body mass
index (BMI) using standardized questionnaires during the
baseline visit and information on breastfeeding practices at the
3-year visit. Increased parity may negatively correlate with
child neurodevelopment, in part due to the impact of multiple
children on familial resources.32 Increased pre-pregnancy BMI
has been associatedwith both atypical neurodevelopment33 and
increased adiposity in children.34

Breastfeeding has been found to have a dose-response re-
lation with elevated cognition scores in and may even be

protective against conduct disorder development in children.11

Additionally, at least three months of exclusive breastfeeding
was found to decrease the risk to child obesity, even across
maternal pre-pregnancy BMI categories.12 Study staff mea-
sured plasma cotinine in the 1st trimester to assess active and
environmental tobacco smoke exposure.35 Both first and
secondhand tobacco smoke exposure during pregnancy have
been associated with increases in child autism-related traits,36

decreases in IQ scores,37 and increased likelihood of over-
weight or obesity.38 Infant birthweight and gestational age at
birth were ascertained via medical chart review. Low birth
weight and preterm birth are established risk factors for neu-
rodevelopmental outcomes like autism39 and intellectual dis-
ability.40 Study staff measured quality and quantity of the
caregiving environment using the Home Observation for
Measurement of the Environment (HOME Inventory),41 and
assessed maternal depressive symptoms using the Center for
Epidemiologic Studies Depression scale (CES-D) at the 3-year
visit.42 Prior work has observed associations between higher
quality caregiving environments with child cognitive devel-
opment.43 Additionally, elevated maternal depressive symp-
toms may be inversely related to child cognition44 and
executive functioning.45

Statistical analyses

Child health components. We conducted exploratory analysis
to examine associations between neurodevelopmental and
anthropometric outcomes. First, we examined univariate
distributions of characteristics for neurodevelopment and
anthropometry (e.g., range, central tendency). Then, we
calculated correlations among individual measures, exam-
ining both composite and subscale scores for neuro-
developmental outcomes.

Next, we conducted principal component analyses (PCA) to
determine which individual outcomes to include in phenotypic
profiles, which were identified using LPA, given that some
individual health measures may be highly correlated with each
other and each might not be distinctly informative of multi-
morbidity patterns (e.g., subscales of cognitive tests). We con-
ducted PCAs that were restrictive (only summary scales) and
comprehensive (inclusion of subscales and composite scores).
We examined Scree plots and evaluated principal components
with Eigenvalues ≥ 1. Through these analyses, we included the
WPPSI-III full scale intelligence quotient (FSIQ), SRS total
T-score, and four BASC composite scores: Externalizing
Problems, Internalizing Problems, Behavioral Symptoms Index
(BSI), and Adaptive Skills. For anthropometric health outcomes,
we considered all available measures including head, waist, and
hip circumferences, subscapular and triceps skinfold thickness,
and derived BMI from weight and height measures.

Phenotypic profiles. Our goal was to develop distinct neuro-
developmental and anthropometric profiles using latent profile
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analysis (LPA, R package tidyLPA) and then examine their
joint distribution and predictors. To account for varying scales
of individual outcomes, we converted all measures to z-scores.
For anthropometric outcomes, we derived age- and sex-
standardized z-scores using World Health Organization
(WHO) standards46 and used the R package “anthro”. For
anthropometric outcomes without WHO standards, we re-
gressed their values on child sex, age, and a sex/age interaction
term to estimate age and sex-specific values from the residuals
of these models. Next, we calculated Pearson correlation co-
efficients to assess bivariate associations between individual
neurodevelopmental and anthropometric outcomes.

Given that neurodevelopmental and anthropometric out-
comes were not correlated, we conducted independent LPAs
within each domain of neurodevelopment and anthropometry.
LPA is a dimension reduction technique used to identify
clusters (latent classes) based on observed variables, allowing
for the identification of distinct subpopulations based on
similarities of selected observed variables.47 LPA is a type of
‘soft clustering’ technique, in that it assigns individuals a
probability of cluster assignment, offering a more flexible
approach to identifying latent class membership than k-means
or other techniques.47 We refer to the latent classes of neu-
rodevelopment and anthropometry as phenotypic profiles. We
assumed equal variance and zero covariance between indi-
vidual health measures when conducting LPAs. We ran sep-
arate analyses assuming 2, 3, and 4 clusters. To identify the best
fitting model, we considered both Bayesian Information Cri-
terion values and the sample size of resulting clusters.

We created joint phenotype profiles by cross classi-
fying profile assignments based on results from domain-
specific LPA analyses to identify participants with op-
timal neurodevelopment and anthropometry, those with
non-optimal neurodevelopment or adiposity only, and
those with both non-optimal neurodevelopment and
excess adiposity.

Patterns and predictors of phenotypic profiles. Using multi-
nomial logistic regression, we calculated the odds of phe-
notypic profile membership based on identified predictors,
examining each variable in a separate model. Given the
relation between birthweight and gestational age, we also
included a model with both birthweight and gestational age.
From these analyses, we identified a set of covariates
predictive of profile membership based on results from
individual models (p-value ≤ 0.05). We standardized as-
sociations for continuous variables (i.e., maternal age) to the
standard deviation difference in exposure. We then con-
ducted multivariable multinomial logistic regression ana-
lyses where we included all previously identified significant
covariates associated with phenotypic profile
membership. The Typical neurodevelopmental profile and
the Average Adiposity anthropometric profile served as
domain specific reference groups.

To account for uncertainty in latent class assignment, we
conducted sensitivity analyses incorporating classification
error into our parameter estimates.48 We conducted multi-
nomial regression with complex survey design, using the R
package svyVGAM, where each individual participant was
a cluster, using an independent correlation matrix.

We used R version (4.1.0) for all statistical analyses.

Results

Participant characteristics

Mothers were mostly 30 years old at delivery, university-
educated (68%), with annual household incomes ≥ $80,000
(58%) (Table 1). Most were Canadian born (83%), did not
smoke during pregnancy (65%), used prenatal vitamins
(87%), had normal or underweight pre-pregnancy BMI
(58%), almost half were nulliparous (44%) and exclusively
breastfed for at least 6 months (43%). Distributions of
mother and child characteristics were similar among the
analytic sample and those who were eligible for partici-
pation at age 3-years, but were excluded (Table 1).

Most children had optimal neurodevelopment and an-
thropometry (eTable 1). For example, measures of child
cognitive abilities were higher than the expected average of
100 (FSIQ mean: 107, SD: 14), and mean BMI was slightly
higher than the WHO reference sample (mean: 16.1; SD:
1.3).49 Individual neurodevelopmental measures and an-
thropometric outcomes were correlated within domains, but
not across (Figure 1, eTable 2).

Profile description. We identified 3 profiles of neuro-
development characterized as Non-optimal, Typical, and
Optimal (eFigure 2). Non-optimal profiles of neuro-
development (n=45, 9%) were characterized by lower FSIQ
and BASC Adaptive Skills scores, and higher SRS, BASC
Externalizing, BASC Internalizing, and BASC BSI scores,
indicating lower cognitive abilities, less adaptive behaviors,
reduced reciprocal social behaviors, and more problem
behaviors (eTable 1). Typical (n=247, 49%) and Optimal
(n=219, 42%) neurodevelopmental profiles were charac-
terized by average and above average FSIQ scores, re-
spectively, and lower SRS, BASC Adaptive Skills,
Externalizing, Internalizing, and BSI scores compared to the
non-optimal profile. BASC BSI scores displayed the largest
differences between Non-optimal (mean: 64, SD: 4.2),
Typical (mean: 53, SD: 3.2), and Optimal (mean: 45, SD:
3.6) neurodevelopmental profiles. Average values of an-
thropometry did not vary between neurodevelopmental
profiles (Figure 2, eTable 1).

We identified three profiles of anthropometry. Children in
Low (n=60, 12%), Average (n=306, 61%), and Excess (n=135,
27%) Adiposity profiles were characterized by lower, average,
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Table 1. Mother and child sociodemographic and perinatal characteristics among MIREC Study Participants.

Variable

Analytic sample Eligible for age 3-years

N (%) N (%)

Overall 501 (100) 1,568 (100)
Maternal age
<25 years 13 (3) 94 (6)
25 - <30 years 107 (21) 358 (23)
30 - <35 years 209 (42) 585 (37)
35 + years 172 (34) 531 (34)
Missing 0 0

Maternal education
High school or less 20 (4) 132 (8)
Some college 19 (4) 78 (5)
College/Trade school 119 (24) 361 (23)
University degree 341 (68) 995 (63)
Missing 2 2

Maternal country of origin
Canadian born 414 (83) 1256 (80)
Foreign born 87 (17) 312 (20)
Missing 0 0

Annual income (terciles)
<$70k 129 (26) 465 (30)
$70-$100k 160 (32) 439 (28)
>$100k 195 (39) 601 (38)
Missing 17 63

Maternal smoking statusa

Unexposed 328 (65) 840 (54)
Second-hand smoking 153 (31) 612 (39)
Active smoking 14 (3) 95 (6)
Missing 6 21

Parity
0 222 (44) 695 (44)
1 215 (43) 640 (41)
2 + 64 (13) 233 (15)
Missing 0 0

Pre-pregnancy BMI (kg/m2)
Normal/Underweight <25 293 (58) 924 (59)
Overweight ≥25 - <30 93 (19) 325 (21)
Obese ≥30 78 (16) 209 (13)
Missing 37 110

Prenatal vitamin use
Yes 434 (87) 1367 (87)
No 67 (13) 200 (13)
Missing 0 1

Child sex
Male 248 (50) 735 (47)
Female 253 (50) 834 (53)
Missing 0 0

Exclusive breastfeeding
≥ 6 months 214 (43) 255 (16)
< 6 months 168 (34) 193 (12)
Missing 119 1120

(continued)
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and higher BMI, waist and hip circumference, as well as triceps
and subscapular skinfold thickness measures, respectively
(eTable 1, Figure 2). Head circumference values were similar
between the Low and Average Adiposity profiles and were only
slightly higher for the Excess Adiposity profile. Waist circum-
ference provided the clearest differentiation of class assignment
for Low (mean: 43.6cm, SD: 2.37),Average (mean: 49.5cm, SD:
2.19), and Excess Adiposity profiles (mean: 54.9cm, SD: 2.82).

When cross-classifying neurodevelopmental and an-
thropometric profiles, we identified four profiles charac-
terized by Optimal/Typical neurodevelopment and Low/
Average Adiposity (n=331, 66%: Phenotypic Profile 1),
Optimal/Typical neurodevelopmental and Excess Adiposity
(n=125, 24%: Phenotypic Profile 2), Non-optimal neuro-
development and Low/Average Adiposity (n=35, 6%:
Phenotypic Profile 3), Non-optimal neurodevelopment and
Excess Adiposity (n=10, 2%: Phenotypic Profile 4)
(eTable 3, Figure 2). Given small sample sizes, we did not
conduct statistical analyses on joint profiles.

Predictors of profiles. Lower maternal age, annual household
income, male child sex, younger child age at testing, lower
HOME scores, lower birthweight, lower gestational age at
birth, and higher CES-D scores were associated with increased
odds of Non-optimal neurodevelopmental profile assignment
(Figure 3, eTable 4). For example, each standard deviation
increase in maternal CES-D scores was associated with 42%
increased odds of the child being assigned to the Non-optimal
versus the Typical neurodevelopmental profile (95% CI: 1.08,
1.87). Children assigned to the Optimal neurodevelopmental
profile were more likely to be female, and had mothers who
were older, with higher household incomes, and lower plasma
cotinine concentrations (eTable 5). In multivariable models,
child sex, child age, HOME scores, and CES-D scores re-
mained predictive of profile membership (eTable 6). When we
further examined HOME and CES-D scores as quartiles, we

found that both were monotonically associated with odds of
Optimal or Non-Optimal neurodevelopmental profile assign-
ment (Figure 5, eTable 7).

Higher birthweight (including adjusted for gestational age) or
having a mother with overweight or obese pre-pregnancy BMI,
was associated with higher odds of Excess Adiposity profile
assignment (Figure 4, eTable 4). For example, compared with
those who were classified as having normal or underweight pre-
pregnancy BMIs, children with mothers who had pre-pregnancy
obesity had 67% increased odds of being in theExcessAdiposity
profile (95%CI: 0.96, 2.90).We also found thatmaternal nativity
(birth outside Canada), higher annual household income, and
shorter gestational ages at birthwere associatedwith greater odds
of membership in the Low Adiposity profile (eTable 8). In
multivariable models, overweight pre-pregnancy BMI, birth-
weight, and gestational age at the time of birth remained pre-
dictive of anthropometric profile membership (eTable 6).

Characteristics of mothers and children in the joint profiles
were similar to analyses examining distinct profiles of neuro-
development and anthropometry (eTable 9). For example,
childrenwho hadmotherswith higher pre-pregnancyBMIswere
more likely to be classified in Phenotypic Profile 2 compared to
1 and 3. Boys were more likely to be classified in Phenotypic
Profile 3 compared to girls. However, result should be interpreted
with caution given the small sample size of this joint profile.
Note, we did not present results pertaining to Phenotypic Profile
4 given the small sample size to protect participant
confidentiality.

Sensitivity analyses

Accounting for classification error in the probability of an in-
dividual being assigned to a given phenotypic profile did not
substantially alter the pattern of results. Point estimates remained
largely the same, and in some cases, precision slightly increased,
indicating attenuation bias (eTables 10-12).

Table 1. (continued)

Variable

Analytic sample Eligible for age 3-years

N (%) N (%)

Gestational age
< 34 weeks <6 (1) 37 (2)
34 - < 37 weeks >21 (4) 42 (3)
≥ 37 weeks >473 (95) 1419 (90)
Missing 0 24

Birthweight (grams)
Mean (SD) 3455 (518) 3435 (518)
Missing 2 2

MIREC: Maternal-infant research on environmental chemicals study; BMI: Body Mass Index; SD: Standard deviation.
amaternal smoking during pregnancy estimated based on maternal plasma cotinine concentrations during pregnancy. Values ≤ 0.15ng/ml were considered
unexposed, >0.15 - 3.0 ng/ml as second-hand smoking, and >3.0 ng/ml as active smoking.Note, in an effort to protect participant confidentiality, we did no
present exact values for cells less than 6.
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Discussion

Using dimension reduction techniques to classify parts of
the child health phenome, we identified 3 neuro-
developmental profiles, characterized by Non-optimal,
Typical, and Optimal neurodevelopment, and 3 profiles of

anthropometry, defined by Low, Average, and Excess
Adiposity using LPA. When neurodevelopmental and an-
thropometric profiles were examined jointly, few children
had Non-optimal neurodevelopment and Excess Adiposity.
Some sociodemographic, maternal, and child characteristics
predicted profile membership in both domains, while others

Figure 1. Heat map of Pearson correlations among all individual phenome z-score components among MIREC Study Participants.
Z-scores of selected outcomes (SRS T-scores, BASC: Externalizing Problems, BASC: Internalizing Problems, BASC: Behavioral
Symptoms Index) were reverse scored so the direct of the scores would be the same across all neurodevelopmental outcomes. For
example, lower WPPSI FSIQ scores indicate lower cognitive abilities, and reverse scored SRS T-scores indicate more autism related
traits.
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were specific to neurodevelopment (e.g., caregiving envi-
ronment) or anthropometry (e.g., pre-pregnancy BMI).

While patterns of multimorbidity have previously
been studied in children, relatively little research has
evaluated neurodevelopment and anthropometry to-
gether. One study explored the co-occurrence of
57 chronic morbidities, and found children with complex
medical conditions could be classified into four groups
within the domains of oncology, neurodevelopment,
congenital and perinatal, and respiratory conditions.4

Another study observed that children with many co-
occurring conditions, identified as medical conditions
resulting in pediatric intensive care unit hospitalization,
are at an increased risk of developing mental health
related illnesses, such as post-traumatic stress disorder.50

Thus, multimorbidity in early childhood may be a risk
factor for development of adverse health later in life.

The observation that child neurodevelopmental and
anthropometric outcomes overlap is not novel. However,
the findings of this study support that phenotypic profiles
are a method to consider when assessing multiple health
outcomes. Indeed, this is consistent with clinical recom-
mendations recognizing the overlap of symptomatology
across psychiatric diagnoses,6–8 a single-outcome-at-a-time
approach does not account for the frequency of co-occurring
health outcomes and the reality of child health status.
Additionally, from an etiologic perspective, there is reason
to consider comprehensive measures of health outcomes
rather than individual outcomes, given how the same en-
vironmental exposures are associated with multiple child
outcomes. For example, gestational phthalate levels have
been associated with both atypical neurodevelopment51–54

and childhood obesity.55 Finally, other fields have explored
statistical approaches to capturing multiple, overlapping

Figure 2. Heat map of mean z-scores of individual health outcomes for neurodevelopmental and anthropometric classes and joint
phenotypic profiles among MIREC study participants. For neurodevelopmental outcomes: Non-optimal: (n=45) are characterized by
lower cognitive abilities and more problem behaviors, Typical: (n=247) are characterized by average scores on all neurodevelopmental
assessments, and Optimal: (n=209) are characterized by higher cognitive abilities and less behavior problems. Note, z-scores of selected
outcomes (SRS T-scores, BASC: Externalizing Problems, BASC: Internalizing Problems, BASC: Behavioral Symptoms Index) were
reverse scored so the direct of the scores would be the same across all neurodevelopmental outcomes. For example, lowerWPPSI FSIQ
scores indicate lower cognitive abilities, and reverse scored SRS T-scores indicate more autism related traits. For Anthropometric
outcomes: Low Adiposity: (n=60) are characterized be less adiposity, Average Adiposity: (n=306) are characterized by average or
medium adiposity, Excess Adiposity: (n=135) are characterized by increased adiposity. Phenotypic Profile 1 (n=331) is characterized by
Optimal or Typical Neurodevelopmental Profiles and Low or Average Adiposity Anthropometric Profiles. Phenotypic Profile 2 (n=125)
is characterized by Optimal or Typical Neurodevelopmental Profiles and Excess Adiposity Anthropometric Profiles. Phenotypic
Profile 3 (n=35) is characterized by Non-typical Neurodevelopmental Profiles and Low or Average Adiposity Anthropometric Profiles.
Phenotypic Profile 4 (n=10) is characterized by Non-Optimal Neurodevelopmental Profiles and Excess Adiposity Anthropometric
Profiles.

8 Journal of Multimorbidity and Comorbidity



factors, such as chemical mixtures analyses in environ-
mental health. Thus, this work serves as a proof-of-concept,
and future work may consider evaluating “mixtures” of
health outcomes as a method to more accurately capture
child health status.

Unique to our study, we identified neurodevelopmental
and anthropometric profiles, and considered joint pheno-
typic profiles. Given the understanding that neuro-
developmental features overlap,2,3 we anticipated high
correlations among neurodevelopmental assessments.
While our dimension reduction approach to classifying
neurodevelopment was not specific to children with diag-
nosed neurodevelopmental disorders, our findings support
prior work emphasizing the need to consider continuous
behavioral and cognitive features to characterize presen-
tations of neurodevelopment to better reflect the diversity of
neurophenotypes that may not be captured by specific
diagnoses.9

Similar to our findings, others have reported high cor-
relations among multiple anthropometric measures, such as

BMI and waist circumference.56 Given the high correlations
among anthropometric measures and dual x-ray absorpti-
ometry (gold standard adiposity measure) it is reasonable to
consider these measures as valid and reliable assessments of
adiposity in children.56 Further, multiple measures of excess
adiposity have been implicated as risk factors for car-
diometabolic outcomes.57

These results suggest that previously identified charac-
teristics associated with individual child health outcomes
are also associated with profiles of neurodevelopment and
anthropometry. For example, we found that higher annual
household income was associated with optimal profiles of
neurodevelopment and adiposity. Prior work evaluating
childhood multimorbidity found that lower socioeconomic
position was predictive of co-occurring child health out-
comes.4 Socioeconomic position is also related to factors
associated with health promotion, such as access to
healthcare or psychosocial stress.58 We also observed that
boys were less likely to be classified into the Optimal
neurodevelopmental profile, consistent with prior work

Figure 3. Bivariate associations of maternal and child sociodemographic and perinatal covariates with neurodevelopmental profiles
among MIREC Study participants. Odds ratios and 95% confidence intervals for the association between individual covariates and class
assignment are displayed for neurodevelopmental profiles on the left column, and anthropometric profiles on the right column. The
Medium Scores class (Neurodevelopmental Profile) serves as the reference group. For individual, categorical covariates, the category
displayed in brackets and is italicized serves as the reference category. Note, the x-axis is displayed on the log scale. For
neurodevelopmental outcomes: Non-optimal: (n=45) are characterized by lower cognitive abilities and more problem behaviors,
Typical: (n=247) are characterized by average scores on all neurodevelopmental assessments, and Optimal: (n=209) are characterized by
higher cognitive abilities and less behavior problems. Note, the following variables are scaled by the standard deviation: maternal age
(SD: 4.5), annual income ($25,750), HOME scores (4.4), CES-D scores (4.3), birthweight in grams (518), and gestational age at the time
of delivery (1.6). Maternal smoking status based on log10-transformed plasma cotinine concentrations from the first trimester of
pregnancy. Breastfeeding status is defined as those who did breastfeed exclusively for at least 6 months compared to those who did
not.

Patti et al. 9



suggesting sex-specific differences in neurodevelopment59

Additionally, child caregiving environment and maternal
depressive symptoms were associated with child neuro-
development profiles, but not adiposity profiles. Consistent
with previous research, we found that higher-quality
caregiving environment was associated with optimal
child neurodevelopment.60 We also found that maternal
depressive symptoms may be an indicator of atypical child
neurodevelopment, which can be due to genetic predis-
position to psychopathology or differential reporting among
mothers with more depressive symptoms.61

For child anthropometric profiles, pre-pregnancy BMI
was predictive of child adiposity status. This was expected
given previously established relations between parent and
child BMI.62 Given the strong relation between maternal
and child BMI, future work could consider more proximal
factors (i.e., dietary patterns within families and current
maternal BMI) of parental adiposity on child anthropom-
etry. Consistent with prior work, we also identified birth-
weight as a predictor of child adiposity.63 Associations
between birthweight and anthropometric profiles do not

substantially differ when adjusting for gestational age,
suggesting that birthweight independently measures aspects
of infant size associated with later life risk of excess
adiposity.

This study has several strengths. First, we used a pan-
Canadian study with rich phenotyping data, as well as
prospectively collected maternal, reproductive, and child
characteristics. In addition, with ongoing mid-childhood
and adolescent follow-up, we can investigate how these
profiles predict child health in the future. Second, we used
dimension-reduction techniques to classify child health
considering both neurodevelopment and anthropometry,
allowing us to describe the relations between multiple child
health measures.

Our study has some limitations. First, we only consid-
ered the co-occurrence of neurodevelopment and anthro-
pometry; we did not examine other domains of child health.
Additionally, we selected variables as predictors for profiles
of child health outcomes based on prior literature and data
availability. While these are not comprehensive of all
possible predictors, future work may consider other

Figure 4. Bivariate associations of maternal and child sociodemographic and perinatal covariates with anthropometric profiles among
MIREC Study participants. Odds ratios and 95% confidence intervals for the association between individual covariates and class
assignment are displayed for neurodevelopmental profiles on the left column, and anthropometric profiles on the right column. The
Medium Scores class (Anthropometric Profiles: Average Adiposity) serves as the reference group. For individual, categorical covariates,
the category displayed in brackets and is italicized serves as the reference category. Note, the x-axis is displayed on the log scale. For
Anthropometric outcomes: Low Adiposity: (n=60) are characterized be less adiposity, Average Adiposity: (n=306) are characterized by
average or medium adiposity, and Excess Adiposity: (n=135) are characterized by increased adiposity. Note, the following variables are
scaled by the standard deviation: maternal age (SD: 4.5), annual income ($25,750), HOME scores (4.4), CES-D scores (4.3), birthweight
in grams (518), and gestational age at the time of delivery (1.6). Maternal smoking status based on log10-transformed plasma cotinine
concentrations from the first trimester of pregnancy. Breastfeeding status is defined as those who did breastfeed exclusively for at least
6 months compared to those who did not.
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prevalent pediatric health conditions and predictors of child
health. Second, children in the MIREC Study are generally
of higher socioeconomic position and healthy, evidenced by
a small proportion of children with less optimal measures.
This limits our ability to identify those who may be more
vulnerable to the effects of multimorbidity. Further, all class
assignments derived using LPA were determined based off
the individual outcomes within this cohort (not clinically

meaningful cut-points) and may not be representative to
those in other samples. A requirement of LPA is that all
participants must have complete outcome data. As a result,
we excluded roughly 18% of participants who participated
in the neurodevelopmental arm of the age 3 follow
up. While study sample characteristics off our analytic
sample were similar to those of the larger MIREC sample,19

selection bias is possible. In addition, the MIREC study was

Figure 5. Associations between increasing quartiles of HOME and CES-D scores with neurodevelopmental profiles among MIREC
Study participants. For HOME scores, the lowest quartile (lowest scores for caregiving environment) serves as the reference group,
with increasing quartiles indicting an increase in the caregiving environment. For CES-D scores, the lowest quartile (lowest scores for
maternal depressive symptoms) serves as the reference group, with increasing quartiles indicating an increase in maternal depressive
symptoms. Note, the y-axis is displayed on the log scale. For neurodevelopmental profiles, the Typical class serves as the reference
group. Non-optimal: (n=45) are characterized by lower cognitive abilities and more problem behaviors, Typical: (n=247) are
characterized by average scores on all neurodevelopmental assessments, and Optimal: (n=209) are characterized by higher cognitive
abilities and less behavior problems.
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based in one country, Canada, which may limit the external
validity of our study to other regions.

Third, it is possible that misclassification occurred
among the outcome measures. For example, neuro-
developmental assessments completed by caregivers
(i.e., the SRS and BASC), as opposed to teachers or
childcare providers, may be less likely to identify the
presence of certain child behaviors. In addition, young
children may not fully exhibit internalizing behaviors,
contributing to less reliable assessments at younger ages.

Fourth, to satisfy the assumptions of LPA, we excluded
∼18% of children who participated in the age 3-year follow-
up, but had incomplete neurodevelopmental and anthro-
pometric data. However, distributions of study sample
characteristics were similar among those in the analytic
sample compared to those who were eligible for partici-
pation at age 3-years, reducing concerns for selection bias.
Despite using data from a large cohort study, we are still
limited in sample size. Results pertaining to these groups
(i.e., Non-optimal neurodevelopmental profile [n=45])
should be interpreted with caution.

Fifth, while LPA as a dimension reduction approach
offers more flexibility in cluster assignment relative to ‘hard
clustering’ techniques (i.e., K-means clustering), there is
uncertainty in latent class assignment which could induce
bias. When we corrected for uncertainty in latent class
assignment, we identified that the direction of this bias is
attenuation (versus strengthening).48

These data indicate that children exhibit distinct profiles of
co-occurring neurodevelopmental and anthropometric health
outcomes. Relatively few children in this cohort had both non-
optimal neurodevelopment and anthropometry. These neu-
rodevelopmental and anthropometric profiles were associated
with some socioeconomic, maternal, and child characteristics.
Future work should consider characterizing the phenome to
quantify the potential impact of environmental and lifestyle
characteristics on multimorbid child health outcomes.
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