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Abstract

Over the last few years, experimental data on the fluctuations in gene activity between individual cells and within the same
cell over time have confirmed that gene expression is a ‘‘noisy’’ process. This variation is in part due to the small number of
molecules taking part in some of the key reactions that are involved in gene expression. One of the consequences of this is
that protein production often occurs in bursts, each due to a single promoter or transcription factor binding event. Recently,
the distribution of the number of proteins produced in such bursts has been experimentally measured, offering a unique
opportunity to study the relative importance of different sources of noise in gene expression. Here, we provide a derivation
of the theoretical probability distribution of these bursts for a wide variety of different models of gene expression. We show
that there is a good fit between our theoretical distribution and that obtained from two different published experimental
datasets. We then prove that, irrespective of the details of the model, the burst size distribution is always geometric and
hence determined by a single parameter. Many different combinations of the biochemical rates for the constituent reactions
of both transcription and translation will therefore lead to the same experimentally observed burst size distribution. It is
thus impossible to identify different sources of fluctuations purely from protein burst size data or to use such data to
estimate all of the model parameters. We explore methods of inferring these values when additional types of experimental
data are available.
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Introduction

The regulation of gene activity is essential for the proper

functioning of cells, which employ a variety of molecular

mechanisms to control gene expression. Despite this, there is

considerable variation in the precise number and timing of protein

molecules that are produced for a given gene under any particular

set of circumstances. This is because gene expression is fundamen-

tally a ‘‘noisy’’ process, subject to a number of sources of

randomness. Some of these are intrinsic to the biochemical reactions

that comprise the transcription and translation of a particular gene

[1,2]. Several of the reactions involve very small numbers of

molecules. There are only one or two copies of the DNA for the

gene, and in its vicinity inside the cell there are likely to be only a few

copies of the relevant transcription factors and of RNA polymerase.

Similarly, for each mRNA molecule, the processes of ribosome

binding and of mRNA degradation are typically highly stochastic.

Recent advances in experimental technology have shown that such

single molecule effects can lead to protein production occurring in

bursts of varying size, each due to a single transcription factor binding

event [3,4]. Other sources of variability are extrinsic to the specific

reactions, and include fluctuations in relevant metabolites, polymer-

ases, ribosomes, etc. [1,2]. These will not be considered further here.

It is of considerable interest to determine the various

contributions of such different sources of variability. Within the

last few years, experimental techniques for addressing this question

have increasingly become available. Elowitz et al. [1] observed

fluctuations in the expression level of genes tagged both with cyan

and yellow fluorescent proteins in monoclonal Escherichia coli cells

under identical environmental conditions. Similar work was

carried out by Raser and O’Shea [5] in the eukaryote Saccharomyces

cerevisiae. Such dual-reporter experiments are able to distinguish

between intrinsic and extrinsic sources of stochasticity. More

recently, single molecule data has become available [6,7], which

monitors the expression of a gene a single protein at a time and

provides the distribution of the sizes of bursts. It had been hoped

that data of this kind would answer many of the remaining

questions about the origin of noise in gene expression and in

particular distinguish between the different contributions of

transcription and translation to intrinsic noise.

Intuitively, one might expect that randomness due to

transcription would play the more significant role than

translation, since typically there will be more than one mRNA

molecule, and the fluctuations due to translation from each of

these might to some extent average out. To test this hypothesis

and to put it on a quantitative basis, it is necessary to employ

mathematical models of gene expression. These also provide a

valuable tool for the analysis of experimental data, and in

particular of the burst size distributions reported in the literature,

e.g., [6,7].
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A great deal of work has gone into modelling gene expression in

both prokaryotic and eukaryotic systems, with some of the earliest

papers predicting fluctuations in mRNA and protein levels

published 30 years ago [8,9]. McAdams and Arkin [3] provided

the first model of bursting at the translation level. They showed

that the number of protein molecules produced by a single mRNA

transcript is described well by a model which considers whether

the next event is the production of a further protein, or the

degradation of the mRNA molecule. Such competitive binding

between ribosomes and RNase results in a geometric distribution

for the protein number. Such an analysis can also be applied to

transcription following the binding of a transcription factor to a

gene and also results in a geometric distribution. The joint analysis

of these two stochastic processes forms the basis of the present

paper.

The integration of simple stochastic (Markov) models of

transcription factor, RNA polymerase, ribosome and RNase

binding leads to what is now widely regarded as the standard

model of gene expression for prokaryotes [4]. The analysis of this

model using a master equation allows the determination of the

moments of the distribution of the number of protein molecules

when the system is in steady state. Further analysis of this

equilibrium distribution was carried out by Paulsson [10–12] who

used the master equation and the fluctuation–dissipation theorem

to obtain predictions about the mean and variances of molecule

numbers and lifetimes and the contribution made by transcrip-

tional and translational bursting. Other studies have been carried

out by Höfer [13] who used a rapid-equilibrium approximation to

compare mRNA levels for genes with one and two active alleles,

and by Friedman et al. [14]. The drawback of these approaches is

that the master equation that describes the temporal evolution of

the probability distribution of protein (and mRNA) numbers is too

complex to be solved analytically. Furthermore, the burst size

distribution necessary for comparison with recent experimental

data [6,7] cannot be obtained directly from the master equation.

Such difficulties with master equation based approaches are

exacerbated in the case of more complex models of gene

expression such as multi-step models that include intermediate

stages such as the formation of DNA–RNA polymerase complexes,

phosphorylation events, and mRNA–ribosome binding. Both

deterministic and stochastic simulation studies of these models

have been performed, e.g., [15] and [16], but none of these

approaches have been useful for the analysis of burst size data.

In the present work we avoid the problems associated with the

master equation approach, which are at least in part due to the

explicit incorporation of time evolution. Instead, we ignore time

and directly derive an expression for the burst size distribution by

extending the analysis of [3]. In many ways this approach is similar

to that used for the analysis of multi-stage queues [17]. The

distribution of the number of mRNA molecules produced in a

single burst is geometric and the distribution of the number of

protein molecules produced by a single mRNA is also geometric

[3]. The overall burst size distribution is therefore given by the

compound distribution of two geometric distributions [17]. This

can be readily computed using generating functions [17] and is

itself not geometric. However, experimentally it is not possible to

detect bursts that produce no protein molecules at all, and

therefore the published data [6,7] are in fact the relevant

conditional distributions, assuming at least one protein molecule

is produced in a burst. Surprisingly, it turns out that when we

condition the compound distribution in this way, we again obtain

a geometric distribution. This is determined by a single parameter,

which we can derive in terms of physically meaningful constants

such as binding and unbinding rates. This shows that different

combinations of noise levels in the translation and transcription

parts of the process can give the same overall burst size

distribution. Mathematically, this means that the standard model

of gene expression (described in detail below) is nonidentifiable

[18,19] from burst size data alone. This in turn implies that it is

not possible to identify the relative contributions of translation and

transcription to the burst size distribution of protein numbers only

using this data.

We also show that our approach is applicable to a variety of

more detailed models that incorporate additional steps to provide

more realistic descriptions of expression [16]. These still yield a

single parameter geometric conditional distribution. This shows

that within the context of a very large class of models,

experimental burst size data on its own cannot identify the

relative contributions of different reactions to the overall noise

level. However, by simulating the equilibrium distribution of

protein numbers for different parameter combinations giving the

same burst size distribution we demonstrate that a combination of

burst size distribution and equilibrium distribution can discern

different sources of noise. The difficulty with such an approach is

that the determination of the equilibrium distribution requires the

knowledge of two additional kinetic parameters: the transcription

factor binding rate and the protein degradation rate. Estimates of

these are not easy to obtain independently, so that we now have to

estimate six unknown parameters from the combined burst size

and equilibrium distribution data. Initial simulations (not shown

here) suggested that it is difficult to do this reliably.

It is possible however, by using independent estimates of one of

the parameters to reduce the parameter space from six to five

dimensions. Using the relationship between the remaining

parameters determined from the burst size distribution allows

the elimination of a further parameter, leaving four kinetic

parameters to be estimated from the equilibrium distribution. We

show below that by using the Nelder-Mead algorithm to maximize

the empirical likelihood, useful estimates of the four remaining

parameters can be obtained. We carry out this process twice, first

using independent measurements of the mRNA degradation rate

and then of the protein half-life. In the first case we obtain

Author Summary

Recent experimental data showing fluctuations in gene
activity between individual cells and within the same cell
over time confirm that gene expression is a ‘‘noisy’’
process. This variation is partly due to the small number of
molecules involved in gene expression. One consequence
is that protein production often occurs in bursts, each due
to the binding of a single transcription factor. Recently, the
distribution of the number of proteins produced in such
bursts has been experimentally measured, offering a
unique opportunity to study the relative importance of
different sources of noise in gene expression. We derive
the theoretical probability distribution of these bursts for a
wide variety of gene expression models. We show a good
fit between our theoretical distribution and experimental
data and prove that, irrespective of the model details, the
burst size distribution always has the same shape,
determined by a single parameter. As different combina-
tions of the reaction rates lead to the same observed
distribution, it is impossible to estimate all kinetic
parameters from protein burst size data. When additional
data, such as protein equilibrium distributions, are
available, these can be used to infer additional parameters.
We present one approach to this, demonstrating its
application to published data.

Sources of Noise in Gene Expression
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unrealistically short estimates of the protein half-life, and in the

second a considerably faster mRNA degradation. This suggests

that when in the repressed state, mRNA may be degraded at a

faster rate than when the gene is active.

In principle, this method can be applied to any gene where

burst size and equilibrium distributions are available, providing a

new approach to the estimation of parameters estimates for the

ever more sophisticated models increasingly being used in

computational biology.

Methods

The Standard Model of Gene Expression
In the so called ‘‘standard model’’ of gene expression, Figure 1,

an inactive gene can be activated by a promoter or transcription

factor. This allows molecules of RNA polymerase to bind and

produce mRNA. This in turn can bind to ribosomes leading to the

production of protein molecules. Eventually the transcription

factor unbinds, terminating the production of mRNA, and each

mRNA molecule is degraded, which stops protein production.

Each of these processes is modelled as a transition in a

continuous time Markov chain with a particular rate. Such a rate

is interpreted as the probability of an event occurring in a unit

time interval. Thus, if we denote the rate of transcription factor

binding by a0 then the probability of this occurring in an interval

of length dt, assuming that the transcription factor is not bound at

the start of the interval, is a0dt. Integrating over time, this means

that the probability of the event having happened by time t, is

1{e{a0t, whilst the average time for the event to happen is 1/a0.

The same holds for the other transitions in the model, with the rate

of transcription factor unbinding denoted by b1. Whilst the

transcription factor is bound, RNA polymerase binds at a rate a1,

and each such binding event is assumed to produce one molecule

of mRNA. More detailed models that allow the polymerase to

unbind before it has produced mRNA are considered later and

will have no effect on our overall conclusions.

Each mRNA molecule binds to a ribosome at rate a2 and is

degraded at rate b2. When the last mRNA has decayed no more

protein will be produced. We define the number of proteins

produced between the transcription factor binding and the last

mRNA decaying as a ‘‘burst’’. Note that since a burst begins once

the transcription factor has bound, we expect the distribution of

burst sizes to be independent of the transcription factor binding

rate a0. This is confirmed by the rigorous derivation below.

Mathematically, the Standard Model of Gene Expression is a

continuous time Markov chain model. Each particular combina-

tion of number of mRNA molecules, number of protein molecules

and state of binding of the transcription factor constitutes a single

state of the model. It is possible to derive an (infinite) set of coupled

ordinary differential equations (called the Kolmogorov forward

equations or master equation) that govern the probability at any

given time of the system being in any given state. However, the

analysis of a such a complex set of equations is difficult. On the

other hand, using the same approach as for multi-stage queues, it

is relatively easy to derive the distribution of protein burst sizes.

The Component mRNA and Protein Distributions
We begin with the analysis of McAdams and Arkin [3] for the

distribution of the number of proteins produced by a single mRNA

molecule. If a certain number (possibly 0) of protein molecules has

been produced, the probability that the next event in which the

mRNA molecule participates is the production of another protein

molecule is p = a2/a2+b2) (see Text S1 for derivation). Conversely,

the probability that the next event is the degradation of the mRNA

molecule is 12p = b2/(a2+b2). In order to produce precisely n

molecules of protein, we need n events of the first type to occur,

followed by a final degradation event. The probability of this

happening is pn(12p), giving the distribution Q(n) of the number of

protein molecules produced by a single mRNA molecule

Q nð Þ~ a2

a2zb2

� �n
b2

a2zb2

~
An

2

1zA2ð Þnz1
: ð1Þ

Here A2 = a2/b2 is the expectation of Q. Contrasting this with

[3], the parameter A2 defining the distribution is now expressed in

terms of physically measurable rate constants. Exactly the same

argument applies to the distribution of the number of RNA

molecules produced between the successive binding and unbinding

of the transcription factor. In particular, the probability of

producing one more mRNA molecule before the transcription

factor unbinds is a1/(a1+b1) and the probability of the transcrip-

tion factor unbinding is b1/(a1+b1). In order to produce precisely

Figure 1. The standard gene expression model. An inactive
sequence of DNA and a transcription factor bind to produce an active
gene G. This produces mRNA, denoted by M at a rate a1, and in turn the
mRNA produces protein at rate a2. Eventually, the transcription factor
will unbind (at rate b1), and the gene will become inactive again. Each
copy of mRNA produced will also be degraded (at rate b2).
doi:10.1371/journal.pcbi.1000192.g001

Sources of Noise in Gene Expression
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m mRNA molecules before the transcription factor unbinds we

need m independent production events with probability a1/

(a1+b1), followed by the unbinding event with probability b1/

(a1+b1).

Thus the probability distribution, R(m), of the number of mRNA

molecules produced in one burst is

R mð Þ~ a1

a1zb1

� �m b1

a1zb1

~
A1ð Þm

1zA1ð Þmz1
ð2Þ

where A1 = a1/b1 is the expectation of R(m). In order to derive the

overall protein burst size distribution for the Standard Model in

Figure 1 we need the probability generating functions [17] of the

distributions Q(n) and R(m) which we denote as Q*(z) and R*(z),

respectively. These are simply obtained by summing the relevant

geometric series

Q� zð Þ~
X?
n~0

Q nð Þzn~
1

1zA2{A2z
:

and

R� zð Þ~
X?
m~0

R mð Þzm~
1

1zA1{A1z
,

Results

The Compound Protein Burst Size Distribution
The distribution P(n) of the total number of proteins produced in

a single burst is simply the compound distribution of R and Q [17].

This is easily computed using probability generating functions (see

below), and is not a geometric distribution. However, it is of

relatively little interest since it includes the possibility that the

transcription factor unbinds before any proteins have been

produced (either because no mRNA is produced, or because this

mRNA is degraded before binding to a ribosome). Such events

cannot be observed in the experimental protocol used in [6,7], and

hence P(n) cannot be directly compared to the data in these papers.

However, we can re-scale P(n) to give the probability distribution

P̂(n) = P(n)/(12P(0)) of protein numbers conditional on at least one

protein being produced. An approximate calculation of this

distribution was given in the supplementary material of [7]. This

replaced the discrete geometric distribution Q(n) by a continuous

exponential distribution of the same mean and then used the

Laplace transform to obtain the (continuous approximation to the)

compound distribution. Here we present an exact derivation for

the discrete distribution using generating functions (which are

closely related to the Laplace transform). Furthermore we relate

the parameter of the final burst size distribution to the original

kinetic parameters a1, a2, b1, and b2.

Thus, let X(i) be the random variable, with distribution Q(n),

giving the number of proteins produced by the ith mRNA

transcript and let Y be a random variable, with distribution R(n)

giving the number of mRNA molecules produced. Then the

random variable

X~
XY

i~1

X ið Þ

gives the total number of proteins in a burst. Denote the

distribution of X by P(n), with generating function P*(z). Then a

standard result on generating functions of compound distributions

[17] gives

P� zð Þ~Q� R� zð Þð Þ~ 1zA1{A1z

1zA1 1zA2ð Þ 1{zð Þ : ð3Þ

To obtain the distribution conditional on at least one protein

molecule being produced, we subtract P*(0) and normalise (divide)

by 12P*(0) to give

P̂P
1

zð Þ~ P
1

zð Þ{P
1

0ð Þ
1{P1 0ð Þ ~

z

1zA1 1zA2ð Þ 1{zð Þ :

This is the generating function of a conditional geometric

distribution with (dimensionless) parameter Â2 = A2(1+A1), so that

P̂(n) has the distribution

P̂P nð Þ~ ÂAn{1
2

1zÂA2

� �n , ð4Þ

where the parameter Â2 can be expressed in terms of the mean

number A1 of mRNA molecules produced and the mean number

A2 of protein molecules produced from a single mRNA molecule

as

ÂA2~A2A1zA2 ð5Þ

~
a2

b2

a1

b1

z1

� �
: ð6Þ

We thus see that the burst size distribution is determined by a

single parameter, and that many different combinations of the

parameters a1, a2, b1, and b2 will lead to the same burst size

distribution. In mathematical language this says that the Standard

Model with parameters a1, a2, b1, and b2 is nonidentifiable from

burst size data. In fact we can only estimate a single parameter (or

a single linear combination) and the three remaining parameters

can be arbitrarily chosen.

Burst Distributions for Extensions of the Standard Model
It might be hoped that such nonidentifiability is a particular

pathology of the Standard Model. We thus next consider a

number of generalisations of this model, which provide a more

detailed description of the process of gene expression. We find that

for a wide range of generalisations we can still derive the burst size

distribution in a similar manner the above. It turns out to be

geometric in each case and hence all such models are also

nonidentifiable.

One common extension is to include an additional step in the

model of the transcription process [13], as shown in Figure 2.

This accounts for the fact that after the transcription factor has

bound, one still requires the RNA polymerase to bind to the

transcription initiation complex, and this may not always happen

successfully. A similar modification could be made to the

translation loop to describe the binding of the mRNA transcript

to the ribosome in more detail. Both of these additions can be

considered individually, or in combination.

Sources of Noise in Gene Expression
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Doing this results in distributions R and Q which are still

geometric, but with the parameters A1 and A2 given by more

complex combinations of the individual rates. We illustrate this for

the transcription loop, where we find that in order to produce exactly

m mRNA molecules, the system can pass through state G* any

number i$m times. On i2m of these occasions the polymerase

unbinds before an mRNA molecule is produced, returning to G with

rate d1, and on the remaining m occasions an mRNA molecule is

produced, with rate a1. The m productive steps can be interspersed in

any order amongst the i visits, giving
i

m

� �
possible choices. The

probability of producing m mRNA molecules is thus

R mð Þ~
X?
i~m

i
i

m

 !
c1

b1zc1

� �i
d1

a1zd1

� �i{m
a1

a1zd1

� �m
b1

b1zc1

� �

~
b1 c1a1ð Þm d1za1ð Þ

c1a1zb1d1zb1a1ð Þmz1
~

Am
1

1zA1ð Þmz1
,

with A1 now given by A1 = a1g1/b1(a1+d1). A similar derivation

holds for the translation loop. We see that carrying out either or

both of these modifications still results in a geometric distribution

in the form of Equation 4 for P̂(n), with Â2 = A2(1+A1), but A1 and

A2 now given by A1 = a1g1/b1(a1+d1) and A2 = a2g2/b2(a2+d2).

As a consequence the overall conditional protein size distribu-

tion, P̂(n), will still be given by Equation 4, with the parameter

Â2 = A2A1+A2 as before.

An alternative generalisation is to add additional loops with the

same structure as the current transcription and translation loops.

We prove in the Supporting Information (Text S1) that if we have

k21 such loops, the final conditional protein size distribution P̂k(n)

will still be geometric.

We thus conclude that all of these models yield the same

geometric protein burst size conditional distribution, determined

by a single parameter. In particular, models which include

additional steps to account for DNA–RNAP complex formation

and mRNA-ribosome complex formation give distributions that

are mathematically indistinguishable from those from the

Standard Model. It is thus impossible to differentiate between

these models using experimentally observed burst size distribu-

tions. Similarly we cannot use such data to differentiate between

the contributions to noisy gene expression from transcriptional

versus translational bursting.

Comparison with Burst Size Data
We can compare the probability distribution derived above

directly with experimental data. We consider recently published

data of burst sizes for two fluorescently tagged proteins in the

bacterium Escherichia coli [6,7]. In [6], a novel fluorescent imaging

technique is used to determine the distribution of protein

molecules per transcription factor binding event in live E. coli

cells. The specific protein studied was a fusion of a yellow

fluorescent protein variant (Venus) with the membrane protein

Tsr. The tsr-venus gene is incorporated into the E. coli chromosome,

replacing the lacZ gene. This modified gene is then under the

control of the lac promoter. In a second publication [7], the same

group used a different imaging technique to determine the

distribution of protein molecules per transcription factor binding

event of b-gal in live E. coli cells.

Such experimental data can be compared to the predicted

distribution P̂(n) in two ways. One possibility is to use maximum

likelihood estimation to find the value of Â2 for which P̂(n) best fits

the data. This is illustrated in Figure 3, which shows that it is

possible to obtain excellent agreement between the theoretical and

experimental distributions. The estimated value of Â2 for Tsr-

Venus is Â2 = 3.57, whilst for b-gal, Â2 = 20.96. The difference in

magnitude between these two estimates may be partially due to the

fact that b-gal is only active as a tetramer. Thus, each burst of

activation measured experimentally (and thus available for fitting)

corresponds to the production of 4 monomers. The disadvantage

of fitting the model in this way is it can only provide an estimate of

the single parameter Â2, but not of the underlying kinetic

parameters a1, a2, b1, and b2.

An alternative approach to verifying the model would be to

obtain independent estimates of the model parameters from which

we can calculate Â2 using Equation 6. The resulting geometric

distribution can then be compared to the observed burst size data.

Unfortunately, as is common for most models in cell and

molecular biology, direct experimental measurements of many of

these rates are not available. For the b-gal data, b2 can be

obtained from the reported mRNA half life [7,20], but the other

three parameters corresponding to the off-rate of the transcription

factor and to the binding rates of RNA polymerase to DNA and of

mRNA to ribosome respectively are not available.

Application to Experimental Data
Incorporating steady state distribution data. We thus

conclude that we can neither estimate all the kinetic parameters

a1, a2, b1, and b2 from the burst size data, nor measure them by

other means. However, experience suggests that by supplementing

the burst size distribution with other experimental data it may be

possible to overcome the nonidentifiability of these parameters.

This is reinforced by the observation that parameter combinations

that lead to the same Â2 and hence the same burst size distribution

can yield quite different steady-state distributions, as shown for

example in Figure 4. The two steady state distributions shown

Figure 2. Diagram of the generalised situation in which
intermediate, reversible stages are introduced. Here, G repre-
sents an active gene, G* an active gene with a bound RNA polymerase,
M an mRNA molecule, M* an mRNA molecule bound to a ribosome, P a
protein, and S0 states which correspond to transcription factor
unbinding and mRNA transcript decay.
doi:10.1371/journal.pcbi.1000192.g002

Sources of Noise in Gene Expression
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have different choices of a1, a2, b1, and b2 that yield the same

value for Â2, and hence the same burst size distribution. However,

the two steady state distributions are clearly different. This shows

that steady state distribution data should allow us to distinguish

between different combinations of parameters with the same Â2,

and hence potentially identify some or all of these parameters.

Empirical likelihood estimation. The main difficulty with

such an approach is the lack of analytic expressions for the steady

state distribution, making it impossible to derive an explicit

formula for the likelihood. Instead one has to compute an estimate

of the equilibrium distribution using simulations of the reaction

network [20] and then use these to derive an empirical likelihood

by comparing to the experimental data. This can then be

maximized in the usual way.

We applied this approach to the data from [7], which

presents both burst size and steady state distributions for the

same experimental system. In order to fully specify the steady

state distribution, we need two additional parameters: the rate

of transcription factor binding a0 and the rate of protein decay

b3. These do not enter into the expressions for the burst size

distribution, and were assumed to be known (and fixed) for the

simulations shown in Figure 4. In the absence of independent

estimates of these parameters for the b-gal system, we explored

the possibility of estimating these from the data in [7] directly

by computing an empirical likelihood using simulation of the

model (see below). We attempted both to maximize this

empirical likelihood directly, and to obtain its distribution

using Markov Chain Monte Carlo sampling. Neither of these

approaches were successful with the full six parameter model

(results not shown).

We can however, make use of independent estimates of

parameters in the model to reduce the dimensionality of the

parameter space. In effect this constrains the orginal optimization

to a lower dimensional sub-space. We applied this approach with

two different choices of parameter: the mRNA degradation rate b2

and the protein degradation rate b3.

Constraining on the mRNA degradation rate. We chose

first to make use of the wide availability of estimates of the value of

b2, the rate of mRNA degradation. Since we also have the burst

size data, we first estimate Â2 and then use Equation 6 to obtain an

expression for a2 in terms of a1, b1, and b2. We are left with the

four dimensional parameter space a0, a1, b1, and b3. At each point

in this space, we simulate the model using the Gillespie algorithm

to given an empirical estimate of the probability Pn(a0,a1,b1,b3) of

observing n proteins at equilibrium. This gives the empirical log-

likelihood

L a0,a1,b1,b3 Djð Þ~
X

n

Dn log Pn a0,a1,b1,b3ð Þð Þ:

where Dn is the number of times that n proteins are observed in

the experimentally data D.

Figure 3. Comparison of the distribution of experimentally measured burst sizes for the proteins Tsr-Venus (A) [6] and for the b-gal
(B) [7] with the standard model of gene expression. In both cases the blue line shows the best fit of the model to the data, obtained using the
method of maximum likelihood giving Â2 = 3.57 for Tsr-Venus and Â2 = 20.96 for b-gal. The error bars show the upper and lower bounds of the 95%
confidence interval for the fitted parameter.
doi:10.1371/journal.pcbi.1000192.g003

Figure 4. Simulations of steady-state protein expression levels.
For A we have a1 = 0.018 and b1 = 0.086 and for B we have a1 = 0.009
and b1 = 0.043, resulting in the same Â2 and hence identical burst size
distributions. Other parameters were a0 = 0.012, a2 = 0.013, b2 = 0.0039,
and b3 = 0.0007, based on previous simulation studies [22]. The
distributions shown are for a run of 10,000 seconds using the Stocks
implementation of Gillespie’s method [23], after an initial transient of
10,000 seconds. Previous studies have indicated that the steady state is
in fact attained in under 1000 seconds.
doi:10.1371/journal.pcbi.1000192.g004
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Table 1. Means and standard deviations of estimates of the other parameters when the mRNA degradation rate b2 set to
7.261023.

a0 a1 a2 b1 b3

m 0.0049 0.0017 0.1538 0.1210 (t1/2 = 5.7 s) 0.0297 (t1/2 = 23.3 s)

s 0.0052 0.0003 0.0088 0.0098 0.0098

These statistics are based on those runs that approached the global maximum (73.4% of all runs). These were selected by imposing a threshold at L = 21350 and only
considering those runs converging to a larger (more positive) likelihood. All reaction rates have units of s21.
doi:10.1371/journal.pcbi.1000192.t001

Figure 5. Parameter estimation results with fixed mRNA degradation rate. The results of 1000 runs of the Nelder-Mead maximisation of the
log-likelihood for the parameters a0, a1, b1, and b3, with a2 determined by the relationship in Equation 6, and with the mRNA degradation rate b2 set
to 7.261023, corresponding to a half-life for b-gal mRNA of 1.6 mins [24]. The panels in column A show the estimates of the values of the parameters
and the percentage of times the Nelder-Mead algorithm converged to those values. The panels in column B are scattergrams of the values of the
parameter estimates against the value of the log-likelihood. Each simulation is run 10,000 times to simulate a population of 10,000 cells, and each
simulation is run for 5000 reaction steps. The starting values for the optimisation routine are: a0 = 0.01 s21, a1 = 0.02 s21, b1 = 0.1 s21, and
b3 = 0.0007 s21, and are based on previous simulation studies [16].
doi:10.1371/journal.pcbi.1000192.g005
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Figure 6. Parameter estimation results with fixed protein degradation rate. The results of 10,000 runs of the Nelder-Mead maximisation of
the log-likelihood for the parameters a0, a1, b1, and b2, with a2 determined by the relationship in Equation 6, and with the protein degradation rate
set, b3 set to 2.7761024, consistent with a half-life for b-gal 60 mins. The panels in column A show the estimates of the values of the parameters and
the percentage of times the Nelder-Mead algorithm converged to those values. The panels in column B are scattergrams of the values of the
parameter estimates against the value of the log-likelihood. Each simulation is run 10,000 times to simulate a population of 10,000 cells, and each
simulation is run for 5000 reaction steps. The starting values for the optimisation routine are: a0 = 0.01 s21, a1 = 0.02 s21, b1 = 0.1 s21, and
b2 = 0.007 s21, and are based on previous simulation studies [16].
doi:10.1371/journal.pcbi.1000192.g006
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This empirical likelihood function can be maximized using

any suitable optimization algorithm. Because it is computed

using stochastic simulations any particular realization of the

function is not smooth, making algoritms that use gradient (or

Hessian) information unsuitable. We therefore opted to use the

Nelder-Mead (simplex) method [21] with the results shown in

Figure 5.

We can see that the likelihood has a local maximum at

L<21800, and the simplex method frequently gets stuck in this

region. However the majority of runs (73.4%) converge to the

presumed global maximum. The means and standard deviations

of the estimated parameter values are shown in Table 1. The value

obtained for b3 is 0.0297 s21, which corresponds to a half-life of

23 seconds. This appears to be unrealistically short, since b-

galactosidase is a stable protein with a reported lifetime of hours.

One possible explanation of this discrepancy is that the reported

mRNA degradation rate b2 = 7.261023 is always measured in

experimental conditions where the gene is active. On the other hand,

the burst size and equilibrium distributions in [7] are obtained under

conditions where the gene is suppressed. It is possible that the

mRNA degradation rates are significantly different in the two cases.

To explore this hypothesis, we approached the problem from an

alternative direction, fixing the protein degradation rate b3 to

correspond to a half-life of 1 hour, and estimating the remaining five

parameters, including mRNA degradation rate b2.
Constraining on the protein degradation rate. We

therefore fixed b3 to 1.9261024 s21, corresponding to a protein

half-life of one hour, and then used same method as described

above to estimate the other parameters a0, a1, a2, b1, and b2. We

ran 10,000 simulations, as a relatively low number of runs

converged (23.37%), with the others becoming trapped in a region

with physically unrealistic (negative) reaction rates, and a log-

likelihood of L<22100. Of the runs which converged, 2057 (88%)

converged to a local maximum at L<29150, while 279 (12%)

converged to the presumed global maximum at L<21100. The

results for the runs which converged can be seen in Figure 6, whilst

summary statistics for the runs which converged to the presumed

global maximum are presented in Table 2.
Comparison of the estimates. The transcription factor

binding rate a0 is almost unchanged under both assumptions.

When we fix the protein degradation rate in the second set of

estimates to a value much lower than estimated in the first set we

find that the transcription rate (i.e., rate of RNA polymerase

binding) a1, is approximately one third of the previous value,

decreasing from 0.0017 s21 to 0.0006 s21, whilst the translation

rate, a2 shows an approximate two-fold increase, from 0.1538 s21

to 0.3352 s21. It is intuitively reasonable that such a combination

of decreasing transcription and increasing translation leads to the

same overall level of protein expression. The parameter b1, the

rate at which the transcription factor unbinds increases slightly,

leading to shorter bursts. The increase in the mRNA degradation

rate, b2 from the original assumption of 0.007 s21 to the estimate

of 0.0161 s21 (corresponding to an mRNA half life of

approximately 43 seconds) suggests that when expression of the

gene is being strongly repressed as in this situation, there may well

be active degradation of the mRNA. It would be interesting to

experimentally investigate this biologically significant prediction.

Discussion

We have shown that it is possible to use results from queuing

theory to derive the burst size distribution of protein molecules

produced by a single transcription factor binding event in terms of

physically measurable kinetic rate constants for both the simplest

model of gene expression, the so-called Standard Model, and for a

number of natural extensions.

Furthermore, we have shown that the mathematical form of

these models is nonidentifiable, and all such burst size distributions

are actually determined by a single parameter. This implies that it

is impossible to use burst size data alone to determine the relative

contributions of transcription and translation to the variability in

gene expression.

One possible way of overcoming this limitation is to use a

combination of burst size data and steady-state data. However,

this requires estimates of a further two parameters (which are not

needed when using burst-size data alone). We were unable to

estimate all six parameters directly from the combined data.

However, using independent estimates of either the mRNA

lifetime or the protein lifetime reduces the number of parameters

by one, and enables successfully estimation of the remaining five

parameters by maximizing an empirical likelihood using the

Nelder-Mead simplex algorithm. Although this suffers from the

common problem of occasional convergence to a local maximum,

by using computing repeated estimates it was possible to identify

and exclude such cases and hence obtain good estimates of the

desired five kinetic parameters under the different constraints.

Supporting Information

Text S1 Derivation of probabilities.

Found at: doi:10.1371/journal.pcbi.1000192.s001 (0.10 MB PDF)
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