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Abstract: For a better environment and sustainable development of China, it is indispensable to
unravel how urban forms (UF) affect the fine particulate matter (PM2.5) concentration. However,
research in this area have not been updated consider multiscale and spatial heterogeneities, thus
providing insufficient or incomplete results and analyses. In this study, UF at different scales were
extracted and calculated from remote sensing land-use/cover data, and panel data models were then
applied to analyze the connections between UF and PM2.5 concentration at the city and provincial
scales. Our comparison and evaluation results showed that the PM2.5 concentration could be affected
by the UF designations, with the largest patch index (LPI) and landscape shape index (LSI) the
most influential at the provincial and city scales, respectively. The number of patches (NP) has a
strong negative influence (−0.033) on the PM2.5 concentration at the provincial scale, but it was
not statistically significant at the city scale. No significant impact of urban compactness on the
PM2.5 concentration was found at the city scale. In terms of the eastern and central provinces, LPI
imposed a weighty positive influence on PM2.5 concentration, but it did not exert a significant
effect in the western provinces. In the western cities, if the urban layout were either irregular or
scattered, exposure to high PM2.5 pollution levels would increase. This study reveals distinct ties of
the different UF and PM2.5 concentration at the various scales and helps to determine the reasonable
UF in different locations, aimed at reducing the PM2.5 concentration.

Keywords: urban forms; PM2.5 concentration; modifiable areal unit problem; spatial heterogeneity;
multiscale analysis

1. Introduction

With very large economic successes and a fast urban development since 2000 [1,2], air
pollution problems have increasingly become an important issue in China [3]. The fine
particulate matter (PM2.5) and other pollutants occurring in air have severely damaged
human health in China [4–6]. Unfortunately, the impact of PM2.5 is widespread, as three out
of four Chinese prefectures does not meet national ambient air quality standard limits, as
reported by the China Environmental State Bulletin [7]. Additionally, high PM2.5 could lead
to a poor visibility, thereby greatly affecting the appearance of cities and even increasing
the possibility of traffic hazards. The aforementioned poor air quality has raised concerns
across Chinese society, and all sides would like to address this issue and reduce the
PM2.5 concentration.

So as to reduce the PM2.5 concentration, the first step should be to determine its
driving factors. Source apportionment results have suggested that there are six common
sources for PM2.5: vehicular emissions, soil dust, secondary aerosols, coal combustion,
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biomass burning, and industrial emissions [8]. Natural conditions could also generate
origin-specific patterns of PM2.5 aggregation and dissipation, including the temperature,
precipitation, humidity, air velocity, and terrain. More importantly, human activities therein
have been proven to affect the concentration. Urban forms (UF), including urban sprawl,
irregularity, compactness, quantified with relative urban form indexes, can reflect the spa-
tial configuration of human activities, and represents the direction of urban development.
The urban sprawl is calculated with four components: residential density, land use mix,
street accessibility, and degree of centering [9]. The irregularity is calculated by the shape
indexes, and the compactness is measured by urban aggregation. Seven metrics describing
the urban sprawl (CA and LPI), irregularity (NP, LSI, and ENN_MN), and physical com-
pactness (PLADJ and COHESION) have been applied to quantify the UF. By influencing
land use, infrastructure, and resource allocation, UF can affect PM2.5 concentrations and
pollution levels.

Since UF can play an essential part in controlling the PM2.5 concentration, many
studies have quantified how specific UF affect the concentration from different perspec-
tives [10–16]. To date, few studies have simultaneously considered the effects of spatial
scale and heterogeneity on relationships between UF and PM2.5 concentration [17,18].
There exist three specific scientific research questions: (1) How do UF affect the concentra-
tion across Chinese urban area from a temporal perspective? (2) Would the relationships
change with the scale across China? (3) What is the impact of spatial heterogeneity on
the relationships?

In this study, the relationships between long time-series data of UF and PM2.5 concen-
tration has been considered from a national perspective. Additionally, scale effects have
been discussed. Urban system is a multiscale and spatially heterogeneous system, revealing
a hierarchical structure of different centers or clusters across spatial scales [19]. For complex
multiscale systems such as the Chinese urban system, the analysis scale usually affects the
statistical analysis results, such as correlation and regression analysis of socioeconomic
data [20,21]. Moreover, this study comprehensively analyzes the spatial heterogeneity
effects. Spatial heterogeneity generally refers to uneven distribution of various landscapes
and patterns within an area. Analyses have indicated that there are large differences
between urban areas in China, as they exhibit spatial heterogeneity, including different
development stages, spatial distribution non-equilibrium, regional heterogeneous pattern
regularities, distinct disintegration, and inter-conglomeration heterogeneity [22]. The so-
cial, economic, and natural conditions in the different regions differ, and the relationships
vary [23].

Therefore, our study explores these links across China from a multiscale perspective.
The provincial scale and prefectural-level municipal (city) were selected as experimental
objects. Abundant remote sensing satellite data was collected and assessed as PM2.5 and
independent-factor data. We then employed land-use/cover data calculated from satellite-
derived data to obtain a series of spatial metrics to quantify the UF. After the above data
analysis, we deployed econometric regression models, i.e., panel data models, to explore
the relationships between the UF and the PM2.5 concentration, on the basis of considering
scale effects and spatial heterogeneity.

2. Materials and Methods
2.1. Study Area

Twenty-seven provinces and 250 cities in China were chosen for this study (Figure 1).
The selected provinces and cities are capable of supporting the research on scale effects and
spatial heterogeneity and involve many typical natural characteristics. Urban planning has
been conducted at provincial and city scales from a macro-perspective. Therefore, these two
scales are the most basic administrative and spatial scales to study the relationship between
Chinese urban areas and environment. In addition, in this study, three regions were divided,
namely, the eastern (ER), central (CR), and western regions (WR), using the division method
prescribed by the National Bureau of Statistics, according to the corresponding economic
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development levels and geographical locations. The ER refer to those provinces and cities
with the earliest coastal open policy, and they are relatively economically well-developed
areas. The CR pertain to the economically underdeveloped central areas, and the WR relate
to the economically underdeveloped western areas. Regional division is helpful during
heterogeneity analysis, as the relationships are investigated with different scales at various
economic development levels and geographical locations. All of the cities and provinces
were established before 2000 and exhibited varying degrees of development from 2000 to
2015. UF depends on the natural landscapes. In general, the inland flat areas have smooth
urban area edges and a high urban cohesion.

Figure 1. The distribution of the studied provinces and cities in China.

2.2. UF Quantification

Landscape metrics were calculated to represent the UF, as they have a good ability to
explain the gaps between urban development and land-use approaches and heterogeneous
urban landscapes [24,25]. Specifically, seven metrics were employed in this study (Table 1)
as follows: (1) CA is the total urban area; (2) NP is the number of patches; (3) LPI is the
largest patch index; (4) LSI is the landscape shape index; (5) ENN_MN is the average
minimum adjacency distance; (6) PLADJ is the percentage of like adjacencies; and (7)
COHESION is the patch cohesion index. Formulas for calculating these metrics are detailed
in [16], and these metrics have been found to have impacts on PM2.5 pollution.
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Table 1. Statistics of the metrics at the provincial scale.

Year STA CA (km2) NP LPI (%) LSI ENN_MN PLADJ (%) COHESION Population (a) GDP (b)

2000

MIN 400.000 2.000 0.000 1.500 5000.000 25.000 32.827 259.830 117.800
MAX 539,400.000 113.000 2.014 11.670 470,196.946 84.409 97.314 9488.000 10,741.250

MEAN 82,784.615 32.346 0.181 5.735 56,061.794 73.487 82.181 4363.937 3389.905
STD 104,858.622 26.361 0.376 2.617 86,408.089 11.103 11.128 2560.109 2810.902

2005

MIN 2000.000 3.000 0.001 2.188 10,909.704 37.500 51.233 280.310 248.800
MAX 716,300.000 148.000 2.650 14.879 469,413.836 83.666 97.564 9768.000 22,557.370

MEAN 141,515.385 54.385 0.296 7.849 46,840.972 73.505 84.960 4515.563 6655.292
STD 152,436.225 36.338 0.513 3.256 85,780.566 9.020 8.343 2683.922 5949.370

2010

MIN 3200.000 5.000 0.001 2.667 9472.759 50.000 62.002 300.220 507.460
MAX 781,900.000 161.000 3.352 16.237 126,236.657 83.745 98.068 10,440.940 46,036.250

MEAN 175,407.692 63.308 0.387 8.737 30,699.052 74.230 86.224 4674.063 14,773.905
STD 173,214.016 42.025 0.672 3.558 23,359.325 7.211 7.037 2845.617 13,010.691

2015

MIN 4500.000 12.000 0.001 3.643 6628.607 43.333 57.727 323.970 1026.390
MAX 894,100.000 444.000 3.548 20.360 45,108.049 82.502 97.652 10,849.000 72,812.550

MEAN 239,873.077 159.385 0.447 12.313 15,191.780 69.440 83.358 4794.344 24,381.921
STD 198,278.027 99.308 0.718 4.092 8163.476 8.578 8.193 2930.681 21,446.614

Notes: STA indicates the statistic; MIN indicates the minimum; MAX indicates the maximum; MEAN indicates the average; STD indicates
the standard deviation; a, indicates ten thousand people; b, indicates ten thousand yuan; data are missing in 2011, 2013 and 2014.

These seven metrics describe the urban sprawl (CA and LPI), irregularity (NP, LSI,
and ENN_MN), and physical compactness (PLADJ and COHESION) [17]. Specifically,
CA has continued to increase from 2000 to 2015 in China (Figure 2). Regarding the
urban irregularity, LPI represents the largest patch percentage in the urban areas. NP
measures the total number of urban patches, LSI measures the landscape area perimeter,
and ENN_MN represents the spatial distance between any two closest neighboring patches.
These three metrics investigate the urban land degree of fragmentation or subdivision,
and they are proportional to the complexity of the city shape. Regarding the physical
compactness, PLADJ measures the absolute degree of urban land aggregation, while the
physical connectivity of urban areas is measured by COHESION, which is negatively
correlated with the aggregate distribution of UF.

Figure 2. The dynamics of urban expansion in China from 2000 to 2015, especially in Beijing–Tianjin–
Hebei (a) and Yangtze river delta (b) city clusters.
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This study employed urban land datasets to quantify and represent UF. The stratified
support vector machine (SVM) classification method was chosen (based on [26]) as a
reference, the stratified support vector machine (SVM) classification method was chosen to
measure the urban expansion at a 1-km spatial resolution using nighttime stable light (NSL),
land surface temperature (LST) and normalized difference vegetation index (NDVI) data.
Figure 2 shows the calculation results, demonstrating the urban expansion phenomenon
in China from 2000 to 2015 and the spatial distribution of the land-use changes in the
Beijing–Tianjin–Hebei and Yangtze River delta city clusters. After extracting urban built-up
area, our selected metrics were computed by the above urban land datasets. Finally, we
used “FRAGSTATS” software [27] to calculate the landscape metrics for each province and
each city for each year separately as explanatory variables.

2.3. PM2.5 Data

The PM2.5 data were produced by the Atmospheric Composition Analysis Group and
were obtained from their website (https://sites.wustl.edu/acag/datasets/surface-pm2-5/,
accessed 18 August 2020). The datasets were gridded at the finest resolution of the in-
formation sources that were incorporated (0.01◦ × 0.01◦), but do not fully resolve PM2.5
gradients at the gridded resolution due to influence by information sources at coarser
resolution. The data extraction method involved estimating the ground-level PM2.5 to-
tal and compositional mass concentrations across China. To estimate, it considered the
aerosol optical depth (AOD) retrieved from NASA Moderate Resolution Imaging Spectro-
radiometer (MODIS), Multi-angle Imaging Spectroradiometer (MISR), and Sea-viewing
Wide Field-of-view Sensor (SeaWIFS) instruments with the GEOS-Chem chemical transport
model. Subsequently, it calibrated the results to regional ground-based observations in
terms of both the PM2.5 total and compositional mass concentrations via geographically
weighted regression (GWR) as previously detailed [28]. The dataset was established then
with combined geophysical-statistical estimates of the PM2.5, based on the geophysical
satellite-derived values of van Donkelaar et al. [29]. They combined three satellite-derived
PM2.5 sources to produce global PM2.5 estimates. For each source, they developed transport
model to represent local aerosol optical properties and vertical profiles. The dataset can be
used in global scale with a high accuracy [30], so we have selected the data from 2000 to
2015 in this study.

2.4. Control Variables

The population and gross domestic product (GDP) were adopted as control variables.
We collected urban population and GDP data from the China Statistical Yearbook, which
shares the same time range as that of the PM2.5 and UF data, according to the administrative
divisions (Figures 3 and 4). These factors could influence both the PM2.5 concentration
and UF. The urban population size was chosen as a control variable because it has been
demonstrated to contribute to the PM2.5 concentration in China, exhibiting an inverse
U-type relationship [31]. Additionally, local economic growth is another driving force
impacting the PM2.5 concentration [32]. Shi, et al. [33] found that over the 15 years between
2000 and 2015, the speed and scale of urban space expansion in China far exceeded
those of urban economic expansion. Only by controlling all the variables other than the
independent variables triggering variations in the dependent variable can the cause-and-
effect relationship be clarified in experiments, so adding these two variables was vital to
facilitate the exploration of the relationships.

https://sites.wustl.edu/acag/datasets/surface-pm2-5/
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Figure 3. Spatial distribution of the GDP and population at the provincial scale.

Figure 4. Spatial distribution of the GDP and population at the city scale.

2.5. Econometric Model

A panel data model tracks the same set of individuals over time. Since panel data
models possess both cross-sectional (n-dimensional individuals) and time dimensions
(T periods), they have been widely applied as econometric models and therefore chosen
in this study. In this research, the period from 2000 to 2015 was selected for the model.
Before employing any panel data model, natural logarithmic transformation was applied
to all the dependent and independent variables, thus avoiding any adverse effects due
to “non-stationarity and heteroscedasticity. In addition, the study used panel unit root
tests [34] and panel cointegration tests [35] to examine for stationarity and collinearity and
avert false regression. Thus, the model was adjusted to:
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ln(P)it = α0 + ln(Zit)δ + εit (1)

where Pit represents average PM2.5 concentration of year t in city or province i; α0 is the
intercept; Zit represents a vector of the exogenous variables, which includes the seven
UF metrics and control variables for each studied area unit in year t; δ is the coefficients
of interest vector; and ε is the random error. Panel data models could be classified as
fixed- and random-effect models. The formal model and assumptions are that, specifically,
when α0 and ln(Z)it are related, the model is defined as a fixed-effect model. Conversely,
it is referred to as a random-effect model. In this study, the model was applied at both
the urban and provincial scales, and both fixed- and random-effect [36], which yielded
different results.

3. Results and Discussion
3.1. Spatiotemporal Analysis of the UF and PM2.5 Concentration

The Chinese urban areas greatly increased between 2000 and 2015 (Table 1). At
the provincial scale, we found that the urban area nearly tripled, with the maximum
value 1.7 times and the minimum value 11 times larger than that in 2000. It is worth
noting that the standard deviation of CA increased, which indicates that the regional
development imbalance worsened. Along with urban growth, the urban area became
increasingly irregular, and the links between cities tightened. COHESION and population
both increased from 2000 to 2010 and decreased from 2010 to 2015, reflecting the tendency
of the urban physical density to first increase and then decrease, probably due to the
urban reconstruction rate decreasing with increasing new urban construction rate [37]. The
population and GDP of the urban areas increased, and the GDP growth rate matches that
of the population. [38]

Over the 15 years since 2000, dramatic changes in the urban landscape patterns in
China have occurred (Table 2). The table indicates that there was a significant increase
in CA and NP in selected cities, as the values increased several times due to the rapid
economic development and urban sprawl. LPI recorded an increase in edge expansion,
with urban infilling occurring as well, as the villages between cities and in certain small
rural areas along city outskirts changed into urban areas, thereby exhibiting leapfrog
development. The upward LSI trend suggests the rise in the spatial heterogeneity and
irregularity of urban landscapes. In 2000, the average ENN_MN value was 27,942, and this
value was nearly halved in 2015, indicating more connected urban patches, which could
also be related to land-use changes. The PLADJ and COHESION values rose slightly but
declined from 2010 to 2015, indicating that the urban areas became less concentrated or
compact and experienced fluctuations.

Table 2. Statistics of the metrics at the city scale.

Year STA CA (km2) NP LPI (%) LSI ENN_MN PLADJ (%) COHESION Population (a) GDP (b)

2000

MIN 1.000 1.000 0.006 1.000 2000.000 0.000 0.000 15.960 179,307.000
MAX 1341.000 16.000 30.122 4.691 159,708.973 91.406 97.870 3091.090 45,511,500.000

MEAN 99.282 3.489 1.156 2.002 27,942.287 67.689 75.962 437.640 4,132,103.206
STD 178.799 2.800 3.329 0.824 26,968.348 15.390 15.033 333.963 5,072,992.580

2005

MIN 3.000 1.000 0.008 1.000 2000.000 27.778 35.317 17.220 695,200.000
MAX 1990.000 24.000 37.932 6.151 159,708.973 89.088 98.679 3169.160 91,541,800.000

MEAN 167.179 5.830 1.741 2.660 23,666.228 70.455 80.578 452.159 7,883,789.645
STD 267.914 4.541 4.473 1.100 19,797.264 10.614 10.279 342.462 10,589,234.331

2010

MIN 7.000 1.000 0.008 1.000 2000.000 27.778 34.051 21.800 1,632,777.000
MAX 2120.000 32.000 44.203 7.281 159,708.973 88.797 98.916 3303.450 171,659,800.000

MEAN 205.614 6.646 2.110 2.935 21,795.357 71.442 82.124 466.032 17,404,371.670
STD 310.517 5.134 5.244 1.190 18,472.615 9.526 9.429 333.169 21,837,487.314

2015

MIN 11.000 2.000 0.008 1.500 2000.000 31.250 48.759 20.250 1,900,441.000
MAX 6498.100 2909.000 48.280 62.865 85,519.693 89.818 98.756 3371.840 251,234,500.000

MEAN 561.008 27.610 2.467 4.090 14,475.278 69.050 81.098 478.639 28,409,807.169
STD 433.857 194.195 5.727 4.227 11,252.983 9.700 9.170 343.803 35,861,986.988

Notes: STA indicates the statistic; MIN indicates the minimum; MAX indicates the maximum; MEAN indicates the average; STD indicates
the standard deviation; a, indicates ten thousand people; b, indicates ten thousand yuan; data are missing in 2011, 2013 and 2014.
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China experienced a considerable rise in terms of the PM2.5 concentration, from
39.547 µg/m3 in 2000 to 49.613 µg/m3 in 2015, in addition to different spatial and tem-
poral distributions with various UF, population sizes, and economic structures as well.
However, an inflection point was observed because the data increased from 2000 to 2010
and decreased thereafter up to 2015, with Table 3 presents some statistical values of PM2.5
at provincial and city scales. Specifically, the maximum PM2.5 concentration rapidly de-
creased, indicating that in certain heavily polluted cities, pollution was effectively reduced.
This phenomenon was obvious in North China, as shown in Figure 5. Most cities in North
China have developed secondary industries and a high energy combustion level, resulting
in high pollutant emissions. In addition, due to space-dependent effects, the PM2.5 pol-
lution transported from neighboring provinces also resulted in high PM2.5 concentration.
Another heavily polluted area is Northwest China, where the Taklimakan Desert lies,
which has a dry climate that could easily cause dust storms or sandstorms. The figure
shows a trend whereby the pollution on the right side of the Hu Huanyong Line mainly
involves changes in the pollutant concentration. The Hu Line, also known as the “Hu
Huanyong Line”, is an imaginary line stretching from Heihe (a northern city of China
located on the Russian border) to Tengchong (a southwestern city of China bordering with
Myanmar), which divides the area of China into two roughly equal parts [39]. Additionally,
many studies have summarized the regular pattern of the PM2.5 concentration distribution
across China. There are four areas with a high PM2.5 concentration, including the Huang-
Huai-Hai Plain (eastern China), the Lower Yangtze River Delta Plain (eastern China), the
Sichuan Basin (southwest China), and the Taklimakan Desert (northwest China) [40]. More
specifically, Yan, et al. [41] found that in Hebei Province, the cities farther away from Bohai
Bay exhibited higher PM2.5 concentration. Instead, cities along the coastline presented
lower concentrations. Cities from the west to the Hu Line to the south to the Yangtze
River revealed the highest PM2.5 concentration [42]. Thus, spatial heterogeneity analysis at
different scales is also necessary in this study.

Table 3. Statistics of the dependent variables at different scales.

Year STA PM2.5 (µg·m−3) at the Provincial Scale PM2.5 (µg·m−3) at the City Scale

2000

MIN 10.972 6.000
MAX 75.282 92.607

MEAN 40.253 39.547
STD 15.885 17.999

2005

MIN 14.353 12.500
MAX 81.991 99.800

MEAN 50.792 50.620
STD 17.303 18.455

2010

MIN 13.462 11.000
MAX 85.721 123.773

MEAN 52.393 52.994
STD 18.742 20.170

2015

MIN 12.455 12.500
MAX 80.981 92.900

MEAN 48.652 49.613
STD 17.046 18.529

Note: STA indicates the statistic; MIN indicates the minimum; MAX indicates the maximum; MEAN indicates the
average, STD indicates the standard deviation; data are missing in 2011, 2013, and 2014.

Due to the spatial heterogeneity of the PM2.5 distributions, the concentration within
a province tends to remain similar, and the concentration difference between provinces
is quite large, while the standard deviation of provincial-scale statistics exceeds that of
city-scale statistics. All provinces in the study area were selected, and more cities were
chosen in the eastern and central regions, while the western region exhibited a better air
quality than the central and eastern regions. Hence, the average PM2.5 concentration at the
provincial scale was higher than that at the city scale.



Int. J. Environ. Res. Public Health 2021, 18, 3785 9 of 16

Figure 5. Spatial distribution of the fine particulate matter (PM2.5) concentration from 2000 to 2015.

3.2. Correlations between the UF and PM2.5 Concentration in China

Unit root tests were performed first (Table 4). The test results indicated that the metrics
were stationary at the first-order difference, and the nonstationary null hypothesis was
rejected at the 1% significance level. Therefore, we could model the panel data based on
the above results. In the study, fixed- and random-effect models were then employed
for estimation.

Table 4. Results of the panel unit root tests at the different scales.

Variables
Provincial Scale City Scale

LLC ADF PPS LLC ADF PPS

CA −2.79 *** 59.65 62.02 −10.99 *** 780.66 *** 824.36 ***
NP 10.64 20.57 9.13 1.68 555.78 *** 464.29 ***
LPI −5.59 *** 128.58 *** 152.14 *** −22.21 *** 1041.73 *** 1087.70 ***
LSI −10.22 *** 108.60 *** 106.70 *** −31.87 *** 1294.65 *** 1353.57 ***

ENN_MN −11.39 *** 141.47 *** 135.21 *** −2.93 *** 1379.38 *** 1479.34 ***
PLADJ −12.51 *** 147.87 *** 147.79 *** −39.98 *** 1590.01 *** 1716.48 ***

COHESION −4.60 *** 89.94 *** 103.14 *** −40.31 *** 1444.59 *** 1640.67 ***
Population 4.68 72.94 ** 88.48 *** −91.11 *** 903.95 *** 977.43 ***

GDP 6.23 21.86 32.94 23.96 250.40 255.33
PM2.5 −14.47 *** 205.54 *** 284.74 *** −74.50 *** 2753.93 *** 3578.73 ***

Note: Significant at the ** 5% level, and *** 1% level. LLC represents the Levin, Lin, and Chu test [34]; ADF
represents the ADF–Fisher chi-square test [43]; and PPS represents the PP-Fisher chi-square test [43].
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Table 5 lists panel data coefficients calculated at the different scales and with the
various models. As indicated by the table, the indicators noticeably correlated with the
PM2.5 concentration accounted for the majority of the indicators. In order to show their
relationships more clearly, Figures 6 and 7 illustrate the scatterplots of the metrics and
PM2.5 concentration.

Table 5. The relationships between the UF and PM2.5 concentration at the different scales.

Variable
Coefficient (Provincial Scale) Coefficient (City Scale)

Fixed Effect Random Effect Fixed Effect Random Effect

CA 0.000149 *** −2.19 × 10−5 7.16 × 10−5 *** 5.71 × 10−5 **
NP −0.033436 ** −0.112956 *** −0.110307 * −0.080818
LPI −15.85242 *** −7.337464 −0.377232 *** −0.403132 ***
LSI −2.106767 *** 2.545653 *** −2.286485 *** −2.150084 ***

ENN_MN −2.44 × 10−5 *** 8.70 × 10−5 *** −9.44 × 10−5 *** −9.61 × 10−5 ***
PLADJ −0.495721 0.654456 * 0.188681 0.124223

COHESION 0.727133 ** −0.797569 ** −0.041554 0.041326
Population 5.13 × 10−5 0.003239 *** 0.001401 0.000833

GDP −6.96 × 10−5 0.000247 *** 2.96 × 10−5 6.30 × 10−5

R2 0.467900 0.389188 0.097361 0.031573
Adjusted R2 0.432427 0.372376 0.089557 0.028002

F-statistic 13.19020 23.15028 12.47607 8.842340
Probability
(F-statistic) 0.000000 0.000000 0.000000 0.000000

Note: Significant at * 10% level, ** 5% level, and *** 1% level.

Figure 6. Scatterplots of urban forms (UF) metrics vs. PM2.5 concentration at the provincial scale.

Figure 7. Scatterplots of UF metrics vs. PM2.5 concentration at the city scale.
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At the provincial scale, CA imposed a noticeably positive effect on the concentration.
LPI negatively correlated with PM2.5 concentration, and it was the most important factor
under provincial-scale circumstances (a coefficient of −15.85). In terms of the urban
irregularity, ENN_MN, LSI, and NP all showed negative impacts, as the diffusion of
pollutants occurred more readily along the longer boundaries between urban and nonurban
areas. In regard to the urban compactness, PLADJ exerted no significant effects. In addition,
the COHESION statistics differed between the models and were significant at the 5% level.
The control variables, including population and GDP, did not significantly influence the
PM2.5 concentration at the provincial scale in the fixed effect model. Human activities differ
among the various UF, and artificial urban planning determines the sprawl, irregularity,
and compactness of cities. Human activities are usually accompanied by the consumption
of energy, which directly leads to the emission of pollutants. In addition, the GDP reflects
human activities as well. The prosperity of the industrial economy, which consumes
significant energy, may highly aggravate the air cleaning burden. [44,45]

The variables affecting the PM2.5 concentration at the city scale were roughly the same
as those at the provincial scale. CA had significant positive effects, and the effects were
negative in terms of LPI, LSI, and ENN_MN. It is worth noting that no significant correla-
tions were found between the urban physical compactness (PLADJ and COHESION) and
the PM2.5 concentration with either model, indicating that the compactness or dispersion
of urban buildings had little impact on the PM2.5 concentration. Among all variables, LSI
was the most important factor at the city scale (a coefficient of −2.29) since cities were
insensitive to UF irregularities.

3.3. Scale Effect of the UF on the PM2.5 Concentration

The results in Table 5 showed that the connections between the UF and PM2.5 concen-
tration could differ depending on the scale, and findings were obtained by considering
scale effects. First, the R2 values are greater at the provincial scale than at the city scale,
proving that the conclusions are more credible at the provincial scale. Findings at the city
scale may be promiscuous due to the diversity of cities. Overall, NP exerted a prominent
negative effect on the PM2.5 concentration at the provincial scale. By contrast, hardly
any significant correlations were found at the city scale. Regarding the urban areas at
the provincial scale, a higher distribution of urban patch represented a more scattered
or irregular urban pattern, leading to higher PM2.5 concentration. Second, LPI and CA
imposed the most significant effects on the provincial- and city-scale PM2.5 concentration,
negative and positive, respectively. The development of core cities could centralize re-
sources by providing more jobs, high-quality education, and medical resources [46]. Third,
the urban compactness showed various correlations with the PM2.5 concentration. Studies
have found that it would be beneficial to reduce PM2.5 concentration to develop urban
expansion in a continuous and aggregated pattern, which would increase transportation
accessibility [47]. However, these effects were only observed at the provincial scale in this
study and varied in the different models. Thus, detailed studies on the impacts caused by
traffic are required considering different models.

3.4. Heterogeneity Analysis at the Different Scales

The urbanization process in China revealed significant regional differences, as the
urban development speed in the eastern regions (ER) was higher than that in the central
(CR) and western regions (WR) as shown in (Figures 3 and 4), and the PM2.5 concentration
showed spatial variations (Figure 5). This led to the following questions in this study: Is
there a regional difference in the impact of the UF on the PM2.5 concentration? To answer
this question, this study separated the ER, CR, and WR of China with the division method
prescribed by the National Bureau of Statistics. This study then estimated the relationships
between the UF and PM2.5 concentration across the ER, CR and WR at the provincial and
city scales.
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Table 6 provides the UF–PM2.5 concentration relationships across the different regions
at the provincial scale and different estimation methods. Each index had a different
influence on the results in the different regions. Generally, the ER and CR exhibited similar
modes of influence, and the PM2.5 concentration was significantly influenced by all seven
indexes except ENN_MN. Urban sprawl, irregularity, and physical compactness proved
to be important in the above relationships in the eastern and CR. The results in the ER
and CR were similar, due to both natural environmental reasons such as topography and
meteorology [48] and, to a large extent, regional coordinated development. Because of
their early and fast development, they had established regional linkages and economic
interdependence. The similarity among industries resulted in similar impact mechanisms
of the UF on the PM2.5 concentration. Notably, among the control variables, the GDP of
the eastern provinces significantly impacted the PM2.5 concentration, while in the CR, the
population was the significant influencing factor. Therefore, it is believed that the main
factor influencing the concentration in the ER is economic development, and economic
development negatively impacted the PM2.5 concentration. In particular, the tertiary
industry in the ER of China has been vigorously developed in recent years, and the leading
provinces have performed well in terms of industrial upgrading and transformation and
have gradually eliminated energy-consuming industries emitting excessive pollution.
However, in the CR, the population index had a significant impact on the concentration
of pollutants, which indicates that the PM2.5 emissions caused by the large population
in the CR cannot be ignored [49]. The CR lacks advantageous industries, which are
mostly traditional industries and consume much manpower and resources. Focusing on
completing the industrial upgrading and transformation in this region and promoting
energy-saving measures may achieve the goal of reducing the PM2.5 concentration.

Table 6. The relationships between the UF and PM2.5 concentration in the different regions at the provincial scale.

Variable
Eastern Provinces Central Provinces Western Provinces

Fixed Effect Random Effect Fixed Effect Random Effect Fixed Effect Random Effect

CA −0.000104 *** −8.70 × 10−5 *** −0.000226 * −0.000225 * 2.40 × 10−5 −5.36 × 10−5

NP −0.164934 *** −0.192234 *** −0.001218 * −0.001613 ** −0.152360 *** −0.128675 ***
LPI 13.54699 * 9.878880 *** 90.60625 *** 80.68187 *** 12.26049 21.00478
LSI 9.744146 *** 9.632921 ** 7.981017 ** 7.219544 ** −1.946943 −0.694878

ENN_MN −1.64 × 10−5 −1.90 × 10−5 −3.85 × 10−5 −0.000120 4.69 × 10−5 *** 5.01 × 10−5 ***
PLADJ 4.072971 *** 4.236901 *** 3.951412 *** 3.958976 *** −0.652470 −0.499892

COHESION −5.321512 *** −5.188210 *** −2.776398 *** −2.657545 *** 1.440029 * 1.267429 *
Population 5.52 × 10−5 −1.63 × 10−5 0.003348 *** 0.003601 *** −0.001530 * −0.001618 **

GDP 0.000312 ** 0.000252 ** 7.30 × 10−5 −1.12 × 10−5 0.001672* 0.001992 ***
R2 0.912831 0.857158 0.901512 0.866379 0.509384 0.487694

Adjusted R2 0.890507 0.843481 0.871537 0.851533 0.423527 0.452764
F-statistic 40.89031 62.67433 30.07586 58.35489 5.932886 13.96203

Probability (F-statistic) 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

Note: Significant at the * 10% level, ** 5% level, and *** 1% level.

In the provinces in the WR, only three indexes imposed a significant impact on the
above relationship. In the WR, the main factors influencing the observed relationships are
natural factors, as the western provinces are characterized by an undulating topography,
containing mostly mountainous and plateau areas, so the trend in the urban areas is greatly
restricted by natural conditions [50]. Table 6 reveals that NP exerted a significant negative
effect on the PM2.5 concentration, while ENN_MN had a significant positive effect on the
PM2.5 concentration. The western provinces have a relatively small urban population. In
the WR, both the population and GDP impacted the PM2.5 concentration.

Table 7 summarizes the estimation results of the UF–PM2.5 concentration relationships
in the three geographical regions at the city scale and two estimation methods. As shown
for the eastern cities, the indexes of urban sprawl (CA and LPI) and irregularity (NP, LSI,
and ENN_MN) exerted a significant impact on the PM2.5 concentration. The irregular UF
with lower NP values in the eastern cities produced higher PM2.5 emissions than those
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in the other regions. This result suggested that the scattered form played a vital part in
the PM2.5 concentration in the northern region and slightly affected the concentration
in the other regions. This indicates that the cities in the eastern region with a large NP
value and long edges effectively reduced the concentration of pollutants. Certain cities
in the east depend on the sea, and their irregular coastlines led to higher LSI values,
and the diffusion of pollutants in the atmosphere–ocean cycle also helped reduce their
concentrations in these cities. PLADJ and COHESION imposed no significant influence on
the PM2.5 concentration, which may be due to the rapid development of the cities in the ER
and convenient transportation services, so that the transfer of urban economic activities
was less affected by the urban compactness. In the cities on the central plains with flat
terrains, without any mountains and seas nearby, all the metrics had significant impacts
on the PM2.5 concentration. The cities with larger urban areas, smaller patch numbers
and largest patch areas, shorter patch lengths, fewer spatial connections between patches,
higher proportions of similar patches, and less agglomeration exhibited an increase in the
PM2.5 concentration. The PM2.5 concentration in the western region was affected by all
metrics except PLADJ. It is worth mentioning that NP was significant in the western cities,
indicating that among the provinces, scattered patterns played an important part in the
PM2.5 pollution in the western cities.

Table 7. The relationships between the UF and PM2.5 concentration in the different regions at the city scale.

Variable
Eastern Cities Central Cities Western Cities

Fixed Effect Random Effect Fixed Effect Random Effect Fixed Effect Random Effect

CA 0.000107 *** 7.24 × 10−5 ** 0.000152 *** 0.000119 * −0.000173 −0.000363 **
NP −1.116592 *** −1.075780 *** −0.307969 ** −0.237743 0.569279 *** 0.543614 ***
LPI −0.564496 *** −0.582432 *** −1.083794 * −0.927409 * −3.817160 *** −3.157423 ***
LSI 2.055063 3.001070 ** −1.340814 * −1.251308 −8.881376 *** −7.310335 ***

ENN_MN −0.000106 ** −7.86 × 10−5 −0.000150 * −0.000152 *** −6.28 × 10−5 * −7.96 × 10−5 **
PLADJ −0.097256 −0.192349 0.319850 *** 0.284170 * 0.323929 0.259471

COHESION 0.102646 0.202534 −0.274463 ** −0.224378 0.479088 0.647384 **
Population 0.010097 *** 0.008177 *** 0.004254 ** 0.003932 ** −0.006029 ** −0.007334 ***

GDP 5.34 × 10−5 6.69 × 10−5 ** 1.02 × 10−5 1.34 × 10−5 ** 2.14 × 10−5 4.59 × 10−5 ***
R2 0.103133 0.045942 0.137810 0.059979 0.213630 0.150234

Adjusted R2 0.086073 0.038248 0.127557 0.055221 0.172449 0.131716
F-statistic 6.045331 5.971130 13.44152 12.60530 5.187533 8.112916

Probability (F-statistic) 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

Note: Significant at the * 10% level, ** 5% level, and *** 1% level.

3.5. Limitations and Future Directions

The following limitations are considered worthy of future researches in this study.
First, the main source of the PM2.5 concentration in China is usually point source pollution,
such as industrial discharge points. The locations of these activities are usually determined
by human factors and less so by the UF, which could restrict the relationship between
the UF and PM2.5 concentration. Second, the accuracy of the data is important to the
final results. However, PM2.5 concentration data are obtained through remote sensing or
station monitoring, with drawbacks of a low resolution or poor representation. Future
research should therefore focus on PM2.5 concentration of detailed households, transport,
and commercial buildings. In addition, the spatial distribution of residential, commercial,
and industrial areas is crucial to the observed relationships, but at a resolution of 1 km2

it is almost impossible to determine very detailed land use from existing land use/cover
datasets. Therefore, more detailed urban land use data should be derived and calculated.
To better validate the models, model-observation comparison of the five-year change (i.e.,
Y2000 vs. Y2005, Y2005 vs. Y2010, etc.) would increase the persuasion, and special cases can
be applied in future studies. Third, the UF affects the PM2.5 concentration through urban
patches with various geometries. Therefore, only seven indicative metrics are not enough to
reflect all UF, and future research should focus on selecting typical UF to modeling closer to
the real phenomenon. Fourth, despite the panel data models captured the magnitude of the
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relationships [47], the causal relationships between them cannot be directly determined [51].
Fifth, the spatial dependence and heterogeneity of the UF and PM2.5 concentration are
important factors influencing the above relationship. Therefore, simulation methods could
be applied to characterize these inherent mechanisms. Sixth, only the population and GDP
were adopted as control variables, while other factors that may influence the UF and PM2.5
concentration were not considered, which may lead to neglecting important influencing
factors. For instance, the number of roads and the shape of their extension affects the UF
and may further affect the concentration of PM2.5. Therefore, more control variables should
be selected for comparative analysis in the future, which could enhance the study of the
influence mechanism of UF–PM2.5 concentration relationships. Finally, the study would
use some uncertainty analysis to reach a refined study of PM2.5 currents and diffusions
inside the urban [52].

4. Conclusions and Policy Implications

The study has explored the relationships between the UF and PM2.5 concentration
in China from a multiscale perspective (provincial and city scales) in 27 provinces and
250 cities. By integrating two control variables (the population and GDP), this paper
establishes a comprehensive evaluation index system of UF based on the seven metrics
describing UF. Specific panel data models were then applied to calculate the relationships
between the UF and PM2.5 concentration. Subsequently, six conclusions are reasoned out,
which are summarized as follows. First, the cities with high PM2.5 concentration s in China
are mainly located in the eastern region and northwest desert area. Second, the effects of
the UF–PM2.5 concentration relationship are attributed to LPI and LSI at the provincial and
city scales, respectively. Third, NP imposes valid active effects on the PM2.5 concentration
at the provincial scale, but it is not statistically significant at the city scale. Fourth, little
correlation is found between the urban compactness and PM2.5 concentration at the city
scale. Fifth, LPI exerts a significant positive effect on the PM2.5 concentration in the eastern
and central provinces but imposes no significant effect in the western provinces. Sixth, in
the western cities, the PM2.5 concentration increase is likely caused by the scattered and
irregular urban pattern.

The above findings demonstrate the relationships between UF and PM2.5 concentra-
tion differently by listing the results at the different scales and in different regions. Rational
urban planning based on local conditions by optimizing the existing urban spatial layout
may be useful in achieving a reduction in PM2.5 concentration in China. Therefore, the
research results can provide relevant references for urban planners. First, cities may ratio-
nally plan their expansion and optimize their scale across China, increasing urban green
land. Second, consideration can be given to pooling resources and actively building core
cities, especially in the eastern and central provinces. Third, industrial cities can choose to
disperse factories with high pollutant emissions, so that cities and green spaces can inter-
penetrate each other and thus try to reduce PM2.5 concentration. Fourth, traffic construction
in the western provinces may be accelerated to make the traffic flows between cities more
convenient and promote the development of urban industries. Fifth, in the process of the
Great Western Development Strategy, western cities could properly concentrate on the
development of certain plots to control the number of possible patches in cities.
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