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Breast cancer is the second most prevalent malignancy affecting women. Postmenopausal women 
breast tumor is one of the top causes of death in women, accounting for 23% of cancer cases. 
Type 2 diabetes, a worldwide pandemic, has been connected to a heightened risk of several 
malignancies, although its association with breast cancer is still uncertain. In comparison to 
non-diabetic women, women with T2DM had a 23% elevated likelihood of developing breast 
cancer. It is difficult to determine causative or genetic susceptibility that connect T2DM and 
breast cancer. We created a large-scale network-based quantitative approach employing unbiased 
methods to discover abnormally amplified genes in both T2DM and breast cancer, to solve 
these issues. We performed transcriptome analysis to uncover identical genetic biomarkers 
and pathways to clarify the connection between T2DM and breast cancer patients. In this 
study, two RNA-seq datasets (GSE103001 and GSE86468) from the Gene Expression Omnibus 
(GEO) are used to identify mutually differentially expressed genes (DEGs) for breast cancer 
and T2DM, as well as common pathways and prospective medicines. Firstly, 45 shared genes 
(30 upregulated and 15 downregulated) between T2D and breast cancer were detected. We 
employed gene ontology and pathway enrichment to characterize prevalent DEGs’ molecular 
processes and signal transduction pathways and observed that T2DM has certain connections 
to the progression of breast cancer. Using several computational and statistical approaches, 
we created a protein-protein interactions (PPI) network and revealed hub genes. These hub 
genes can be potential biomarkers, which may also lead to new therapeutic strategies for 
investigated diseases. We conducted TF-gene interactions, gene-microRNA interactions, protein-
drug interactions, and gene-disease associations to find potential connections between T2DM and 
breast cancer pathologies. We assume that the potential drugs that emerged from this study could 
be useful therapeutic values. Researchers, doctors, biotechnologists, and many others may benefit 
from this research.
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1. Introduction

The second commonest malignancy affecting women is breast cancer [1]. Postmenopausal women’s breast tumor is among the 
leading causes of mortality in females, contributing to 23% of all cancer cases [2]. In 2020, approximately 2.3 million new cases 
were detected and about 8 million alive women were identified with breast tumors in the previous five years [3]. The incidence of 
breast tumors in men ranges from 0.5% to 1% [4]. The chance of developing breast cancer is affected by several variables (such as 
heredity, lifestyle, hormonal factors, benign breast disease, and the environment) [5]. Obesity is associated with an elevated risk of 
post-menopausal women’s breast cancer [6].

Type 2 diabetes mellitus (T2DM) is a persistent hyperglycemic metabolic illness defined by insulin deficiency and multiple 
organ system dysfunctions that causes problems in carbohydrate, protein, and lipid metabolism [7]. Diabetes mellitus, a worldwide 
pandemic, is the ninth leading cause of death globally. Diabetes mellitus affects approximately 1 in every 11 persons worldwide, 
with 90% of those cases having T2DM [8]. By 2030, approximately 450 million people globally and 7.7% of adults (age 20 to 79) 
are predicted to have diabetes [9]. Insulin insensitivity is a hallmark of the most common form of diabetes. Type 2DM develops from 
insulin resistance, decreasing insulin levels, and eventually the destruction of pancreatic beta cells [10]. T2DM lifestyle variables 
include lack of education, tobacco smoking, obesity, an inheritance of diabetes, hypertension, and physical inactivity [11].

Type 2 DM correlates with a lower survival rate for various cancers. According to several epidemiological studies, diabetic people 
have a greater likelihood of liver malignancies, biliary tract, pancreas, colon, stomach, bladder, kidney, breast, and uterus. Diabetes, 
on the other hand, has been linked to a lower incidence of prostate cancer [12]. Individuals with T2DM have a greater possibil-
ity of death from a variety of malignancies, featuring a 30%-40% rise in pancreatic malignancy, a 2.5-fold rise in liver cancer, a 
30% rise in uterine cancer, a 15%-30% rise in breast tumors, and a 20%-50% rise in intestinal malignancy [13]. Hyperinsuline-
mia, hyperglycemia, plasma testosterone levels, obesity, insulin restriction, raised insulin-like growth factor-1 (IGF-1) expression, 
hyperlipidemia, inflammatory cytokines, higher concentrations of leptin, and reduced amounts of adiponectin have been involved in 
increased cancer risk [14][13].

According to results from meta-analysis, diabetic women have a 23% elevated risk of breast tumors relative to non-diabetic 
women [15]. Findings from several studies; diabetes linked to breast tumors via some mechanisms:

• The insulin-like growth factor pathway is activated. IGF can bind to both the insulin and IGF receptors, initiating a chain of 
events that eventually leads to the development of breast tumors [15][16][17].

• Hyperinsulinemia is also linked to high estrogen levels and decreased sex hormone-binding globulin (SHBG) densities, causing 
a greater estradiol bioavailability. Furthermore, diabetes-induced hyperglycemia promotes tumor cell growth and proliferation 
[15][18].

• Being overweight and having T2DM have been linked to higher leptin quantities and lower adiponectin values, which may cause 
a threat of breast cancer, particularly in the more aggressive types [15][19].

• Increased insulin can bind to its receptors, which activates phosphatidylinositol 3-kinase, which in turn promotes the AKT 
pathway, which plays a vital role in carcinogenesis [15][20].

Numerous studies have examined the relationship between T2DM and various molecular subtypes of breast cancer and the findings 
suggest that there may be some differences in the association between T2DM and the risk of developing certain subtypes of breast 
cancer. For example, some studies have reported that T2DM is associated with an increased risk of developing ER+ breast cancer, 
which is the most common subtype of breast cancer. Other studies have suggested a stronger association with HER2+ or triple-
negative breast cancer [21]. Differences in hormone receptor status, insulin resistance, inflammation, and other things, may impact 
the link between T2DM and breast cancer subtypes. To understand the underlying mechanisms and to clarify any potential variations 
in the correlation between T2DM and various breast cancer subtypes, additional study is necessary.

In conclusion, strong evidence suggests histological and therapeutically substantial correlations between T2DM and breast cancer, 
but this relation is not yet investigated [22]. The scientific relations and molecular mechanisms that underpin this association are 
yet unknown because the etiology of T2DM and breast cancer are highly complicated, and their threat variables intersect slightly. 
T2D and breast cancer connections are difficult to find, yet they are of substantial attention in clinical endocrinology. T2D and breast 
cancer have complicated clinical presentations, making them difficult to examine using traditional assumptions-based endocrinology 
inquiry, despite their therapeutic relevance. Furthermore, bioinformatics research on the relationship between T2D and breast tumors 
is still lacking. The goal of this study was to find such linkages between breast cancer and T2DM because knowing the nature of these 
links could reveal crucial information about the disease mechanisms. Therefore, we employed a bioinformatics system approach 
to evaluating genomic information from infected tissue investigations for insights into the nature of the T2D-breast cancer link. 
Differentially Expressed (DE) genes were identified for additional system biological analysis to understand molecular mechanisms 
of disease conditions. DE genes were statistically significant differences in expression levels between groups. There were several 
statistical approaches for identifying significant DE genes in the literature. In the assessment of RNA-seq data set analysis, the 
DESeq2 algorithm is the most common. For identifying DE genes in T2D and breast cancer datasets, we used RNA-seq datasets. We 
used a systems biology approach in this study to represent commonly dysfunctional proteins and pathways linked to T2D and breast 
cancer. This research aimed to identify inappropriately expressed proteins or genes in T2D individuals leading to the development 
of breast cancer in females. This investigation can also help to understand the genetic underpinnings of female breast cancer. This 
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research may help to create generic drugs by determining the functions of these proteins. For female breast cancer patients with 
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Fig. 1. Graphical representation of the underlying procedure of this research.

T2D, this study also offers significant information for drug development and design. Fig. 1 illustrates the sequential workflow of our 
study.

2. Materials and methods

2.1. Datasets used for this research

We examined datasets from the Gene Expression Omnibus (GEO) of the National Centre for Biotechnology Information (NCBI) 
[23] and GREIN. GREIN is a website-based interactive tool that enables quick entrance to GEO RNA-seq data. Several research 
used GREIN to carry out differential gene expression inspection on the respective RNA-seq data [24]. Several datasets have been 
rejected because they had fewer than six samples, no control and case requirements, replicated datasets, undesirable formatting, 
unrelated experimental emphasis, or non-human RNAseq data. Each of the six samples must contain a minimum of 3 case samples 
and healthy control. We searched for a dataset having an adequate number of controls and cases for our research. This approach 
identified two datasets pertinent to T2D and breast cancer and were suitable for our inquiry. Datasets on genomic expression bearing 
identification numbers GSE103001 [25] and GSE86468 [26] were evaluated (having a healthy control group and case group) for our 
research. The breast cancer dataset (GSE103001) contained mammary tissue-derived gene expression information. Strand-specific 
RNA fingerprinting was conducted on an Illumina HiSeq 2000 and the dataset consisted of 22 initial breast carcinoma exhibiting 
estrogen and its corresponding normal tissues. Analyzing the ER+ breast cancer dataset (GSE103001) can provide valuable insights 
into the biology of this disease and guide the development of new treatments. Second, the dataset may have been collected with 
3

specific research questions in mind, and therefore may contain more specific and relevant information than larger, more general 
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datasets like TCGA or METABRIC. The T2D dataset (GSE86468) included gene expression data from human pancreatic islets. The 
dataset contained RNA-seq profiles on a Illumina NextSeq 500 of 24 human pancreatic islet cell samples (6 cases,6 control).

2.2. Raw counts preprocessing and differentially expression analysis

Differentially expressed at the transcriptional level refers to genes that display statistically significant differences in expression be-
tween multiple experimental conditions [27]. The NCBI Gene Expression Omnibus provided the gene expression microarray datasets 
used in our research. These datasets were created by identifying differentially expressed genes (DEGs) linked to each pathology by 
contrasting healthy tissue with diseased tissue. The primary objective of this analysis was to extract DEGs from the datasets GSE86468 
and GSE103001. According to two criteria (absolute log fold change value higher than or equivalent to 1 and adjusted p-value 0.05), 
we calculated the range of significant genes from Differentially Expressed Genes (DEGs). Then, a VENN analysis program named 
Jvenn [28] was used to acquire the mutual DEGs of GSE86468 and GSE103001.

2.3. Analysis of gene ontology and pathway enrichment

Expression inquiry of gene sets is a remarkable logical exertion to categorize similar molecular findings, including physiological 
procedures or chromosome sites related to several interconnected disorders [29]. Utilizing EnrichR [30], a complete gene array 
enhancement web tool studies on gene ontology, functional augmentation (biological methods, cellular constituents, and molecular 
functions) and pathway embellishment, were carried out to describe the molecular mechanisms and signal transduction way of 
common DEGs. Gene ontology provides enormous computational information resources by considering the components and functions 
of genes. An ontological concept specifies a collection of information within a specific circumstance [31]. We looked at five databases 
at this time: Bio Carta [32], Elsevier Pathway, KEGG [33], Reactome [34], and WikiPathway [35]. These databases of genomic 
information aim to provide a global perspective on the molecular functions and interactions of genes and metabolic pathways in 
various organisms. Then, we used shared DEGs between T2D and breast cancer to search for highly enriched pathways. Then, for 
analysis, these pathways were separated into functional categories. On the other hand, the GO technique classified them according 
to operational divisions using biological process (BP), cellular component (CC), and molecular function (MF) [36].

2.4. Analysis of protein–protein interacting networks

Protein-protein infrastructure (that forms at the end of a protein’s journey within a cell) signifies the protein processes by forming 
similar protein affiliations. The evaluation and study of the PPI structure and its functionalities is the core and primary objective of 
comprehension and gaining insights into the intracellular component functions [37][38][39]. To depict the functional and physical 
relationships between breast cancer and T2D, we built the protein PPI connection obtained from common DEGs Utilizing the STRING 
(version 11.5) repository [37]. Highly interacting proteins were found utilizing topological features (degree above 15°) from PPI 
analysis. STRING aims to provide expanded insights on PPI in the context of various category confidence ratings (low, moderate, and 
high). We uploaded our PPI network in Cytoscape (version 3.7.0) for visual illustration and additional PPI connection experiments 
[40]. Cytoscape (v.3.7.0), a widely accessible network representation platform, consolidates several datasets to produce better results 
for multiple interactions, including PPIs, DNA interconnections, DNA-protein couplings, and more.

2.5. Identification of hub genes and submodule analysis

Hub genes are genes with a strong relationship to module possibilities [41]. The characteristics and progression of the disease 
are significantly influenced by these genes [42]. A Cytoscape plugin termed Cytohubba was used to rank and retrieve important 
or potential target biological network elements depending on different network properties. Cytohubba provides 11 ways to analyze 
networks from distinct perspectives [43]. Using the BottleNeck and DMNC method of Cytohubba, we determined the best 15 hub 
genes within the PPI connection.

2.6. Involvement of transcription factors and microRNAs in common DEGs

Transcription factors are proteins that play an essential part in the transformation of DNA into RNA, also known as transcription; 
therefore, it is essential for molecular insights [44]. To express a specific and distinct combination of proteins and RNA molecules in 
each type of cell in our body, transcription factors (TFs) are essential proteins that decode the information in our genome [45]. We 
examined the relationships between DEGs and transcription factors (TFs) as well as DEGs and microRNAs (miRNAs) to determine 
the governing molecules (i.e., TFs and miRNAs) that control DEGs of importance after or during transcription. We employed the 
NetworkAnalyst system to identify TFs from the JASPAR [46] and Chip-X [47] databases which seek to connect to our common 
DEGs. Tarbase [48] and mirTarbase [49] are the leading experimental validity data for miRNAs–targeting gene relations. The TFs 
were sorted depending on the degree greater or equal to 20 from the DEGs-TFs connection. Based on the DEGs-miRNAs network 
degree above or equivalent to 15, we have selected the miRNAs. Network Analyzer in Cytoscape [40] and Network Analyst [50]
utilized for the topological study. Cytoscape enables researchers to select prime miRNAs having significant degrees, identify biological 
4

activities and characteristics, and provide a viable biological hypothesis.
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Fig. 2. The diagram provides an overview of the transcriptome analysis. A. Utilizing a venn diagram, identify the common indicator genes between breast cancer and 
T2D B. Bubble graph of common genes along with their corresponding log10APValue(log10 adjusted p-value) and Log2 fold change. Log2 fold change depicts the 
variation between the expression levels of each gene and log10APValue indicates the significance level of each gene.

2.7. Evaluation of applicant drugs

The vital element of this investigation was the forecast of protein-drug interactions (PDI) or the classification of medicinal 
compounds. A drug must bind to a receptor protein or an enzyme before it can act on a receptor or metabolize by an enzyme [51]. We 
have utilized The NetworkAnalyst platform to determine the potential for protein-drug interactions. We used the DrugBank database 
in the construction of protein-drug interactions [52]. Information about the protein and pharmacological targets was obtained from 
5

the DrugBank database (Version 5.0). PDI was generated for all connected, prevalent, and causative genes of the disorders targeted.
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Table 1

The summary of the transcriptomic data and analysis. It comprises the dataset identification code, the sampling location, the actual number of the raw gene, the 
specimen value, and the notable genes.

Disease 
Name

GEO Platform Tissues/Cells GEO 
Accession

RAW Genes Case 
Samples

Control 
Samples

Significant Up 
Reg. 
Genes

Down 
Reg. 
Genes

Type-2 
Diabetes 
(T2D)

Illumina 
NextSeq 500 
(Homo 
sapiens)

Pancreatic 
Islet

GSE-86468 21144 6 6 413 217 196

Breast 
cancer

Illumina HiSeq 
2000 (Homo 
sapiens)

Mammary 
tissue

GSE-103001 23588 22 22 3128 1465 1663

2.8. Gene–disease association analysis

DisGeNET is a network that combines information from different archives about human variant-disease associations (VDAs) 
and gene-disease associations (GDAs) (such as inherited, complicated, and ecologic diseases) [53]. DisGeNET is one of the largest 
collections of its kind presently offered, with 117000 genomic variants, 17000 genes and 24000 disorders [54]. DisGeNET data may 
be examined via the DisGeNET Cytoscape plugin, Enrichr-Ma’ayan Laboratory tool, and NetworkAnalyst platform. We have utilized 
the NetworkAnalyst platform to detect gene-disease correlations and complications with common DEGs.

3. Results

3.1. Exploration of transcriptomic data for gene expression

According to our methodological requirements, Table 1 represents the statistical data for female T2D and breast cancer. Table 1
includes the following information: GEO identification names, cellular characteristics, the quantity of control and case specimens, 
source genes for every dataset, significant genes, upregulated genes, and downregulated genes. To evaluate the impacts of gene 
expression on T2D patients and breast cancer patients, we obtained RNA-Seq information using Grein or NCBI. According to the 
study, the “Illumina Next Seq 500 (Homo sapiens)” GEO platform supplied T2DM information, and the “Illumina HiSeq 2000 (Homo 
sapiens)” forum provided breast cancer information. A total of 12 breast tumor samples 96 for the case and 6 for the control) were 
used in the T2D study. Analysis of differential expression (commonly referred to as signature data extraction) revealed a total of 
21144 genes for T2D in females. In analyzing the signature data, we considered two conditions: “Log2 Fold-Change” and “Adjusted 
P-Value”. After applying these criteria, we found 413 significant genes with adjusted p-values lower than 0.05 and abs(LogFC) larger 
than or similar to 1.0. Considering significant genes, we identified 217 up-regulated genes and 196 down-regulated genes. On the 
other hand, the dataset for breast cancer included 44 samples in total, 22 for the case and 22 for the control. We found 23588 genes 
after generating signature data. Then we used the same criteria, and we found 3128 significant genes. Among them, 1465 were 
up-regulated genes and 1663 were down-regulated genes. Then, we compared the T2D up-regulated genes and the breast cancer 
up-regulated genes. We also compared the genes that were down-regulated in both circumstances. We found 30 common genes that 
were up-regulated and 15 common genes that were down-regulated between T2D and breast cancer. The most essential common 
up-regulated genes were CFB, C4A, ANXA9, FBP1, SLC44A4, UNC5B, MFAP2, FGB, GAD1, C4B, FSTL4, FAIM2, SMIM22, SERPINA6, 
SMPDL3B, EDN2, WFDC2, CST2, PLEKHB1, SPP1, SERPINA1, STK19, PEG10, NPY1R, ANKRD1, HABP2, VTCN1, PYY, CEACAM7, 
PALM3. Also, the most important common down-regulated genes between female breast cancer and T2D were G0S2, ADCYAP1R1, 
EDNRB, NPR2, AADAC, ACTG2, SOCS3, MT1JP, FTL, LINC02185, CPA1, CXCL3, MTRNR2L2, DHRS9, C7. These DEGs were identified 
based on their association with the estrogen receptor (ER) signaling pathway, which play a critical role in the development and 
progression of ER+ breast cancer. The 45 DEGs identified in this study may not be unique to ER+ breast cancer and may be involved 
in other types of cancer as well. Nevertheless, their association with ER signaling and other cancer-related pathways suggests that 
they may play a substantial role in the development and progression of ER+ breast cancer.

3.2. Exploration of pathway and GO functional correlation

We employed five distinct databases for pathway analysis: Bio Carta [32], Elsevier Pathway, KEGG [33], Reactome [34], and 
WikiPathway [35]. Then, we investigated highly enriched pathways employing DEGs common to breast cancer and T2D. Then, to 
facilitate analysis, these pathways were divided into functional groups. We identified 479 signaling pathways associated with both 
disorders. We manually selected lesser pathways in consideration of adjusted p-values less than 0.05. Ultimately, we obtained the top 
31 signaling pathways. Lastly, we organized the pathways according to the adjusted p-value in ascending order. Fig. 4 shows the top 
20 pathways connected to T2D and breast cancer. The GO technique divided them into distinct classes using biological process (BP), 
molecular function (MF), and cellular component (CC). We analyzed the BP, CC, and MF database of GO terminologies. The most 
significant GO terms adjusted p-value under 0.05. Table 2 outlines the ten leading entries in the categories of biological methods, 
6

cellular constituents, and molecular processes.
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Fig. 3. Up regulated and Down regulated genes between T2D patients and breast cancer are represented separately.

Fig. 4. 20 leading pathways related to both diseases are depicted using a bubble graph based on a transcriptomic study. The log10APValue indicates the significance 
7

level of each pathway.
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Table 2

Exploration of DEGs common by breast tumors and type 2 diabetes from an ontological perspective.

Category GO ID Term P-values Genes

GO Biological Process GO:0030449 Regulation of complement activation 4.77E-06 C4B-C4A-C7-CFB
GO:0002697 Regulation of immune effector process 6.04E-06 C4B-C4A-C7-CFB
GO:0002920 Regulation of humoral immune response 6.51E-06 C4B-C4A-C7-CFB
GO:2000427 Positive regulation of apoptotic cell clearance 0.0001374 C4B-C4A
GO:2000425 Regulation of apoptotic cell clearance 0.000137 C4B-C4A
GO:0014829 Vascular associated smooth muscle contraction 0.000137 EDN2-EDNRB
GO:0042310 Vasoconstriction 0.000268 EDN2-EDNRB
GO:0048246 Macrophage chemotaxis 0.000322 EDN2-EDNRB
GO:0014821 Phasic smooth muscle contraction 0.000322 EDN2-EDNRB
GO:1905517 Macrophage migration 0.000510 EDN2-EDNRB

GO Cellular Component GO:0099512 Supramolecular fiber 0.000826 MFAP2-ACTG2
GO:0031093 Platelet alpha granule lumen 0.009974 FGB-SERPINA1
GO:0005579 Membrane attack complex 0.013425 C7
GO:0032982 Myosin filament 0.013425 ACTG2
GO:0031982 Vesicle 0.014255 FGB-GAD1-AN-XA9
GO:0031091 Platelet alpha granule 0.017488 FGB-SERPINA1
GO:0061200 Clathrin sculpted gamma aminobutyric acid transport vesicle 0.017861 GAD1
GO:0061202 Clathrin sculpted gamma aminobutyric acid transport vesicle membrane 0.017861 GAD1
GO:0044754 Autolysosome 0.022278 FTL
GO:0001527 Microfibril 0.024479 MFAP2

GO Molecular Function GO:0004867 Serine type endopeptidase inhibitor activity 0.000332 SERPINA1-SERPINA6-WFDC2
GO:0004866 Endopeptidase inhibitor activity 0.002204 SERPINA1-SERPINA6-WFDC2
GO:0030283 Testosterone dehydrogenase NADP activity 0.011200 DHRS9
GO:0015220 Choline transmembrane transporter activity 0.011200 SLC44A4
GO:0004983 Neuropeptide Y receptor activity 0.011200 NPY1R
GO:0005179 Hormone activity 0.013337 PYY-EDN2
GO:0008528 G-protein coupled peptide receptor activity 0.014666 ADCYAP1R1-EDNRB
GO:0019828 Aspartic type endopeptidase inhibitor activity 0.015646 WFDC2
GO:0008199 Ferric-iron binding 0.015646 NA
GO:0018455 Alcohol dehydrogenase NADP activity 0.015646 DHRS9

3.3. Classification of hub proteins and submodule

We created a PPI network on the STRING based on proteins expressed by DEGs common to breast cancer and T2D. Fig. 5 displays 
the outcomes of this preparation and evaluation in Cytoscape. The PPI network has 25 nodes and 76 edges. Protein subnetworks 
associated with two or more diseases are known to be related. Although further research is required to comprehend their roles, these 
recently discovered hub proteins may prove useful as therapeutic targets. Fig. 6(A, B) shows the identified hub proteins using the 
algorithms BottleNeck and DMNC. We identified 23 hub genes using the BottleNeck algorithm, with the top 10 highly significant 
genes highlighted by the colors red, orange, and yellow. Additionally, utilizing the DMNC algorithm, we discovered 12 hub genes, 
with 10 of them being the most prominent (represented by red, yellow, and orange colors) as evident in Table 3. The most significant 
genes are hub genes with a high degree of interconnection between potential modules. A high degree of connection indicates a 
connection ranking among the top 10%. For instance, if the module size was 1000, the top 100 genes were considered hub genes. 
From both algorithms, we identified the top 15 DEGs as the most significant genes-FGA, SOCS3, UNC5B, CFB, ITGAV, EDN2, NPY1R, 
C4A, SERPINA6, HABP2, SERPINA1, C3, C7, FGB, and C4B. In addition to the most important genes, both methods shared five genes-
FGA, CFB, C4A, SERPINA6, and HABP2. We created two submodule networks to understand hub genes’ interconnection and closeness 
(Fig. 6). These core genes may serve as possible biomarkers, resulting in novel therapeutic approaches for examined disorders. Table 3
represents the summary of hub genes.

3.4. Determination of transcriptional and post-transcriptional regulators of the differentially expressed genes

Transcription factors (TFs) are proteins responsible for the manifestation of significant genes [55]. Transcription is the process 
by which genes are translated into RNA or protein [56]. Gene expression is regulated by transcription factors, which are present in 
all alive organisms [57]. TF genes control a wide range of biological processes, making them extremely important [58]. MicroRNAs 
are a type of non-coding RNAs that influence gene manifestation in significant ways [59]. MiRNA contents (enriched miRNA) 
may significantly impact physiological functions, transcription, and message transmission [60][61][62]. MiRNAs regulate breast 
tumors cell proliferation and cycle advancement by engaging with cyclins, protein kinases, and growth promoters or suppressors 
[63]. Numerous studies have linked miRNA dysregulation to T2DM pathogenesis including insulin secretion, glucose metabolism, 
insulin deficiency, lipogenesis, islet maturation, beta-cell and adipocyte proliferation, as well as diabetes management [64][65]. We 
performed the TFs-DEGs interaction results illustrated in Fig. 7 and the miRNAs-DEGs reaction study depicted in Fig. 8 to explore the 
post-transcriptional and transcriptional moderators of the DEGs. Fig. 7 displays the TF-Gene connections. The governing genes are: 
8

PLEKHB1, FTL, SMPDL3B, GAD1, SPP1, PEG10, FAIM2, FSTL4, SOCS3, EDN2, FBP1, UNC5B, G0S2, ANKRD1, SERPINA1, SLC44A4, 
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Table 3

Summary of breast cancer and type 2 diabetes (T2D) hub genes acquired by study of protein-protein interactions.

Gene Symbol Description Feature

FGA Fibrinogen alpha chain Signaling receptor binding and protein macromolecule adaptor activity
SOCS3 Suppressor Of Cytokine Signaling 3 Protein kinase inhibitor activity
UNC5B Unc-5 Netrin Receptor B Programmed Cell Death
CFB Complement Factor B Serine-type endopeptidase activity and complement binding
ITGAV Integrin Subunit Alpha V Protease binding and voltage-gated calcium channel activity
EDN2 Endothelin 2 Hormone activity
NPY1R Neuropeptide Y Receptor Y1 G protein-coupled receptor activity and peptide YY receptor activity
C4A Complement C4A Endopeptidase inhibitor activity and complement component C1q complex binding
SERPINA6 Serpin Family A Member 6 Serine-type endopeptidase inhibitor activity and steroid binding
HABP2 Hyaluronan Binding Protein 2 Calcium ion binding and glycosaminoglycan binding
SERPINA1 Serpin Family A Member 1 Identical protein binding and protease binding.
C3 Complement C3 Signaling receptor binding and C5L2 anaphylatoxin chemotactic receptor binding
C7 Complement C7 Complement cascade and Initial triggering of complement
FGB Fibrinogen Beta Chain Signaling receptor binding and chaperone binding
C4B Complement C4B Carbohydrate binding and complement binding

Fig. 5. The figure describes the PPI network of DEGs between T2D and breast cancer. Circular nodes indicate DEGs and edges denote node relations. The PPI network 
consists of 25 nodes and 76 edges. Employing String, the PPI network was constructed and displayed in Cytoscape.

AADAC, CFB, ADCYAP1R1, EDNRB, MFAP2, C4A, ACTG2, HABP2, FGB, TCF3, ZNF281, SPI1, RAD21, GATA2, PPARG, TRIM28, TP63, 
HNF4A, SOX2, POU5F1, NANOG, USF2, FOXC1, NFKB1, FOXL1, E2F1, TFAP2A, SRF, YY1, NFIC. Fig. 8 graphically shows miRNA’s 
genes relation: mir-4784, mir-193b-3p, mir-765, mir-3150b-3p, mir-484, mir-5096, mir-2114-5p, mir-98-5p, mir-335-5p, mir-204-5p, 
mir-30b-5p, mir-30a-5p, mir-30c-5p, mir-30e-5p, mir-221-3p, mir-30d-5p, let-7f-5p, mir-7-5p, mir-146a-5p, mir-16-5p, mir-129-2-3p, 
mir-1-3p, mir-27a-3p, mir-374a-5p, mir-34a-5p, mir-124-3p, mir-1343-3p, let-7b-5p, mir-195-5p. Summary of post-transcriptional 
regulatory biomolecules of T2D and breast cancer is shown in Table 4.

3.5. Detection of potential drugs

Protein-drug interactions are essential for understanding ligand affinity [66]. It is essential to evaluate protein–drug associations 
to comprehend the structural characteristics indicated for receptor accessibility [67][68]. We identified 13 potential therapeutic 
compounds for common DEGs as suspected drug targets in T2D and breast cancer. Fig. 9 represents Protein Drug Interactions for 
T2D and breast cancer complicacy and the common gene is CPA1. We considered other genes as well but found that CPA1 had the 
9

strongest connections to drug targets and therefore focused on it as a potential therapeutic target.
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Fig. 6. Utilizing the Cytohubba addon in Cytoscape to identify hub genes from the PPI network. We used the most recent BottleNeck and DMNC Cytohubba plugin 
methods to obtain hub genes. The BottleNeck network contains 23 nodes, 37 edges, and DMNC nodes and edges totaling 12 and 29. Node color indicates the degree 
of interaction (red means high level, orange/yellow means moderate level, and green means low level).

Table 4

Summary of post-transcriptional regulatory biomolecules of T2D and breast cancer.

Symbol Description Feature

mir-193b-3p MicroRNA-193b Anti metastatic role in the breast cancer
mir-765 MicroRNA-765 Tumor suppressor and eliminates lipids in clear cell renal cell carcinoma.
mir-3150b-3p MicroRNA-3150b Inhibits the proliferation and invasion of cervical cancer, colorectal cancer, hepatocellular carcinoma.
mir-484 MicroRNA-484 Effects on inflammation, apoptosis, and mitochondrial function.
mir-5094 MicroRNA-5094 Suppresses human peripheral blood T cell proliferation.
mir-2114-5p MicroRNA-2114 Involved in osteosarcoma metastasis.
mir-98-5p MicroRNA-98 Anti-carcinogenic functions. Regulates the proliferation and metastasis of breast cancer cells.
mir-335-5p MicroRNA-335 Inhibits the growth, chemo-sensitivity, and metastasis of human breast cancer cells. Overexpression impairs insulin secretion.
mir-204-5p MicroRNA-204 Inhibits the proliferation, migration, and invasion of various carcinoma.
mir-30b-5p MicroRNA-30b Promotes proliferation, migration, and invasion of breast cancer cells. Involved in the pathological process of diabetes mellitus.
mir-30a-5p MicroRNA-30a Significantly promotes cell apoptosis, and acts as a tumor suppressor. Associated with dysglycaemia.
mir-30c-5p MicroRNA-30c Suppressed pancreatic cancer cell proliferation. Protects against diabetic cardiomyopathy.
mir-30e-5p MicroRNA-30e Correlates with the clinical stage of breast cancer. Suppression of hepatocellular carcinoma.
mir-221-3p MicroRNA-221 Promotes breast cancer resistance to adriamycin. Key factors of insulin/insulin-like signaling pathway.
mir-30d-5p MicroRNA-30d Induces insulin transcription factor and insulin production. Responsible for tumor development and progression
let-7f-5p MicroRNA-Let-7f Inhibits tumor invasion and metastasis. Promotes angiogenesis.
mir-7-5p MicroRNA-7 Inhibit the invasion and metastasis of breast cancer cells. Regulates pancreatic beta cell function.
mir-146a-5p MicroRNA-146a Act as a modulator of the innate immune response. Role in the proliferation of breast cancer cells.
mir-16-5p MicroRNA-16 Inhibit gastric cancer, breast cancer, and chordoma. Affected insulin-mediated glucose handling.
mir-129-2-3p MicroRNA-129-2 Suppresses proliferation and migration of carcinoma cell .
mir-1-3p MicroRNA-1 Function as a tumor suppressor for breast cancer. Involved in the pathophysiology of diabetes.
mir-27a-3p MicroRNA-27a Role in oncogenesis, cell-proliferation, tumor cell metabolism and chemotherapy-resistance.
mir-374a-5p MicroRNA-374a Suppressor of oncogenic signaling in breast cancer. Regulates inflammatory response in diabetic nephropathy.
mir-34a-5p MicroRNA-34a Affecting numerous oncogenes and cancer pathways.
mir-124-3p MicroRNA-124 Role in CNS development, such as neuronal differentiation, maturation, and survival.
mir-1343-3p MicroRNA-1343 As a tumor suppressor for many types of cancer.
let-7b-5p MicroRNA-let-7b An important role in cell maturation. Inhibition of breast cancer tumor growth. Contributes to Diabetic Retinopathy.
mir-195-5p MicroRNA-195 Promotes pancreatic beta-cell dedifferentiation. Inhibits proliferation, invasion, and metastasis in breast cancer.

3.6. Identification of disease association

Cooperatively interacting and disease genes play roles in the progression of complicated disorders [69]. Targeting disease-
associated functions or pathways provides insight into disease mechanisms [70]. Disorder-specific therapeutic design techniques 
begin with identifying the connection between genes and diseases [71]. Based on NetworkAnalyst’s evaluation of the gene-disease 
connection, we observed that mammary Neoplasms and autosomal recessive predisposition were most precisely synchronized to 
our identified hub genes. Other includes - diabetes mellitus, pneumonia, liver cirrhosis, pulmonary fibrosis, neoplasm metastasis, 
adenocarcinoma, asbestosis, liver Cirrhosis, mood Disorders, neurodegenerative disorders, mental and motor retardation, global 
10

developmental delay, cognitive delay and cerebellar Ataxia. Fig. 10 shows the connection between genetic disease.
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Fig. 7. Two different methods, ChEA and Jaspar, demonstrated TF-Gene correlations to highlight the relationship between breast cancer and T2D. The circles of blue 
demonstrate TF-genes that interact with the DEGs gene (circular blue color).

Fig. 8. Applying two algorithms named TarBase and MirTarBase, the miRNA gene between breast cancer and T2D has been established. The circular red, orange, and 
yellow colors (red means high level, orange means moderate level, and yellow means low level) denote DEGs genes interacting with the mi-RNA gene (blue color 
square box).
11

Fig. 9. Using the Protein Drug Interaction method, the diagram depicts the Protein Drug combination between breast cancer and T2D.
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Fig. 10. The gene-disease correlation network depicts illnesses related to reciprocal DEGs.

4. Discussion

Diabetic women are 23% more likely than non-diabetic women to develop breast carcinoma [72]. A history of diabetes is asso-
ciated with a 37% mortality risk in breast cancer patients [73][74]. Additionally, diabetes can exacerbate the symptoms of breast 
cancer, and the symptoms of diabetes in women may resemble those of breast cancer. Concentrating on the effect of comorbid 
conditions on long-term results is crucial due to the prolonged lifespan of breast cancer survivors. Diabetes and breast cancer 
have common symptoms that impair quality of life, including distress, fatigue, diminished physical function, anxiety, and sexual 
dysfunction [75][76]. Both disorders also share central nervous system complications, such as peripheral neuropathy, impaired cog-
nitive function, and attention dysfunction [77][78][79][80]. Even though diabetes and breast cancer have different etiologies for 
these symptoms, cohabitation can worsen their conditions. Type 2 diabetic women have marginally more likely to develop breast 
cancer. Due to insulin resistance, any organ with a greater concentration of estrogen receptors, including the ovaries, breast, and en-
dometrium, has an increased risk of developing cancer [81]. Different cytokines, IGFBP-3, and IGF-1 levels can raise the risk of breast 
cancer development [82][22]. Some T2D medications have both positive and negative affect on the development of different types 
of breast cancer in females. Metformin, a drug used to reduce blood glucose levels in individuals with T2D, may lower the likelihood 
that women will develop estrogen-positive (ER-positive) breast cancer. According to a study that appeared in Annals of Oncology, 
diabetic women who had used the medicine metformin for at least ten years had a 38% lower risk of developing ER-positive breast 
carcinoma than non-diabetic women. In fact, compared to non-diabetic women, it was associated with a 25% elevated risk of ER-
negative breast carcinoma and a 74% elevated chance of triple-negative breast carcinoma [83][84]. After one year of use, sitagliptin 
may lower the incidence of breast carcinoma in female patients suffering from T2D. However, it is not always possible to pinpoint 
the exact mechanisms or biological pathways that contribute to the elevated risk of breast carcinoma among T2D sufferers. Because 
T2D and breast cancer have such significant therapeutic implications, we have tried to take advantage of the complexity of these 
two diseases by examining pathways and interactions between them. T2D promotes breast cancer, but how is unknown, making 
hypothesis-driven biology or endocrinological study challenging. It is essential to utilize well-established bioinformatics techniques 
and analysis methods to investigate functional disorders interacting with genes and pathways to Determine new factors that con-
tribute to comorbidity interactions. We analyzed GEO RNA-seq datasets from publicly available archives. To gain insight into how 
these comorbidities interact, we discovered DEGs shared by T2D and breast cancer and built networks using the DEGs. These DEGs 
helped to find linked GO keywords and dysregulated biological pathways. After applying an adjusted p-value level of 0.05, there 
was a specific technical challenge, and manual collection significantly reduced the number of pathways and GO classes. In addi-
tion to pathways and GO categories, we investigated previously unstudied DEGs-TFs and DEGs-miRNA interactions, protein-protein 
interaction (PPI) study, and hub protein identity. We searched the STRING database for PPIs corresponding to the products of our 
targeted genes. This study discussed the recognized protein-protein interactions that may be the primary agents of pathogenesis for 
several illnesses. We didn’t evaluate projected PPIs for this reason; instead, we only looked at experimentally verified PPI data. With 
the help of topological parameters, we created the PPI utilizing the DEGs shared by T2D and breast cancer. Many existing breast 
cancer datasets, including GSE29431, GSE32641, GSE61304, GSE70947, and GSE86374, contained the observed DEGs, which lends 
credence to the robustness and reproducibility of the findings [85][86].

Differential Expression Analysis (DEA) was performed to evaluate any substantial dysregulation. DEA is proceeded by the detec-
12

tion of ubiquitous genes, including up- or down-regulated genes (expressed in Fig. 2 and Fig. 3, consecutively), pathways (shown 
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in Fig. 4), GO (displayed in Table 2), PPIs (shown in Fig. 5), hub–protein interactions (expressed in Fig. 6 and Table 3), TFs gene 
interactions (displayed in Fig. 7), gene–miRNA interactions (shown in Fig. 8 and Table 4), PDIs (represented in Fig. 9) and GDAs 
(displayed in Fig. 10). The T2D RNA-seq dataset was obtained from patients with type 2 diabetes and non-diabetes, and the breast 
cancer dataset was collected from the healthy control group and case group (shown in Table 1). In addition, we compared our 
findings to earlier research published in several journals. In Fig. 1, the diagram of our strategy has been graphically illustrated and 
effectively oriented.

Gene Ontology (GO) enrichment analysis creates hypotheses on the innate physiological facts of research and evaluates high 
throughput molecular data [87]. Initially, we concentrated on the leading GO biological process: the regulation of complement 
activation (4 genes) and the regulation of immune effector process (4 genes). The cellular complement system is an important 
mediator of the innate immune response, contributing to the control of several phases of an inflammatory response [88]. In T2DM, 
an inflammatory reaction arises due to an autoimmune response to high blood glucose and inflammatory mediators generated by 
adipocytes and macrophages in adipose tissue. This mild and persistent inflammation leads to damage to the beta cells of the 
pancreas and leads to an inadequate production of insulin [89]. Immunosurveillance is a mechanism of the inherent immune system 
that identifies and destroys cancerous cells in the earlier stages of cancer development [90]. In cancer immunosurveillance, humoral 
immunity exerts pressure on a growing tumor, eliminating malignant cells before a tumor develops [91]. This same immunological 
pressure influences tumor growth and selects for specific mutations, generating immune-evasive breast cancer. Secondly, we focused 
on cellular components; the top GO terms are Supramolecular fiber, platelet alpha granule, membrane attack complex, myosin 
filament, vesicle, clathrin sculpted gamma-aminobutyric acid transport vesicle, autolysosome, and microfibril. P-selectin is a protein 
found in the alpha granules of platelets that promote the proliferation of tumor cells in breast tissues [92]. In patients with T2D and 
angiopathy, a higher number of activated large platelets circulates [93]. In T2DM, the membrane attack complex serves as a marker 
for complement overexpression [94]. Protectin on breast cancer cell membranes prevents complement membrane attack. Neutralizing 
protectin on cancer cells enhances their complement lysis sensitivity [95]. T2DM causes alterations in cardiac myosin that reduce the 
heart’s contraction rate [96] and an invasive breast tumor cell line, myosin-interacting guanine nucleotide exchange factor (MyoGEF) 
regulates the expression of RhoA and RhoC as well as cell polarity and invasion [97]. Abnormal extracellular vesicles (EVs) can cause 
insulin resistance and lead to T2DM complications [98]. EVs transport proteins and nucleic acids that promote cancer growth and 
metastasis [99]. Finally, we focused on the top two GO molecular functions: endopeptidase inhibitor activity (3 genes) and serine type 
endopeptidase inhibitor activity (3 genes). Trypsin, a digestive serine protease that promotes invasion, proliferation, and metastasis, 
has also been associated with several malignancies. Protease engagement in carcinoma promotes the use of endopeptidase inhibitors 
as anti-cancer agents [100]. Endopeptidase activity facilitates inflammatory cell invasion of pancreatic islets and inhibits beta-cell 
multiplication. The role of endopeptidase in cancer proposes the use of proteolytic enzyme inhibitors as antineoplastic drugs [101].

Pathway analysis is the means of representing an organism’s responses via internal alterations. Almost all pathways are associated 
with the complement system. The complement system referred to as the complement cascade, is a fundamental component of our in-
nate immune system and contains above 50 soluble protein regulators and receptors [102]. In malignant tumors, complement protein 
expression is elevated, and complement activation in the tumor microenvironment develops carcinogenesis and expansion. Multiple 
studies have demonstrated that Complement C1q, Complement C3a, and Complement C5a are highly expressed in breast cancer 
and promote carcinogenesis, tumor development, proliferation, and metastasis [103]. Several studies have shown the relationship 
between the activation of the complement system and the onset and development of metabolic diseases such as insulin resistance 
and T2DM. Complement C3, complement C4, factor D, and complement CD59 has been involved in the diagnostics of diabetes 
[104][105]. Possible treatments for insulin resistance include suppression of the Complement C1 and Complement C3 complement 
activation as well as its regulators [106]. Complement C3a and C5a’s impacts on adipose tissue and their receptors are crucial to 
both the pathophysiology of adipose tissue and the onset of metabolic disorders [107]. Elevated complement levels are associated 
with diabetic complications such as neuropathy, nephropathy, and retinopathy [108]. G protein-coupled receptors (GPCRs) are the 
broadest class of receptor molecules associated with the genesis and development of numerous cancers, notably breast cancer [109]. 
For the treatment of Type 2 diabetes mellitus, GPCRs have been examined as prospective therapeutics [110]. In human breast cancer, 
the complement-regulating proteins CD46 and CD59 have elevated levels of expression. CD46, CD59, and CD55 are connected to 
diabetic retinopathy.

Hub genes have a substantial impact on the features and course of the disease. Fibrinogen alpha chain (FGA) exhibits significant 
expression in breast cancer. Fibrinogen is pro-tumorigenic in breast cancer due to its ability to bind to growth factors, such as vas-
cular endothelial growth factor, promote angiogenesis, interact with other matrix proteins that serve as a physiological defensive 
barrier, and act as a scaffold for cellular proliferation via integrin binding [111]. FGA polymorphisms may play a significant role 
in the progression of endothelial dysfunction, ultimately resulting in type 2 diabetes and insulin resistance. FGA polymorphisms 
increase plasma fibrinogen levels, levels of lipids, and glucose [112]. Suppressor Of Cytokine Signaling 3 (SOCS3) is a significant 
factor in insulin resistance in muscle and abnormalities in glycaemic control, indicating that suppressing SOCS3 in muscle may be 
an effective method for recovering insulin action in T2D patients [113]. Suppression of SOCS1 and SOCS3 genes may facilitate the 
neoplastic transition of epithelial tissues, according to a theory based on the DNA-hypermethylation of SOCS genes in breast cancer 
[114]. By triggering PI3K/Akt signaling, Unc-5 Netrin Receptor B (UNC5B) plays a significant role in the progression of breast tumor 
cell proliferation and metastasis, and targeting UNC5B is a possible technique for customized breast carcinoma treatment [115]. 
Expression of UNC5B and netrin-1 is associated with diabetic nephropathy and angiogenesis [116]. Changes in Complement Factor 
B (CFB) expression as a potential cause of insulin resistance and hypertension, and CFB is higher in human cohorts with T2D and 
cardiovascular disease [117]. Breast cancer molecular subtypes, especially the LA subtype, have a high correlation with CFB [118]. 
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Suppression of Integrin Subunit Alpha V (ITGAV) decreased cell proliferation, migration, and self-renewal in breast cancer cell lines 
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through modifying BCL2 and PXN expression, and metastatic breast cancers with elevated ITGAV expression may be treated by 
targeting ITGAV [119]. In human breast cancer, excessive EDN2 expression is often inhibited by promoter methylation, presumably 
causing abnormal regulation of the ET-axis, which may exacerbate this disease [120]. In type 2DM, increased Neuropeptide Y Recep-
tor Y1 (NPY1R) mRNA expression in human islets impaired insulin production by enhancing Y1 receptor activation [121]. In breast 
cancer, NPY1R overexpression is linked with disease stage and lymph node metastases. Compared to no NPY1R expression, patients 
with higher NPY1R expression exhibited decreased tumor-specific mortality [122]. Breast cancer chemotherapy resistance is associ-
ated with Serpin Family A Member 6(SERPINA6) [123]. By interacting with hyaluronic acid (HA), the Hyaluronan Binding Protein 2 
(HABP2) gene generates an extracellular serine protease that promotes the breakdown of the extracellular matrix, causing rupture of 
the endothelium, ultimately enhancing tumor metastasis and angiogenesis [124]. Serpin Family A Member 1 (SERPINA1) is associ-
ated with cardiovascular complexity in T2D [125]. SERPINA1 expression targets ER and HER2-regulated genes and is associated with 
HER2-positive and estrogen receptor-positive (ER+) breast cancer and predicts survival in ER+ patients, it may have diagnostic po-
tential [126]. Elevated Complement C3 expression levels are related to metastasis in breast cancer patients, as determined by ELISA 
test of serum samples from breast cancer patients [127]. C3 is related with the progression of diabetes after adjusting for possible 
confounders like BMI, insulin, and other inflammatory markers [128]. In the initial phases of diabetes, Complement C7 and its gene 
product are expressed more in early diabetic nephropathy kidneys (EDN) due to complement deposition [129]. C7 activates MAPK, 
VEGF, or JAK/STAT signaling pathways, which promotes the development of breast cancer [130]. Fibrinogen b-gene(FGB) polymor-
phism connects with cardiovascular risk in type 2DM and glycemic control rigorously affects fibrinogen plasma concentrations [131]. 
Plasma fibrinogen levels may predict postoperative metastasis and mortality in advanced breast cancer patients undergoing neoadju-
vant chemotherapy [132]. C4B-binding protein (C4BP) influences human islet amyloid polypeptide (IAPP)-mediated inflammation, 
amyloid accumulation in pancreatic islets, and IAPP-mediated beta cell damage [133]. In breast cancer, the complement inhibitor 
CSMD1 acts as a tumor suppressor by suppressing Complement C4B [134]. These identified hub genes have the potential to serve 
as biomarkers, and it will be significant to eradicate mutations in these genes to achieve recovery. We still have not identified the 
relationship between ITGAV, EDN2, and SERPINA6 genes with T2D and HABP2 in breast cancer. However, these genes may serve as 
prospective therapeutic targets, opening the door for deeper analysis and research.

We also examined the TF-gene and miRNA interactions to identify the transcriptional and post-transcriptional regulators of the 
common DEGs. Transcription factors control the rate of transcription, and the post-transcriptional gene is regulated by miRNAs. To 
comprehend the onset of disease, TFs, and miRNAs are significant. In this way, the common DEGs, TFs, and miRNAs were connected 
to our analysis. We discovered several TF genes, including FTL, SPP1, PEG10, SOCS3, EDN2, FBP1, UNC5B, and SERPINA1. FTL

(Ferritin levels) is linked to the breast cancer development [135]. Among Tamoxifen-treated women with ER+ breast cancer, high 
levels of secretory phosphoprotein 1 (SPP1) gene expression is linked to an elevated risk of distant recurrence [136]. By binding to 
ER, estrogen acts as a growth factor in malignant tumors, promoting cell division and development. Tamoxifen inhibits the effects of 
estrogen by inhibiting DNA synthesis by binding to estrogen receptors on tumors and other tissue targets. SPP1 is significantly more 
abundant in breast carcinoma tissue, making it a potential option for immunotherapy and a novel prognostic biomarker [136][137]. 
The overexpression of PEG10 (Paternally Expressed Imprinted Gene 10) in breast cancer cells promotes migration and invasion as 
well as cell cycle, clone formation and cell proliferation [138]. BMI and breast cancer are linked to the expression of the SOCS3 
gene, which suppresses cytokine signaling. Inhibiting cytokine signaling and promoting protein degradation, SOCS proteins are 
negative JAK/STAT pathway regulators [139]. Proliferation and anchorage-independent growth are both decreased when SOCS3 
gene expression is overexpressed. Several cytokines, including prolactin, GH, ILs, and insulin, promote SOCS3 gene expression, while 
glucocorticoids decrease it. Cytokines and SOCS proteins influence the mammary gland’s development and functionality [139]. In 
the mammary gland of humans, EDN2 (Endothelin2) acts as a tumor suppressor [120]. Breast cancer is also linked to fructose-1, 
6-bisphosphates (FBP1). Compared to individuals with luminal breast cancer and patients with basal-like breast cancer have lower 
FBP1 expression levels in tumor tissue. FBP1 may have anticancer effects in breast cancer cells because of the potential decrease 
in HIF-1 alpha overexpression [140]. Breast cancer patients have a worse prognosis when UNC5B is highly expressed because it 
promotes tumor growth and metastasis [115]. Breast cancer cell growth and metastasis are decreased by UNC5B knockdown, which 
also affects PI3K/Akt signaling activity. A potential approach for customized breast cancer treatment is to target UNC5B, a biomarker 
with diagnostic and prognostic potential. SERPINA1 is a direct estrogen receptor target gene and a survival predictor. Additionally, 
it has been linked to a number of tumors, including breast, lung, and colon cancer. Breast cancer patients have increased SERPINA1 
expression, which results in E2-independent ER binding [141]. The identified miRNAs, such as mir-193b-3p,mir-98-5p,mir204-
5p,mir-30e-5p, and mir-146a-5p are associated with regulating the proliferation and metastasis of breast cancer cells. We also 
predicted mir-335-5p, mir-30b-5p, mir-7-5p, mir-16-5p, mir-13p, mir-374a-5p, mir-let-7b-5p, mir-195-5p that are associated with 
different genes of breast cancer and T2D. Among them, overexpression of mir-335-5p impairs insulin secretion but inhibits the 
growth, chemoresistance, and metastasis of human breast cancer cells; mir-30b-5p, mir-7-5p,mir-13p, mir-16-5p, mir-195-5p inhibit 
the migration, proliferation, and invasion of breast cancer cells and also involved in the pathological process of T2D. Further, mir-
374a-5p is a breast cancer suppressor of oncogenic signaling and also regulates inflammatory response in diabetic nephropathy. 
Furthermore, mir-let-7b-5p inhibits breast cancer tumor growth and also contributes to diabetic retinopathy. The multiplication and 
apoptosis of pancreatic beta-cells are regulated by miR-16-5p-targeted genes [142]. MiR-16-5p can suppress proliferation of breast 
cancer cells through down-regulating expression of ANLN [143].

From gene-disease analysis, we may predict numerous diseases are associated with T2D and breast cancer, including respiratory, 
cerebral, cardiovascular, liver, congenital, and some types of carcinoma. T2D is associated with an increase in pneumonia-related 
mortality and the development of pneumonia following breast cancer radiotherapy [144][145]. Previously existing T2D may raise 
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the risk of lung cancer and women with breast carcinoma have an elevated chance of developing subsequent lung cancer, presumably 
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due to smoking interaction and radiotherapy [146][147]. Increased estrogen levels are linked to liver cirrhosis, which may have a 
causative relationship with breast cancer and approximately 30% of those who have cirrhosis also have T2D [148][149]. The lung is 
one of the targeted organs of diabetes, manifesting as pulmonary fibrosis [150]. Prediabetes may enhance tumor development and 
metastasis by triggering mitogenic signaling [13]. Women exposed to asbestos have greater incidences of breast cancer, according to 
several reports [151]. The main symptoms of major depressive disorder are mood disorders and psychomotor retardation. Depression 
impairs the prognosis of diabetes in diabetic patients, and depression may increase the likelihood of acquiring T2D by 60% [152]. 
Depression is common but underappreciated and untreated among breast cancer patients, causing amplification of somatic symptoms, 
impaired functioning, and poor treatment compliance [153]. Insulin resistance, typically linked with T2DM, may result in a lack of 
insulin actions in the CNS, leading to neurodegenerative disorders (cognitive delay, cerebellar ataxia) and global developmental 
delay [154]. Compared to type 2 diabetes, autosomal recessive predisposition has a significant impact on the development of breast 
cancer in women [155].

We discovered 13 potential therapeutic substances (Fig. 9) linked to the carboxypeptidase A1 (CPA1) gene. The zinc metallo-
protease carboxypeptidase A1 (CPA1) is generated by the acinar cells of the pancreas and is responsible for cleaving the C-terminal 
branched-chain and aromatic amino acids from ingested proteins [156]. In chronic pancreatitis, incorrect CPA1 mutations were 
discovered, and mutation induced CPA1 misfolding induces endoplasmic reticulum(ER) stress [157]. Chronic pancreatitis causes 
25-80% of diabetes cases and increases the risk of pancreatic cancer [158]. Pancreatic cancer is closely linked with an about 10% 
elevated risk of breast and ovarian cancer occurrence and death [159]. High blood sugar and dyslipidemia associated with type 
II diabetes alter ER homeostasis, leading to irreversible activation of the unfolded protein response (UPR). The activity of various 
UPRs involved in breast cancer carcinogenesis [160]. No pharmacological data exists about these 13 potential medicinal compounds. 
Their application in medicine has not been investigated yet. These compounds may prevent mutation of this carboxypeptidase A1 
(CPA1) gene. Thus, the mechanisms mentioned earlier are stopped, and the progression of chronic pancreatitis-induced diabetes, 
breast cancer, and ER stress-induced diabetes, breast cancer is halted.

It is significant to acknowledge that our study had certain limitations. The datasets employed contained a restricted number 
of samples, and we did not collect any other types of diabetic datasets. Furthermore, we did not consider age, sex, race, and 
other pertinent characteristics in our analysis. Thus, additional validation is required to thoroughly analyze the biological relevance 
associated with the study’s findings.

5. Conclusions

The current study used a multi-omics technique to examine transcriptomics datasets of T2D and breast cancer to decode the 
shared genes expressed in both conditions. Incorporating the overlapped DEGs with other biomolecular interaction networks led 
to the identification of 15 hub proteins from protein-protein interactions, regulatory TFs from DEG-TF interactions research, and 
miRNAs from DEGs-miRNA interactions study. The TFs and miRNAs were also novel as the hub genes and pathways, meaning they 
weren’t previously confirmed to play a significant role in the relationships between T2D and breast cancer. In this method, the current 
work showed biomarkers at the protein, RNA, pathway, and GO levels, but further research is required to identify them officially 
as biomarkers. These findings point to T2D genes that are differentially expressed and may be significant in the development of 
breast cancer. As a result, we used transcriptome analysis to identify shared molecular pathways and biomarkers in patients with 
T2D and breast cancer to understand how the two diseases are related. They may also provide new information about these diseases. 
Researchers and medical professionals may also use it as a crucial technique to identify the underlying pathophysiology and nature 
of the specific fundamental disease to develop more effective and reliable treatments, possibly within a highly individualized and 
customized pharmacotherapeutic structure.
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